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ABSTRACT 
 
Even though insurers predominantly invest in bonds, credit risk associated with 
government and corporate bonds has long not been a focus in their risk manage-
ment. After the crisis of several European countries, however, credit risk has re-
cently been paid greater attention. Nevertheless, the latest version of the Solvency 
II standard model (QIS 5), provided by regulators for deriving solvency capital re-
quirements, still does not require capital for credit risk inherent in, e.g., EEA issued 
government bonds from Greece or Spain. This paper aims to provide an alternative 
approach and compares the standard model with a partial internal risk model using 
a rating-based credit risk model that accounts for credit, equity, and interest rate 
risk inherent in a portfolio of stocks and bonds. The findings demonstrate that sol-
vency capital requirements strongly depend on the quality and composition of an 
insurer’s asset portfolio and that model risk in regard to model choice and calibra-
tion plays an important role in the quantification. 
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1. INTRODUCTION 

 

Credit risk has long not been in the focus of many insurance companies, even though a major 

part of their capital investments are held in government and corporate bonds generally ex-

posed to credit risk. However, the recent crises in Greece, Ireland, Spain or Portugal have 

demonstrated the strong need for adequate credit risk models for insurers, since it cannot gen-

erally be taken for granted that highly indebted countries obtain the needed financial support. 

For this reason, credit risk modeling has received increased attention in insurers’ risk man-

agement. In this paper, we compare the latest proposed standard model of 2010/2011 to be 

used in the European supervisory system Solvency II (planned to be in force from 2013 on) to 

quantify market and credit risk for a non-life insurance company with a partial internal model 

that assesses the market risk situation of an insurer. Special focus is paid to the effect of credit 

risk while further examining the impact of dependencies between the relevant processes with 

respect to diversification benefits. Furthermore, we analyze model risk for the internal ap-

proach regarding the model choice as well as the model calibration. 

 

Since the Basel II reform of European banking supervision in 2006, insurance supervision has 

also fundamentally been reformed. In particular, the European Union (EU) Solvency II regu-

lation will impose risk-based capital requirements for insurance companies and is planned to 

be implemented after 2013, thereby explicitly accounting for market and credit risks. To cal-

culate the solvency capital requirements (SCR), insurers have the option to choose between 

five different methods. Besides the standard formula provided by the regulator, the SCR can 

be calculated by using the standard model with a partial internal model, with undertaking-

specific parameters, with simplifications, or by modeling the insurers’ risks with a full inter-

nal model approved by the supervisors (see European Parliament and of the Council, 2009, 

Article 112, No. 1 to 7).1 However, the latest proposed standard model of 2010/2011 does not 

require capital concerning credit spread risk for investments in government bonds issued by 

countries of the European Economic Area (EEA) or borrowings guaranteed by one of these 

states, including, e.g., Greece or Ireland. 

 

While credit risk has been extensively researched in the context of the valuation of defaultable 

bonds2, applications to insurance companies have hardly been addressed so far. With respect 

                                              
1 See Gatzert and Wesker (2012) for a detailed overview of the different methods to derive the SCR according 

to Solvency II along with a comparison to Basel II/III, and Eling, Schmeiser, and Schmit (2007) for an over-

view of the Solvency II framework in general. 
2 See Black and Scholes, 1973, Merton, 1973, 1974, Black and Cox, 1976, Leland 1994, and Longstaff and 

Schwarz, 1995, for structural models, and Jarrow and Turnbull, 1995, Das and Tufano, 1996, Jarrow, Lando, 
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to Solvency II, a study by Fitch Ratings (Piozot et al., 2011) discusses the implications of the 

new regulatory regime in regard to the insurers’ asset allocation and the attractiveness of dif-

ferent asset classes. One main finding is that insurers will likely have to increase their invest-

ments in higher-rated corporate and government bonds. At the same time, Solvency II implies 

investments in shorter-term bonds instead of long-term debt due to ceteris paribus higher cap-

ital requirements for long durations (while the asset-liability mismatch is simultaneously re-

duced) as well as a low level of equity holdings.  

 

In addition, as a consequence of the special treatment in terms of the capital requirements for 

government bonds from members of the EEA under Solvency II, the authors also assume that 

these bond exposures will gain more importance for the insurers’ asset allocation. However, 

in this context, it should also be taken into account that even if the standard model is used 

instead of an internal model, according to Solvency II’s Pillar 2, the insurer’s own risk and 

solvency assessment (ORSA) requires an adequate assessment of the company’s risk situa-

tion, which also includes the consideration of credit risk. Thus, even if the standard model 

currently does not require adequate capital for credit risk of EEA states, this risk will certainly 

have to be taken into account within the ORSA process.  

 

A different aspect is analyzed in a study by Mittnik (2011), which focuses on the applied cali-

bration procedure for the standard model and particularly points out flaws regarding the use of 

the rolling-window annualization procedure. For instance, wrongly implied correlations be-

tween asset classes, even if returns are independent, do not adequately reflect diversification 

benefits. Christiansen, Denuit, and Lazar (2012) examine the calibration of the aggregation 

formula (“square-root formula”) used to derive the life underwriting risk in the Solvency II 

standard model. Applying a stochastic model for an internal approach, they identify the corre-

lation matrix in the life module of the Solvency II standard model as not appropriate, leading 

to an overestimation for the underlying German data set. Further critical discussions about the 

aggregation formula in the Solvency II standard model can be found in Sandström (2007) and 

Pfeifer and Strassburger (2008). Sandström (2007) shows how the standard formula needs to 

be recalibrated if the probability distributions of the underlying risk factors are skewed (in-

stead of being symmetric and normally distributed, even if risks are independent) in order to 

ensure consistency. Pfeifer and Strassburger (2008) point out how the overall SCR is misspe-

cified even if the aggregate probability distribution of the risks is symmetric and if the under-

lying risks are uncorrelated but dependent. 

                                                                                                                                             
and Turnbull, 1997, Duffie and Singleton, 1997, Lando, 1998, and Duffie and Singleton, 1999, regarding re-

duced-form models. 
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Thus, the question arises to what extent an internal model leads to different capital require-

ments as compared to the Solvency II standard model in the current calibration if market risks 

including equity, interest rate and credit spread risk are adequately quantified. Therefore, the 

aim of this paper is to compare an alternative internal approach with the standard model in the 

case of a non-life insurance company, thereby focusing on the asset side and the induced mar-

ket risk. We specifically investigate the importance of an adequate quantification of credit 

spread risk with regard to the capital investment of insurers, and thus focus on the insurer’s 

asset side, looking at stocks and bonds as the relevant asset classes. In a first step, it is demon-

strated how the solvency capital has to be determined for a given portfolio of stocks, govern-

ment bonds, and corporate bonds by using the latest proposed Solvency II standard approach 

as laid out in the QIS 5 quantitative impact study. Second, the market and credit risk for 

stocks and bonds is modeled based on an internal approach. Based upon these results, we ana-

lyze the SCR of the two approaches to compare their effectiveness in identifying major mar-

ket risk sources. In addition, model risk associated with the two approaches that may arise 

from a misestimation of input parameters in the calibration process is studied. 

 

In the internal market and credit risk model, Monte Carlo simulation is used to derive the ne-

cessary solvency capital based on the Value at Risk at a 99.5% confidence level as required 

under Solvency II. To quantify the market risk of stocks, the development of equity prices is 

described by a geometric Brownian motion. Concerning the market and credit risk of fixed 

income government and corporate bonds, two main types of risks are taken into account. In-

terest rate risk is quantified based on the model by Cox, Ingersoll, and Ross (1985) (CIR) to 

derive the risk-free term structure of interest rates. Credit risk is integrated to calculate the 

market value of a bond portfolio at the end of a given period using the rating-based credit risk 

model of Jarrow, Lando, and Turnbull (1997) (JLT), which includes risk factors with respect 

to credit default and credit spread. The rating transition process is determined by a time-

homogenous Markov chain based on empirical transition rates published by rating agencies. 

The partial internal model for the market and credit risk also enables examination of the im-

pact of different dependencies between stock price and interest rate. To account for model risk 

regarding the choice of the underlying processes, the Heston (1993) model is integrated for 

stocks, the CIR model is replaced by the Vasicek (1977) approach and the reduced-form 

model by Duffie and Singleton (1999) is implemented as an alternative for credit risk model-

ing.3 

                                              
3 Regarding credit risk modeling, we focus on reduced-form credit risk models since the lack of firm-specific 

data limits the application of structural models, in particular for portfolios with a large number of credit risk 

sensitive assets. 
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Our results show the considerable discrepancy between the SCR for market risk calculated by 

the Solvency II standard formula and the internal approach. In particular, depending on the 

portfolio composition, capital requirements can be reduced through an internal approach using 

more distinguished assumptions and fully accounting for diversification benefits. Conversely, 

they can also be increased, which is especially the case for, e.g., low-rated bonds that appear 

to be underestimated in the standard model. Moreover, the findings emphasize the importance 

of considering the credit risk of government bonds issued by members of the EEA and AAA- 

or AA-rated non-EEA government bonds. Furthermore, model risk regarding processes and 

calibration plays an important role and should be taken into account when quantifying credit 

and market risk. 

 

The remainder of this paper is structured as follows. Section 2 provides a general overview 

and introduction to Solvency II and the standard model with focus on the market risk module. 

Section 3 presents the quantitative framework of the Solvency II standard model and the al-

ternative internal model approach. The results of the numerical analysis are discussed in Sec-

tion 4, and Section 5 concludes. 

 

2. OVERVIEW: MARKET AND CREDIT RISK UNDER SOLVENCY II 

 

According to the Directive 2009/138/EC (Solvency II), Article 101, the insurance company is 

treated as a going concern for a period of twelve months. Hence in quantifying its SCR, the 

insurance company has to take the existing business as well as the new business in this time 

period into consideration based on expected values.4 With the objective to cover unexpected 

losses, the Value at Risk is chosen as the relevant risk measure by the EU. Thus, the SCR is 

defined as “the Value-at-Risk of the basic own funds (…) subject to a confidence level of 

99.5% over a one-year period” (see European Parliament and of the Council, 2009, Article 

101, No. 3). 

 

QIS 5 is said to constitute the final official test before implementing Solvency II after 2013. 

The standard model is designed as a bottom-up approach, divided into six different risk mod-

ules for determining the basic SCR (BSCR) as exhibited in Figure 1, including life, non-life, 

health, market, and default risk as well as intangibles. Additionally, operational risk and ad-

justments for loss absorbency of technical provisions and for loss absorbency of deferred tax-

es have to be taken into account to obtain the total SCR. 

                                              
4 With respect to new business, the expected loss has to be taken into consideration in addition to the unex-

pected loss. 
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The latest report on the Solvency II standard approach, published by the Federal Financial 

Supervisory Authority in Germany (BaFin), identified market risk as the largest risk driver for 

life and health insurers and the second largest in the property-casualty sector of the German 

insurance industry (see BaFin, 2011, pp. 16, 18, 21).5 As shown in Figure 1, the market risk 

module of the Solvency II framework is divided into seven sub-modules. With respect to cre-

dit risk, three modules are of relevance, including spread risk and market risk concentrations, 

as a part of the market risk module as well as counterparty default risk. The latter default risk 

module is an extension of the spread risk sub-module, containing counterparty default risks 

that are not defined as market risk. This includes, for example, other risk mitigating contracts, 

cash at banks or receivables from intermediaries (see EIOPA, 2010a, pp. 134-135). Concen-

tration default risk “(…) is restricted to the risk regarding the accumulation of exposures with 

the same counterparty” (see EIOPA, 2010a, p. 127) considered in the equity risk, property 

risk and spread risk sub-module. Excluded are concentration risks to geographical areas or 

industry sectors, governments issued by members of the EEA or OECD and assets covered by 

the counterparty default risk module (see EIOPA, 2010a, pp. 127, 131). 

 
Figure 1: Structure of the Solvency II SCR calculation (see EIOPA, 2010a, p. 90) 

 

 

According to the QIS 5 report from the BaFin for the German insurance industry, it is particu-

larly spread risk that requires the second largest solvency capital in the market risk sub-

module after interest rate risk in the case of life and health insurers (see BaFin, 2011, pp. 16, 

                                              
5 Excluding diversification effects. 
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18). For German property-casualty insurers, only equity risk requires more capital in the mar-

ket risk module (see BaFin, 2011, p. 21).6 The spread risk module thereby contains all risks 

that result from changes in the credit spread (over the risk-free interest rate term structure). 

Hence, it combines default risk, rating transition risk, and all other risks responsible for varia-

tions in the market value for all assets and liabilities sensitive to changes in the credit spread 

in one sub-module. For the selected asset portfolio of stocks and bonds in the following anal-

ysis, we consider the market risk sub-modules equity risk, interest rate risk and spread risk, 

which represent the main important risk drivers and are highlighted in Figure 1. 

 

Based on predefined scenarios, the capital requirements for the market risk module cover the 

variation of the market value of financial instruments for a time horizon of one year through a 

mark to market approach (see EIOPA, 2010a, p. 92; European Parliament and of the Council, 

2009, Article 101, No. 3). The calculation is based on basic own funds, which are defined as 

the difference between the market value of assets and the best estimates of the liabilities. The 

Solvency II bottom-up approach also takes diversification effects into account through corre-

lations in the aggregation process of risk modules. In the standard model, the aggregated sol-

vency capital requirements (SCRag) for the BSCR and each risk module market, life, health 

and non-life, SCRr, are defined through the so-called “square-root formula” given by 

 

,
,

,ag r c r c
r c

SCR CorrSCR SCR SCR⋅ ⋅= ∑  
(1) 

 

where CorrSCRr,c denotes the pairwise correlation coefficients of module r and c, given by a 

predefined correlation matrix (see EIOPA, 2010a, pp. 95-96, 107-108, 148-149, 166, 196-

197).7 
  

                                              
6 Excluding diversification effects. 
7 The square-root formula in Equation (1) produces an exact result for the Value at Risk only for jointly nor-

mally distributed risks, since it only results in a coherent risk measure. Artzner et al. (1999) show that the 

Value at Risk satisfies the characteristic of subadditivity (and therefore is a coherent risk measure) for nor-

mally distributed risks for a significance level with 0.5α ≤ . More generally, Embrechts, McNeil, and 

Straumann (2002) expand the Value at Risk as a coherent risk measure for elliptically contoured distributions 

with 0.5α ≤ . 
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3. MODEL FRAMEWORK 

 

3.1 Standard approach under Solvency II 

 

The basis for the calculation of the SCR under the Solvency II standard model for market risk 

is the net asset value (NAV). In line with the definition of basic own funds, the NAV is defined 

as the difference between assets A and liabilities L, excluding subordinated liabilities, which 

are sensitive to the considered risk of the particular sub-module (see EIOPA, 2010a, pp. 91-

92). Changes in the NAV as a result of a shock scenario are denoted by ∆NAV for a considered 

(sub-) module. Hence, a positive ∆NAV implies a loss as a consequence of a given scenario; in 

the case of a negative ∆NAV, it is set to zero (see EIOPA, 2010a, p. 92). In the following 

analysis, we focus on the asset side and thus assume that the liabilities of the non-life insurer 

are not affected by changes in credit and market risk, i.e. L L shock= . Hence, ∆NAV is de-

fined as 

 

( )( ) ( ) ( )( )( )
( )( )

max | ,0 max | ,0

max | ,0 .

NAV NAV shock A LNAV A L shock

A A shock

= − = − −

= −

∆ −
 (2) 

 

Based on this definition, the ∆NAV for the equity, interest rate and spread risk (sub-) module 

represents the basis for the SCR calculations, which is referred to as eqMkt , intMkt  and spMkt . 

 

SCR in the equity risk sub-module 

 

The SCR for market risk resulting from fluctuations in equity prices of all equity price sensi-

tive assets is calculated based upon the market value ( ), 0eq iMV  for the investment exposure i 

in the equity risk sub-module. The shock scenario differentiates between two investment 

classes to determine the SCR in this sub-module. First, the risk class “Global” includes all 

exposures transacted in countries that are members of the EEA or the Organisation for Eco-

nomic Co-operation and Development (OECD) (see EIOPA, 2010a, p. 113).  In this case, the 

scenario approach assumes a decrease in equity by 30%. Based on the market value ( ), 0eq iMV  

at time t = 0, the SCR for the risk class “Global”, ,eq GlobalMkt , results from 
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( )( ) ( ), , ,0 ,0max 0.3 max 0.3 0 ,0eq Global eq Global eq i
i Global

Mkt MV MV
∈

= =  ⋅ ⋅ 
 

∑ .8

 
 

Second, “Other” is defined as the class of higher risks, which contains all other equity price 

sensitive assets such as hedge funds, alternative investments, non-listed equities as well as 

exposures in emerging markets. Here, the shock scenario is given by a drop of 40%, implying 

 

( )( ) ( ), , ,max 0.4 max 0.40 , 0 .0 0 ,eq Other eq Other eq i
i Other

Mkt MV MV
∈

= =  ⋅ ⋅ 
 

∑  

 

In the case of strategic participations, a stress factor of 22% is assumed for both risk catego-

ries in the equity risk sub-module. Participations that are not strategically oriented are stressed 

with the general factors of 30% and 40%. An exceptional position is given to participations 

that are excluded from the scope of group supervision according to the Directive 

2009/138/EC, Article 214, with a stress of 100% (see EIOPA, 2010a, p. 282). Furthermore, 

participations in financial or credit institutions do not have to be stressed, but are excluded 

from own funds, which implicitly produces a stress of 100%. 

 

The standard capital stress (SCS) in the equity risk sub-module is set to 39% (“Global”) and 

49% (“Other”). To mitigate potential pro-cyclical effects of adverse capital market develop-

ments, a symmetric adjustment of -9 percentage points is applied in QIS 5 for both risk 

classes (see EIOPA, 2010a, p. 114; European Parliament and of the Council, 2009, Article 

106). Thus, the following analysis generally uses 30% and 40%, respectively, until stated oth-

erwise. In general, the symmetric adjustment mechanism is calibrated based on the MSCI 

World Developed price index I(t) at time t by an adjustment term adj(t) and a beta factor β(t), 

limited by an upper and lower bound of +/-10%: 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) [ ]
( ) ( )

( )
( ) ( )

( )

780

1
780

1

10.1 , if  0.1
780

, if  0.1,0.1 , with .
1

0.1 , if  0.1
780

t

s t
t

s t

adj t t I t I s
adj t t adj t t adj t t adj t

I sadj t t

β
β β β

β

−

= −
−

= −

− ⋅ < − − ⋅
⋅ = ⋅ ⋅ ∈ − =
 ⋅⋅ >

∑

∑

 

 

 

 

The adjustment at time t is thus defined as a function of the MSCI index and a weighted aver-

age of the MSCI index to a period of three years (780 trading days).9 Furthermore, through a 

                                              
8 Following the ∆NAV approach in Equation (2), the SCR for the risk class “Global” in the equity price sub-

module is given by ( ) ( ) ( ) ( ), , ,0 1 0.3 0 0.3 0eq Global eq Global eq GlobalNAV MV MV MV∆ = − − ⋅ = ⋅ , thus assuming a de-

crease in equity prices by 30% (to 70%). 
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regression of the MSCI index on its weighted average (based on 780 trading days), the beta 

function β(t) is determined, such that the adjusted capital stress (ACS) at time t is given by 

( ) ( ) ( )= + ⋅ACS t SCS adj t tβ .10 The shock parameters for the Solvency II standard approach 

are summarized in Table 1. 

 

Table 1: Equity shock scenarios in the Solvency II standard model given the adjustment 

against pro-cyclical effects ACS according to QIS 5 (EIOPA, 2010a, p. 114) 

Equity 
Strategic 

Participation 
Non-Strategic 
Participation 

Financial 
Participation* 

Excluded 
Participation 

Global 0.30 0.22 0.30 0.00 1.00 
Other 0.40 0.22 0.40 0.00 1.00 

* Participations in financial or credit institutions are directly excluded from own funds. 

 

Table 2: Correlations in the equity risk sub-module of the Solvency II standard model (see 

EIOPA, 2010a, p. 115) 
Global Other 

Global 1.00 0.75 
Other 0.75 1.00 

 

Correlations between the two risk classes are taken into account in a last step through a prede-

fined correlations matrix presented in Table 2.11 The correlation parameters induce diversifi-

cation effects between the risk classes by calculating the SCR for the equity risk sub-module 

eqMkt  according to the square-root formula (see also Equation (1)) given by 

 

{ }, , ,
,

max ,0 ,
eq eq eq eq

eq eq

eq r c eq r eq c eq eq
r c

Mkt CorrIndex Mkt Mkt , r ,c Global Other .
 
 = ⋅ ⋅ ∈
 
 
∑  (3) 

 

Concerning the SCR calculation in the equity risk sub-module, the market value ( ), 0eq iMV  of 

stock exposure i is determined by the invested capital AS,i(0) at the starting time t = 0 with 

 

( ) ( ), ,0 0 .eq i S iMV A=  

 

                                                                                                                                             
9 In QIS5, the symmetric adjustment adj(t) is calculated based on an weighted average of three years. Howev-

er, CEIOPS suggests a time period of one year (see EIOPA, 2011, pp. 15-16). 
10 See EIOPA, 2010c, pp. 41-50. For simplification, β(t) can be set to one (see EIOPA, 2010c, p. 45). 
11 A critical analysis of the derivation of the correlation structure of assets within the class “Other” (set to 1) is 

presented in Mittnik (2011), where flaws regarding the annualization procedure of asset returns are pointed 

out that induce a misleading assessment of correlations and thus neglect diversification benefits. 
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SCR in the interest rate risk sub-module 

 

The influence of a change in the term structure of the interest rate is determined by the interest 

rate risk sub-module. The present value of all interest rate sensitive exposures intPV  is given 

by discounting the respective cash flows using the risk-free interest rate r f(t) at time t and giv-

en by the European Commission, such that 

 

( )
( )( )

( )( ) ( ) ( )
1

max | 0 ,
1

T

int jt
t j

f

CF t
PV , T t CF t  CF t CF t,

r t=

= = ≠ =
+

∑ ∑  (4) 

 

where CFj(t) is the single cash flow of exposure j at time t. The interest rate risk sub-module 

distinguishes between two stress scenarios, namely an increase and a decrease of the interest 

term structure. Thus, the stressed present value is calculated twice, adding an upward sup(t) 

and a downward movement sdown(t) to the risk-free interest term structure that depends on 

time t. These two stressed present values are denoted by up
intPV  and down

intPV  with 

 

( )
( ) ( )( )( )

( )( ) { }
1

max | 0 , ,
1 1

T
k

int t
kt

f

CF t
PV , T t CF t  k up down

r t s t=

= = ≠ ∈
+ ⋅ +

∑  

 

Table 3 exhibits the predefined stress parameters in the Solvency II standard model for se-

lected point of times. Maturities less than one year will be stressed with the one-year stress 

parameters. For durations larger than 25 years, the shock is determined by the relative change 

of 0.25 for the upward and -0.30 for the downward scenario. 

 
Table 3: Interest rate shock in the Solvency II standard model (see EIOPA, 2010a, p. 111) 

Maturity t 
(years) 

Relative change 
sup(t) 

Relative change 
sdown(t) 

1 0.70 -0.75 
2 0.70 -0.65 
3 0.64 -0.56 
… … … 
25 0.26 -0.30 

>25 0.25 -0.30 

 

Finally, to obtain the SCR for the interest rate risk sub-module with the standard approach 

intMkt , the differences of present value without stress and the present values under stress 
up
intM kt  and int

downMkt  have to be calculated, i.e. 
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( ) { }max , , where , , .up down k k
int int int int int intMkt Mkt Mkt Mkt PV PV k up down= = − ∈  

 

The cash flows CFj(t) of a bond exposure j with maturity ( ){ }max | 0j jT t CF t= ≠  are deter-

mined by the annual coupon payments Cj(t), the face value FVj, and the number of bonds nj, 

 

( )
( )

( )( )
,

1 , .

j j j j

j
j j j j

C t FV n  t T
CF t

C t FV n  t T

⋅ ⋅ <=  + ⋅ ⋅ =  

(5) 

 

The face value is set to one for the different bonds, FVj = 1. Thus, the number of bonds in 

Equation (5) is determined by 

 

( )
( )

,

1

0
,

0
B j

j FV
j

A
n

B ==  

 

where AB,j(0) denotes the invested capital in bond exposure j and ( )1 0FV
jB =  the price of the 

bond with FVj = 1 at time t = 0. 
 

SCR in the spread risk sub-module 

 

The impact of changes of the credit spread (over the risk-free interest rate term structure) on 

exposures is considered in the rating-based spread risk sub-module of the Solvency II stan-

dard approach. The SCR for spread risk spMkt
 
is calculated based on three uncorrelated 

groups of exposures, including the SCR for bonds bonds
spMkt , the SCR for structured credit 

products struct
spMkt , and the credit derivatives SCR cd

spMkt , yielding 

 

.bond struct cds
sp sp sp spMkt Mkt Mkt Mkt+ +=

 
 

In the following, we only focus on the SCR of bond exposures. Analogously to the equity 

sub-module, the SCR calculation for the spread risk of bonds is based on the market value 

( ), 0sp jMV  of asset j. The extent of the asset-individual stress in this rating-based approach 

depends on the modified duration and a rating-specific stress parameter. The modified dura-

tion of exposure j, denoted by durationj, is the weighted average time to maturity divided by 
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the yield to maturity. As the technical specifications of QIS 5 do not specify this point, we use 

the Macaulay (1938) duration modified with the discounted yield to maturity rYtM,12 given by 

 

( ) ( )( )

( ) ( )( )
( )( )

max

max ma
1

x

1

max | 0
1

1

,
1

,
1

 

T
t

j f
t

j T
t

YtM
j f

t

t CF t r t
duration

r
CF t r

T t CF t

t

−

=

−

=

⋅ ⋅
=

+
= ⋅

+⋅ +
≠

∑

∑
 

 

with the risk-free interest term structure r f  provided by the European Commission. The dura-

tion is limited by a lower limit (floor) and an upper limit (cap). The shock parameter in regard 

to the credit quality, Fup(ratingj), depends on the current credit rating and the type of bond and 

is exhibited in Table 4 for corporates and non-EEA governments. 

 

Table 4: Spread shock for corporates and non-EEA governments in the Solvency II standard 

model (see EIOPA, 2010a, pp. 122-123) 
 Spread shock corporates Spread shock non-EEA governments 

Rating Fup 
Duration 

Floor 
Duration 

Cap 
Fup 

Duration 
Floor 

Duration 
Cap 

AAA 0.9% 1 36 - - - 
AA 1.1% 1 29 - - - 
A 1.4% 1 23 1.1% 1 29 

BBB 2.5% 1 13 1.4% 1 23 
BB 4.5% 1 10 2.5% 1 13 

B or lower 7.5% 1 8 4.5% 1 10 
Unrated 3.0% 1 12 3.0% 1 12 

 

If several different ratings exist for one exposure, the second best rating has to be applied (see 

EIOPA, 2010a, p. 121). A special treatment in this sub-module is dedicated to (mortgage and 

public sector) covered bonds with an AAA credit rating. If a bond meets the requirements of 

“undertakings for collective investment in transferable securities” from the European Parlia-

ment and of the Council (see European Parliament and of the Council, 2005, Article 22, No. 

4), the stress parameter of this best quality bond is set to 0.6% instead of 0.9% with a duration 

upper limit of 53 years. Furthermore, an exceptional position is given to exposures of gov-

ernment bonds of EEA states issued in their domestic currency or a currency of an EEA coun-

try (see CEIOPS, 2010). According to the Solvency II standard approach, no solvency capital 

has to be allocated for such investments. Besides government bonds, this treatment also in-

                                              
12 The yield to maturity rYtM of bond exposure j is given by solving the equation 

( ) ( ), 1
1jT t

int j j YtMt
PV CF t r

−

=
= ⋅ +∑ , where ,int jPV  denotes the present value using the risk-free interest rate 

rf(t) at time t, given by the European Commission as exhibited in Equation (4). 
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cludes borrowings issued by multilateral development banks, international organizations or 

the European Central Bank, irrespective of the assets’ currency. The asset class of “non-EEA 

governments” includes all in the domestic currency denominated and funded government 

bonds from non-EEA states or central banks. 

 

In contrast to the equity risk sub-module, no correlation effects between the assets are as-

sumed at this point. Hence, the SCR for the spread risk for bonds j is given by 

 

( ) ( ),max 0 ,0 .bonds up
sp sp j j j

j

Mkt MV duration F rating
 

⋅ ⋅


= 


∑
 

 

The market value ( ), 0sp jMV  of bond exposure j at time t = 0 for the spread risk sub-module 

in Solvency II is, analogously to the equity risk sub-module, given by the invested capital 

AB,j(0) with 

 

( ) ( ), ,0 0 .sp j B jMV A=  

 

Aggregation to the market risk module 

 

The SCR of the market risk module SII
mktSCR  is calculated by aggregating the SCRs of the iso-

lated sub-modules using the square-root formula and taking into account dependencies be-

tween the single risk categories,  

 

{ },
,

, , , , .SII
mkt r c r c

r c

SCR CorrMkt Mkt Mkt  where r c eq int sp= ⋅ ⋅ ∈∑
 

(6) 

 

The correlation parameters CorrMktr,c for the sub-modules are given in Table 5, whereby the 

correlation parameter C for the interest rate risk varies in the standard model depending on the 

adopted stress scenario in the interest rate risk sub-module: 

 

, ,

0

0.5 .

up
int int

eq int sp int down
int int

, if Mkt Mkt
C CorrMkt CorrMkt

, if Mkt Mkt

 =
= ==  =

 

 

In the case where market risk is only relevant for the asset side, up
int intMkt Mkt= . 
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Table 5: Correlations in the market risk module in the Solvency II standard model (see 

EIOPA, 2010a, pp. 108-109) 
Interest Equity Spread 

Interest 1.00 C C 
Equity C 1.00 0.75 
Spread C 0.75 1.00 

 
3.2 Partial internal model 

 

Modeling stocks 

 

In the partial internal model, we assume that stocks follow a geometric Brownian motion, 

 

( ) ( ) ( ) ( )S S SdS t S t dt S t dW t  µ σ= ⋅ + ⋅ P

 
(7) 

 

with constant drift µS and volatility σS, and SWP  being a standard P-Brownian motion on the 

probability space ( ), ,S SΩ PF  with filtration SF  and real world probability measure P. For an 

initial value S(0), the solution of the stochastic differential equation in (7) is given by 
 

( ) ( )
( )

2

 
2

,0
S

S SSt t Z t

S t S e

σµ σ
 

− ⋅ + ⋅ ⋅  
 = ⋅  

 

where ZS(t) denotes independent standard normally distributed random variables (see Björk, 

2009). Hence, the market value of a portfolio of NS stocks at time t = 1, MVS(1), is given by 

 

( ) ( )
1

1 1 ,
SN

S i
i

MV S
=

=∑
 

 

where Si(1) is the market value of stock i at time 1. 

 

Modeling and valuation of bonds 

 

To determine the risks arising from the stochasticity of the interest term structure, we first 

study the market value of a non-defaultable zero coupon bond ( ),p t h  at time t that pays out 

one monetary unit at time h, t ≤ h and ( ), 1p h h = . The zero bond price is defined through the 

short rate r(t) on the probability space ( ), ,r rΩ ℚF , where rF  is the filtration generated by the 

Brownian motion under the risk-neutral probability measure ℚ  and is given by (see Björk, 

2009) 
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( ) ( )
, ,

h

t
r s ds

tp t h E e
− ∫=  

 

ℚ  

 

where r(t) is given by the Cox, Ingersoll, and Ross (1985) model, 

 

( ) ( )( ) ( ) ( ).r r r rdr t r t dt r t dW tκ θ σ= ⋅ − + ⋅ ℚ

 
(8) 

 

Here, κr controls the speed of the mean reversion to the long-term mean θr, σr is the volatility, 

and rWℚ  is a standard ℚ -Brownian motion on the probability space ( ), ,r rΩ ℚF . The CIR 

process is characterized through a mean reverting drift, for which the condition 22 rκ θ σ⋅ ⋅ ≥  

provides a strictly positive short rate for all t. In this setting, the zero bond price can be speci-

fied in a closed affine form, given by 

 

( ) ( ) ( ) ( ), ,, ,A t h B t h r tp t h e − ⋅=  where 

 

( )
( )

( ) ( )( )
2

2

2 2
, ,

1 2

a

a

t

t
r

h

h

a e
A t h ln

a e a

κ
κ θ
σ κ

+ ⋅

⋅ −

− 
⋅ ⋅ ⋅ ⋅ = ⋅

 + ⋅ − + ⋅ 
 

( )
( )( )

( ) ( )( )
2 1

, ,
1 2

a h t

a h t

e
B t h

a e aκ

⋅ −

⋅ −

⋅ −
=

+ ⋅ − + ⋅

2 22 .ra κ σ= + ⋅  

 

Under the real world probability measure P, Equation (8) changes to 

 

( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( )

0

ˆˆ ,

r r r r r r

r r r r

dr t r t dt r t dW t

r t dt r t dW t

κ θ κ γ σ σ

κ θ σ

= ⋅ − − ⋅ ⋅ + ⋅

= ⋅ − + ⋅

P

P

 

 

where the market price of risk ( )( ),t r tγ  is derived from ( )( ) ( )0,t r t r tγ γ= ⋅  (see Brigo 

and Mercurio, 2007). Furthermore, we assume that stocks and interest rates are correlated 

with ,r S r SdW dW dtρ=P P . 

 

With respect to credit risk, we use the reduced-form model by Jarrow, Lando, and Turnbull 

(JLT) (1997) in order to harmonize the procedure of the SCR calculation with the Solvency II 

standard model that is also based on credit transition. In the work of Jarrow and Turnbull 

(1995), the state of a defaultable bond is only described by the default or non-default state.  

The framework of Jarrow, Lando, and Turnbull (1997) extends this model by quantifying the 

credit risk through credit ratings and the probability of a change in the credit rating. Transition 
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rates for credit ratings allow taking the consequences of up- and downgrading the credit quali-

ty into account. Furthermore, independence between interest rate and the default process and 

deterministic credit spreads are assumed. The spreads are equal for a given rating and vary by 

migration. In particular, the credit spreads that affect the bond value are taken into account, 

but are treated as deterministic variables. Das and Tufano (1996) extend the work of Jarrow, 

Lando, and Turnbull (1997) by incorporating stochastic recovery rates that are correlated with 

the interest rate process. A framework that further takes into consideration correlations be-

tween the interest rate process and the default intensity (credit spread) is introduced by Lando 

(1998) and Duffie and Singleton (1999).13 Following the JLT model, the credit transition is 

assumed to follow a Markov process X, 

 

( )( )0,x tX t∈= ℕ  (9) 

 

on the probability space ( ), ,x xΩ ℚF  and distribution ( )x x E∈
Λ , which is given by 

 

( )

( ) ( )

( ) ( )

1,1 1,

1,1 1,

, ,

,
, ,

0 0 1

k

k k k

t h t h

t h
t h t h

λ λ

λ λ− −

 
 
 Λ =
 
 
 

⋯ ⋯

⋮ ⋮

⋯ ⋯

⋯

 (10) 

 

with transition probabilities ( )( ), ,
,i j i j E

t hλ
∈

 for a state space E = {1,…k}. The transition dis-

tribution represents the probabilities of attaining state j at time h when starting at state i at 

time t, satisfying the conditions ( ), , 0i j t hλ ≥ , i ≠ j, and ( ) ( )1, ,, 1 ,
k
ji i i j
i j

t h t hλ λ=
≠

= −∑ . By set-

ting a discrete state space E with dimension k, the stochastic transition process in Equation (9) 

corresponds to a Markov chain in discrete time ( 0t∈ℕ ). The Markov chain is adapted to the 

filtration ( )
0

,t tτ τ ∈
=

ℕ
F F  with the stopping time τ described by 

 

( ){ }inf : ,t x t kτ = ∈ =ℕ
 

 

                                              
13 In addition, Jarrow and Turnbull (2000) discuss the problem of quantifying credit risk in terms of the inter-

section of market and credit risk. While economic theory and empirical evidence confirm the intrinsic rela-

tion between market and credit risk, regulators as well as practitioners generally calculate both risks separate-

ly due to the complex determination of the correlation between market risk and credit risk. Reduced-form 

credit risk models as from, e.g., Jarrow and Turnbull (1995) and Jarrow, Lando, and Turnbull (1997) consid-

er market and credit risk jointly with the assumption of independency. However, the reduced-form approach-

es published by, e.g., Lando (1998) and Duffie and Singleton (1999) allow for implicit correlations between 

risk factors, which, however, are very difficult to calibrate (see Jarrow and Turnbull, 2000), which in turn in-

creases the risk of misestimation. 
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where the state k is absorbent, also shown in the last row of the matrix in Equation (10). The 

transition matrix in Equation (10) assumes a complete and arbitrage-free market. Further-

more, apart from non-defaultable bonds, the JLT model assumes the existence of defaultable 

zero coupon bonds for all maturities. In the case of default, only a deterministic and exogen-

ously given fraction of a non-defaultable zero coupon bond, the recovery rate (of treasury) δ, 

will be paid out at maturity h.14 According to the transition process in Equation (9), the prob-

ability of default depends on state x(t) at time t. Assuming independence between the interest 

rate and the transition process, the price of a defaultable zero coupon bond ( ) ( )ˆ ,x t ip t h=  with 

rating x(t) = i is given by 

 

( ) ( ) { }
( )

{ }
( ) ( )

{ } { }( )
( ) ( ) ( )( )( ),

ˆ ,

, 1 1 , ,

− − −

= > ≤ > ≤

   ∫ ∫ ∫= + ⋅ = ⋅ +   
   

= ⋅ + − ⋅ −

⋅ ⋅ ⋅ℚ ℚ

h h h

t t t
r s ds r s d

h h h h

s r s ds

t tx t i

i k

p t h E e e E e

p t h t h

τ τ τ τ

δ

δ

λ

δ

δ

I I I I

 

 

where { }hτ≤I  represents the indicator function, which is equal to one if a default occurs until 

time h and zero otherwise, and ( ),1 ,i k t hλ−  denotes the probability of non-default from time t 

to h. The risk-neutral transition probabilities ( )( ), ,i j i j E
tλ

∈
 can be interpreted as risk-adjusted 

transitions and are received by an adjustment of the real world distribution ( )x x E∈
Λɶ . In par-

ticular, to obtain risk-neutral transition probabilities that ensure an arbitrage-free market, the 

real world transition probabilities have to be adjusted in the JLT model by a risk premium 

( ) ( )x t i tπ =  that depends on time t and rating x(t) = i, setting 

 

( ) ( ) ( )

( ) ( ) ( )
,

,

,

,
, 1

1 1 , ,

i jx t i

i j

i jx t i

t i j
t t

t i j

π λ
λ

π λ
=

=

 ⋅ ≠+ = 
− ⋅ − =

ɶ

ɶ

 

  
(11) 

 

where the second constraint (i = j ) in Equation (11) ensures a row sum of one in the risk-

neutral distribution in Equation (10).15 In matrix form, Equation (11) can be written as 

 

( ) ( ) ( )( ), ,t h t t hΛ = Π ⋅ Λ − Ι + Ιɶ  

 

with a k k×  matrix ( ) ( ) ( ) ( ) ( )( )1 1,d , ,1iag x t x t kt t tπ π= = −Π = …  and a k k×  identity matrix I. Fur-

thermore, the Markov chain of the real world distribution is assumed to be a time-

                                              
14 The JLT model offers a recovery rate δ that is paid out at maturity (recovery of treasury value assumption) 

and depends on the issuers’ seniority. In contrast, we assume a constant recovery rate δ for all considered 

bond exposures. 
15 The risk premium ( ) ( )x t i tπ =  is assumed to be a non-stochastic function independent of migration state j. 
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homogenous process (see McNeil, Frey, and Embrechts, 2005), achieved through the assump-

tion of constant distributions of ( )x x E∈
Λɶ , exhibited by 

 

( ) ( )( ) ( ), ,, ,
, 1 , 1 .i j i ji j E i j E

t t t tλ λ
∈ ∈

Λ + = + = = Λɶ ɶɶ ɶ  

 

Based on the results of the zero coupon bond valuation, the price for a defaultable fixed in-

come bond exposure j at time t, Bj(t) is calculated as the sum of future cash flows CFj(h) (see 

also Equation (5)), multiplied with the defaultable zero coupon bond prices (see Björk, 2009) 

that are given by the JLT credit risk model, which includes interest rate risk, spread risk, and 

credit risk for bonds. Therefore, the bond price at time t with maturity Tj is calculated by 

 

( ) ( ) ( ) ( )
1

ˆ , .
jT

j j x t i
h t

B t CF h p t h=
= +

= ⋅∑
 

(12) 

 

The stochastic market value MVB(1) at time t = 1 of a portfolio with NB bonds (without rein-

vestment) is given by 

 

( ) { } ( ) ( )( ) { }( )1 1
1

1 1 1
B

j j

N

B j j j j
j

MV B CF FV nτ τ δ
> ≤

=

= ⋅ + + ⋅ ⋅ ⋅∑ I I , 

 
where nj is the number of bonds of type j (see Equation (5)). 

 

SCR in case of the internal model 

 

In accordance with Solvency II, the SCR of the internal model for market risk is defined as 

the capital needed to cover the change in the net asset value over one year, which in the case 

of market risk corresponds to the change in the market value of assets during a one-year pe-

riod. Thus, the Value at Risk of the change in basic own funds is calculated for a confidence 

level of 99.5% (see EIOPA, 2010a, p. 92), yielding to an SCR of16 

 

                                              
16 Under the simplified assumption of unchanged liabilities (in particular not affected by market risk in case of 

a non-life insurer), ( ) ( ) ( )
1

00 1
r t dt

L e L
−∫= ⋅  as well as the properties of translation invariance and positive homo-

geneity (see McNeil, Frey, and Embrechts, 2005), the Value at Risk of basic own funds is given by 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

0 0 0
10 0 1 1 0 1 0 1

r t dt r t dt r t dt
VaR A L e A L VaR A e A A VaR e Aα α α

− − −

−

     ∫ ∫ ∫− − ⋅ − = − ⋅ = − ⋅     
     

, 

where the expression ( )1

0
r t dt∫  is approximated using the composite trapezoidal rule (Newton-Cotes formula) 

for numerical integration (see Press et al., 2007). 
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( ) ( ) ( )
1

0
0.0050 ,1

r t dtIM
mkt S B BSSCR MV VaR e MV+ +

− ∫= − ⋅ 
 

 (13) 

 

where MVS+B(t) denotes the market value of an asset portfolio consisting of fixed income 

bonds and stocks at time t, given by MVS+B(t) = MVS(t) + MVB(t). Furthermore, the market 

value of the portfolio at time t = 1 is discounted with the risk-free interest rate r(t), given by 

the CIR short rate model.17 

 

3.3 Model risk 

 

To assess model risk associated with the use of an internal model, in addition to varying the 

input parameters, we further replace the relevant key processes for stocks, bonds, and credit 

risk. Toward this end, first the Heston (1993) approach is adopted as an alternative to the 

geometric Brownian motion for modeling stock prices, which is characterized by a stochastic 

variance process, 

 

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

,

ˆˆ .

S S

V V V V

dS t S t dt V t dW t

dV t V t dt V t dW t

µ

κ θ σ

= ⋅ +

= ⋅ − + ⋅

P

P

 

 

Here, µS denotes the drift of the price process S(t) and the variance process V(t) reverts to the 

long-term variance ̂Vθ  with a speed of mean reversion ˆVκ  and a standard deviation σV. SWP 

and VWP are standard P-Brownian motions on the probability space ( ), ,r rΩ PF  with 

,S V S VdW dW dtρ=P P

, where ,S Vρ  is the coefficient of correlation. 

 

Second, in regard to the interest rate process, the short rate model of Vasicek (1977) is used 

instead of the CIR model, which is given by 

 

( ) ( )( ) ( ).r r r rdr t r t dt dW tκ θ σ= ⋅ − + ℚ
 

 

with speed of the mean reversion κr, long-term mean θr, volatility σr and standard ℚ -

Brownian motion rWℚ .18 

                                              
17 A discussion of different SCR definitions and the discounting factor in Solvency II can be found in Christian-

sen and Niemeyer (2012). 
18 The relationship between the empirical and the risk-neutral parameter is given by ˆκ κ=  and 

( )0
ˆθ θ γ σ κ= − ⋅  with market price of risk 0γ  (see Vasicek, 1977). 
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Third, concerning the impact of the model choice with respect to credit risk, the reduced-form 

credit risk model of Duffie and Singleton (1999) is applied, where the default event is mod-

eled as a function of the hazard rate, i.e. through a Cox process. The price of a defaultable 

zero coupon bond is thus expressed by 

 

( ) ( )
( ) ( ) ( ), 1

ˆ ,
h

i
t

r s h t s ds

tx t i
p t h E e

δ− + ⋅ −

=

 ∫=  
 

ℚ  

 

with short rate r(t), hazard rate ( ),ih t s  for rating x(t) = i, and recovery rate δ  at time t.19 

Here, the expression ( ) ( ) ( ), , 1isp t s h t s δ= ⋅ −  represents a time-dependent credit spread from 

time t to s. In contrast to the JLT model, the Duffie and Singleton (1999) approach thus im-

plies a recovery of market value at the time of default and, furthermore, explicitly allows for 

correlations between interest rate and default risk.20 

 

3.4 Portfolio building and diversification effects 

 

When calculating the SCR of a portfolio of stocks or bonds or a portfolio composed of both 

asset classes, diversification benefits imply a reduction in the aggregated SCR, both in case of 

the standard model and the internal model. Considering stocks or bonds, the diversification 

effect for the first level diversification d1 is defined as 

 

( ) { }1 1, ,K

k
k K

SCR
d K K S B

SCR
∈

= − ∈
∑

 (14) 

 

with SCRk denoting the SCR for individual assets k (from the asset classes of stocks (S) or 

bonds (B)), and SCRK denoting the SCR for a portfolio of stocks or a portfolio of bonds. To 

quantify the diversification benefits for a portfolio of both stocks and bonds, the second level 

diversification d2 is defined as 

                                              
19 This assumes constant recovery rates δ for all exposures analogously to the JLT model. 
20 The model by Duffie and Singleton (1999) allows for integrating correlations between interest rate r(t) and 

credit spread dynamic sp(t,s) depending on a state variable ( ) ( ) ( )( )1 , , nY t Y t Y t= …  at time t: 

 ( ) ( ) ( )0 1 1 ,n nr t a a Y t a Y t= + ⋅ + + ⋅…  

 ( ) ( ) ( )0 1 1 .n nsp t b b Y t b Y t= + ⋅ + + ⋅…  

 The state variable Y(t) can be modeled by an affine process, e.g. an CIR process, with independent Brownian 

motions and leads to correlated interest rate and credit spread dynamics (see, e.g. Duffie and Singleton, 1997, 

1999). 
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( ) ( )
2 1

S B

S B

SCR
d S B

SCR SCR
++ = −

+
 (15) 

 

with SCRS denoting the SCR for the stock portfolio, SCRB the SCR for the bond portfolio and 

SCRS+B the SCR for the portfolio including stocks and bonds. In this way, the isolated diversi-

fication benefit of combining a stock portfolio and a bond portfolio can be assessed, as diver-

sification benefits within each asset class are already accounted for when calculating SCRB 

and SCRS. 

 

4. NUMERICAL RESULTS 

 

In the following numerical analysis, the SCR calculation for market risk with respect to stocks 

and fixed income bonds for the standard approach of Solvency II and the internal model is 

illustrated. In a first step, the SCR of the asset class of stocks is analyzed for a company in-

vesting S(0) = €100 million at t = 0, i.e. MVS(0) = S(0), (for business in force). Second, we 

consider the SCR calculation for corporate and government bonds only, thereby distinguish-

ing between government bonds of EEA states and non-EEA members, also investing 

MVB(0) = B(0) = €100 million in the bond market. The effect of investing €100 million in an 

asset portfolio that consists of stocks and bonds (50% each) on the SCR, accounting for diver-

sification effects, is then examined in a third step. Finally, the impact of varying the stock 

portion α on the SCR is studied for the scenario-based Solvency II standard model and the 

simulation-based internal approach. Numerical results for the market risk according to the 

internal model are derived through Monte Carlo simulation with 100,000 paths.21 Moreover, 

for all portfolios considered in the numerical analysis, we assume that capital is equally dis-

tributed between the different types of stocks and bonds. 

 

4.1 Input parameters 

 

In the following, we assume a stock portfolio consisting of three “Global” stocks and one 

riskier stock investment from the risk class “Other” (defined by EIOPA, 2010a, p. 113). Table 

6 shows the corresponding annualized expected return 20.5S S Sm µ σ= − ⋅  with standard devia-

tion σS.
22 The considered fixed income corporates and governments are given in Table 7 and 

                                              
21 For robustness, all numerical results have been calculated using different sets of sample paths to ensure sta-

bility. 
22 Regarding the Heston (1993) model, the mean reverting variance process of the DAX 30 price index (S1) is 

calibrated to the volatility index VDAX that specifies the implicit volatility of the DAX 30 index (see 

Grünbichler and Longstaff, 1996). Maximum likelihood estimation techniques are used based on monthly da-
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differ by time to maturity, the coupon payment, various credit ratings, as well as exposures 

issued by members of the EEA or not. 

 

Table 6: Stock portfolio (with annualized parameters) 
Si Index Type mS σS 

1 DAX 30 Global 0.0637 0.2164 
2 FTSE 100 Global 0.0436 0.1658 
3 Dow Jones Industrial Global 0.0755 0.1784 
4 India BSE 100 Other 0.1043 0.3309 
5 MSCI World Global 0.0509 0.1574 

Notes: The parameters are estimated based on monthly data from 01/1988 to 07/2011 with S1: DAX 30 (price in-
dex), S2: FTSE 100 (price index), S3: Dow Jones Industrials (price index), S4: India BSE 100 (price index) and 
S5: MSCI World (price index). 

 

Table 7: Bond portfolio 
Bj Type Rating EEA Maturity (years) Coupon p.a. (%) 

1 Corporate AA - 3 1.25 
2 Corporate A - 5 3.15 
3 Corporate B - 5 9.25 
4 Government AAA Yes 5 2.00 
5 Government A Yes 3 2.75 
6 Government B Yes 5 6.10 
7 Government AAA No 5 2.75 
8 Government BBB No 7 7.85 
9 Government B No 7 8.95 

Notes: The data are taken from a database of straight fixed-income bonds, issued in the period range 2/2010 to 
5/2011, with B1: Colgate-Palmolive Company, B2: Woolworth Ltd. Company, B3: Air Canada, B4: Germany 
(Government of), B5: Czech Republic (Government), B6: Greece (Republic of), B7: Canada (Government), 
B8:Russian Federation (Government) and B9: Belarus (Republic of). 

 

The distribution of the time-homogenous Markov process in Equation (9), describing the cre-

dit transition, is based on a report from Standard & Poor’s (see Vazza, Aurora, and Kraemer, 

2010). This presents the average one-year transition rates for global corporate bonds meas-

ured based on bond data from 1981 to 2009 (see Appendix, Table A.1). The last column of 

Table A.1 refers to corporates no longer rated (NR) by Standard & Poor’s. The average one-

year transition rates for foreign currency ratings of governments, based on data from 1975 to 

2010 (see Appendix, Table A.2), are also published by Standard & Poor’s (see Chambers, 

Ontko, and Beers, 2011). To deal with transition rates identified as “NR”, we follow the pro-

                                                                                                                                             
ta from 12/2005 to 07/2011, resulting in V̂θ  = 0.0555, ˆVκ  = 3.3497, and σV = 0.3593 (see, e.g. Brigo et al., 

2009). The initial value is set to V(0) = 0.0555 and the market price of risk is assumed to be zero (γ0 = 0). Be-

sides the price index and interest rate correlation, given by ρS,r = -0.19 (see Table 8), the correlation between 

the price and the prices’ instantaneous variance is estimated with ρS,V = -0.4533. 
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cedure of Bangia et al. (2002) and disregard this information by distributing the rate propor-

tionally to all seven rating classes and the default state. The transition rates after eliminating 

the “NR” column with the procedure mentioned above are given in Tables A.3 and A.4 in the 

Appendix.23 

 

To determine the recovery level in case of default of fixed income bonds for the internal mod-

el, we follow the specification of the internal ratings based (IRB) approach to credit risk of 

Basel II, the international standards for banking regulations, where the supervisory value for 

the recovery rate of senior claims on corporates and sovereigns not secured by recognized 

collateral is set to a value of 55% (see BIS, 2006, p. 67).24 In the numerical simulation of the 

internal model, correlations between stock prices and interest rate are taken into consideration 

analogously to the diversification effects in the Solvency II standard approach. Here, the 

Gauss copula of a multivariate normal distribution is used (see McNeil, Frey, and Embrechts, 

2005).25 The parameters for the linear correlation matrix P are given in Table 8, where r 

represents the interest rate term structure given by the CIR model and Si is the equity price for 

stock i. 
 

Regarding calibration of the CIR model, the three month “Euro Interbank Offered Rate” 

(EURIBOR) is used with monthly data from 01/1999 to 12/2011 based on maximum likelih-

ood estimates.26 The long-term mean level and the speed of mean reversion are thus estimated 

                                              
23 The hazard rate ( ),ih t h  with rating x(t) = i from time t to h of the Duffie und Singleton (1999) model is 

defined by ( ) ( ) ( )( ) ( )( ), , ,, , 1, 1 1,i i k i k i kh t h t h t h t hλ λ λ= − − − −  (see McNeil, Frey, and Embrechts, 2005). In 

the numerical analysis, we refrain from applying a state variable Y(t) for taking correlations into account, as 

is similarly done by practitioners and regulators, which generally measure credit and market risk separately 

(see Jarrow and Turnbull, 2000). Brigo and Pallavicini (2007) apply a generalization of the Duffie and Sin-

gleton (1999) model to integrate correlations between default and interest rate risk. Their empirical results 

show that the consideration of these dependencies can be relevant for the valuation of default and interest rate 

sensitive assets, in particular for small default probabilities. 
24 In comparison to Basel II, Standard & Poor’s (see Vazza, Aurora, and Kraemer, 2010) identifies a recovery 

for senior unsecured corporate bonds with mean of 43%, median of 39.2% and a standard deviation of 

32.8%, based on global data in the time horizon from 1987 to 2009. Considering sovereign defaults from 

1983 to 2007, Moody’s publishes a recovery mean (based on average trading price) of 31% (see Cantor et al., 

2008). For all types of bonds, the deterministic value of the IRB approach of Basel II was chosen for the re-

covery rate and conducted sensitivity analysis. 
25 Instead of linear dependence (Gauss copula), an asymmetric (non-linear) dependence (e.g. t copula) could be 

integrated within the asset class of stocks and between stocks and interest rates. While Garcia and Tsafack 

(2011) find a strong non-linear dependence for international assets within the stock and bond market, the 

non-linear dependence is weak between stock and bond markets between countries as well as within the same 

country. 
26 More details regarding the procedure to estimate the parameters of mean reverting processes using maximum 

likelihood methods are given in, e.g., Brigo et al. (2009). 
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to r̂θ  = 0.0161 and ̂ rκ  = 0.1036 with a standard deviation of σr = 0.039. The initial value is 

set to r(0) = 0.01 and the market price of (interest rate) risk in the CIR model is assumed to be 

zero (γ0 = 0). The risk premium in the JLT credit risk model is set to 

( ) ( ) { }01.4, , 1, , 1x t i t t i kπ +
= = ∀ ∈ ∀ ∈ −ℕ …   and is constant for corporates and governments 

relating to all rating classes and times.27 The parameters of the Vasicek (1977) short term in-

terest rate model are calibrated based on the same dataset and also using maximum likelihood 

methods, resulting in ̂rθ  = 0.0149, ̂ rκ  = 0.095, and σr = 0.0069. 

 

Table 8: Correlations for the internal model 
 

Notes: The correlations in row S1, S2, S3, S4, S5 and r are estimated by monthly data from 01/1988 to 07/2011 
with S1: DAX 30 (price index), S2: FTSE 100 (price index), S3: Dow Jones Industrials (price index), S4: India 
BSE 100 (price index), S5: MSCI World (price index) and r: EURIBOR (1 month offered rate, data from 01/1999 
to 07/2011). 

 

4.2 SCR for stocks 

 

First, we focus on the SCR for a stock investment of €100 million, which is individually in-

vested in every single stock given in Table 6. As a next step, €100 million are invested in a 

portfolio of these five stocks in equal portions, i.e. investing €20 million in each stock, and 

then the diversification benefit d1 is calculated (see Equation (14)). Results regarding the capi-

tal requirements are displayed in the left graphs in Figure 2 a) and b), where Figure 2 a) 

represents the case where an adjustment in the shock scenario of -9 percentage points is made 

to counteract possible pro-cyclical effects in adverse market environments as defined in QIS 5 

and Figure 2 b) represents the standard case. 

 

In particular Figure 2 a) (left graph) shows considerably higher solvency capital requirements 

induced by the internal model calculated according to Equation (13) as compared to the stan-

dard approach of Solvency II (determined according to Equation (6)), especially for stocks 

with higher risk as indicated by the standard deviation. If no adjustment is made in the stan-

dard case (see the left graph in Figure 2 b), the internal model tends to a lower SCR for the 

                                              
27 Regarding the parameter of the risk premium ( ) ( )x t i tπ = , we follow the assumption of Cairns (2004). 

S1 S2 S3 S4 S5 r 

S1 1.00       
S2 0.68 1.00     
S3 0.65 0.76 1.00    
S4 0.31 0.31 0.30 1.00   
S5 0.73 0.72 0.57 0.26 1.00  
r -0.19 -0.27 -0.14 -0.21 -0.26 1.00  
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single stocks compared to the standard approach for the four global stocks, but to a higher 

SCR for the India BSE 100 price index S4, which belongs to the class of “Other”. 

 

Figure 2: Solvency capital requirement for stocks (standalone and portfolio with equal pro-

portions) and µS / σS-combinations for the geometric Brownian motion (without discounting) 

leading to the same SCR according to the standard model (i.e. 
!

IM SII
mkt mktSCR SCR= ) 

a) With adjustment: Shock equals 30% (“Global”) and 40% (“Other”) 

  
b) Without adjustment: Shock equals 39% (“Global”) and 49% (“Other”) 

  

  
Notes: S1: DAX 30 (price index), S2: FTSE 100 (price index), S3: Dow Jones Industrials (price index), S4: India 
BSE 100 (price index) and S5: MSCI World (price index) (see Table 6). 

 

When looking at the portfolio of the five stocks in Figure 2 a), the SCR derived based on the 

internal model is still lower than the SCR of the standard model even though the individual 

SCRs are all higher in case of the internal model. This is a result of the considerably higher 
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diversification benefit that is fully accounted for when using the internal model, in contrast to 

the Solvency II standard model provided by the regulators (-23.0% versus -4.8% in Fig-

ure 2 a). In the standard model, only diversification effects between the risk classes “Global” 

and “Other” are taken into account (see Table 2) in the square-root formula in Equation (3); 

the internal approach for stocks accounts for all individual correlations exhibited in Table 8. 

 

In the right graphs of Figure 2, µS / σS-combinations of the geometric Brownian motion are 

displayed that imply the same capital requirements as the equity risk sub-module in the stan-

dard model of Solvency II, e.g. “Global” (30%) and “Other” (40%) in Figure 2 a), where for 

illustration purposes, r(t) is set to zero to avoid discounting effects. The graph shows that the 

volatility σS is an increasing function of the drift term µS and that the curve for “Other” lies 

above the one for “Global”. All parameter combinations that lie on or below the curves would 

imply lower capital requirements than 30% or 40%, respectively. Combinations above the 

curve imply higher SCR values calculated according to the internal model. Hence, none of the 

µS / σS-combinations of the stocks displayed in Table 6 satisfies the Solvency II standard 

model requirements (with adjustment for equity risk). The following formula shows the exact 

solution of 
!

IM SII
mkt mktSCR SCR=  (see Equations (6) and (13)) for r(t) = 0, when considering one 

stock according to the internal model with σS and µS as an example: 

 

( ) ( )( )
( ) ( ) ( ) ( ) { }

2 !0.5

0 1

0 0 , with 0 , 0.3,0.39,0.4,0.49S S S

IM
mkt

N SII SII
mkt mkt

SCR S VaR S

S S e SCR SCR S x xα

α

µ σ σ− ⋅ + ⋅

= −

= − ⋅ = = ⋅ ∈ 
 

( ) ( )
( )

( ) ( )
( )

20.5

2

2 2

2

1

0.5 ln 1

2 ln 1 2

2ln 1 2 ,

S S SN

S S S

S S

S S

e x

N x

N N x

N x N

αµ σ σ

α

α α

α α

µ σ σ

σ µ

σ µ

− +⇔ = −

⇔ − + = −

⇔ − = − − +

⇔ = − − + +

 

 

where Nα is the α-quantile of the standard normal distribution, which is negative for 

α = 0.5%.  

 

From the formula above, the effect of an increase in µS on σS can be immediately seen due to 

the third term in the equation that leads to an increase of σS. Furthermore, the equation clearly 

shows that the standard formula implies that an increase in x (the capital charge in the stan-

dard model) ceteris paribus allows a higher volatility for a given drift term in the standard 

model. Thus, the fixed scenario factor x in the standard formula has several implications, as 

the SCR amounts to 30% or 40% of the current market value of the asset, independent of the 
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volatility or drift of the asset. The fact that the µS / σS-curve for “Other” lies considerably 

above the curve for “Global” shows that stocks in the category of “Other” are generally as-

sumed to have a higher risk. Thus, the internal model will imply lower capital requirements 

for stocks with µS / σS-combinations that are below the upper or lower curve in the graph, 

depending on the classification, which suggests a stock picking depending on the classifica-

tion and volatility. Overall, a partial internal model for equity risk is particularly beneficial for 

insurers in case of diversification effects. 

 

Table 9 shows the safety levels of the five stock indices under consideration based on a partial 

internal model using a geometric Brownian motion that correspond to a risk capital of 

30% / 39% and 40% / 49%. The safety levels are obtained by solving the equation above for 

α. Thus, safety levels 1 α−  above 99.5% mean that the actual safety level that is achieved 

with a risk capital of x% exceeds the required one. In general, taking into account the adjust-

ment in the shock scenario of -9 percentage points to mitigate possible pro-cyclical effects, 

the safety level is principally lower than 99.5% except for the MSCI World price index (S5), 

which implies 99.52%. Without the adjustment and thus higher risk capital requirements, the 

associated safety levels exceed 99.5% with the exception of the India BSE 100 price index 

(S4) of the risk class “Other”, which does not satisfy the specified safety level in both cases. 

 

Table 9: Safety level of stock indices for given solvency capital requirements of the standard 

model without discounting 

 
S1 S2 S3 S4 S5 

With adjustment (30% / 40%) 97.40% 99.21% 99.23% 96.85% 99.52% 

Without adjustment (39% / 49%) 99.50% 99.94% 99.93% 99.06% 99.97% 
Notes: S1: DAX 30 (price index), S2: FTSE 100 (price index), S3: Dow Jones Industrials (price index), S4: India 
BSE 100 (price index) and S5: MSCI World (price index) (see Table 6). 

 

The impact of model risk regarding the choice of processes when calculating the SCR for 

stocks is illustrated in Figure 3.  It displays the SCR for the DAX 30 price index using the 

standard model of Solvency II (with and without adjustment) as well as the two internal ap-

proaches, using the geometric Brownian motion and, alternatively, the stochastic volatility 

model of Heston (1993). Figure 3 shows that for the calibrated parameters, substantially high-

er capital requirements result when using the Heston (1993) model with its stochastic variance 

as compared to the geometric Brownian motion. In addition, with capital requirements of al-

most 54%, the Heston (1993) model considerably exceeds even the SCR of the standard mod-

el without adjustment (39%). Furthermore, estimations errors regarding the input parameters, 

particularly the long-term mean in the volatility process Vθ  (including the initial value 
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( )0V ) and the correlation between the stock price and its instantaneous variance ρS,V, can 

yield a completely different picture of an insurer’s risk situation. Figure 3 b) emphasizes the 

relevance of model risk in regard to the processes used in the internal models as well as the 

input parameters by varying the relevant parameters for the geometric Brownian motion and 

the Heston (1993) model separately by a factor of +/-20%. 

 

Figure 3: Solvency capital requirement for the DAX 30 price index using the Solvency II 

standard model with adjustment (30%) and without adjustment (39%) (“adj.”), the geometric 

Brownian motion (GBM), and the Heston (1993) model 
a) Solvency capital requirement b) Model risk for internal models 

  

 
Notes: The model risk in the long-term mean in the volatility process implies also a shock to the initial value, 
since we assume (0)Vθ = ; Model risk: +/-20% of original value (OV). 

 

4.3 SCR for bonds 

 

Next, we study the SCR for corporate and government bonds for different maturities and cre-

dit quality, given by the individual rating. Again the focus is first on single bonds separately 

and then on the consequence of building a portfolio of bonds as well as the effect of model 

risk with respect to the parameters of the CIR model in the portfolio context. To quantify the 

model risk, the starting value r(0) and the standard deviation σr of the CIR process are sepa-

rately shocked by a factor of 20% and -20%. In Solvency II, diversification effects arise due 

to imperfect correlations between the interest rate risk and the spread risk sub-modules. 
 

Starting with corporate bonds, Figure 4 displays the SCR when investing €100 million in one 

single corporate bond with a maturity of five years with varying credit qualities (upper graph) 
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and for single corporates with different maturities and a given credit rating of AA (lower 

graph). In addition, the SCR of a portfolio of the three bonds is calculated, assuming an in-

vestment of equal shares (€33.33 million in each bond). The results show that the internal 

model, in contrast to the case of stocks (equity risk, see the previous subsection), leads to a 

considerably lower SCR for the considered investment grade credit quality bonds as com-

pared to the Solvency II standard model. However, for the B-rated corporate bond in the up-

per graph of Figure 4, the internal model more strongly accounts for a possible default of the 

issuer as compared to the standard model and thus implies a considerably higher SCR. Thus, 

particularly low rated bonds may be severely underestimated in the standard model.  

 

When looking at the portfolio in the upper part of Figure 4 (5-year bonds), similarly to the 

observations in case of equity risk SCR, diversification benefits are twice as high in the case 

of the internal model as compared to the standard model (-9.0% versus -4.3%). However, the 

lower graph of Figure 4 shows a diversification effect d1(B) of 3.4%, indicating an increasing 

SCR when building the portfolio of bonds. This observation is due to the lack of subadditivity 

for the Value at Risk when calculating the SCR and does not occur when using the Tail Value 

at Risk. 

 

With respect to model or estimation risk regarding the input parameters, Figure 4 indicates 

that it is especially the standard deviation of the interest rate process σr that generates a signif-

icantly higher or lower SCR for a portfolio of high quality bonds with different maturities, 

e.g., when increasing or decreasing σr to 120% or 80% of the original value, respectively. 
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Figure 4: Solvency capital requirement for corporate bonds (standalone and portfolio with 

equal proportions) 

 

 

 
Notes: Straight fixed-income bonds issued in the period range 2/2010 to 5/2011: Colgate-Palmolive Company 
(rating (r): AA, maturity (m): 5, coupon (c): 1.375%), Woolworth Ltd. Company (r: A, m: 5, c: 2.55%), Air Can-
ada (r: B, m: 5, c: 9.25%), Colgate-Palmolive Company (r: AA, m: 3, c: 1.25%), Colgate-Palmolive Company 
(r: AA, m: 10, c: 2.95%); model risk: +/-20% of original value. 

 

We next consider the SCR for government bonds issued by members of the EEA as shown in 

Figure 5. Besides the internal model that fully quantifies credit and spread risk, we further 

consider the SCR for a reduced internal model that, analogously to the Solvency II standard 

model, excludes spread risk for EEA governments.28 First, an investment of €100 million in 

an EEA government bond with a varying credit quality and a maturity of five years is consi-

dered in the upper graph of Figure 5.  Second, different maturities for a given rating are ana-

lyzed in the lower graph. Furthermore as before, portfolios consisting of equal shares (€33.33 

                                              
28 For the calculation of the internal model without spread risk, Equation (12) is set to 

( ) ( ) ( ) ( )
1

,jT

j j x t ih t
B t CF h p t h== +

= ⋅∑  with the non-defaultable zero coupon bond price ( ), .p t h  
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million for every bond) are analyzed together with a model risk assessment for relevant input 

parameters. 

 

The upper graph in Figure 5 shows that the SCR increases even stronger for lower credit qual-

ities as compared to the case of corporate bonds. In the case of the B-rated government bond 

with lower credit quality (speculative grade), the internal model’s SCR with spread risk ex-

ceeds the SCR of the other two models by a multiple, while for higher rated bonds, the stan-

dard model implies higher SCRs. The internal model without spread risk for EEA govern-

ments in contrast exhibits a very low SCR, which further emphasizes the importance of taking 

the actual spread risk into consideration in order to obtain an adequate picture of the risk of a 

bond investment. In particular, this observation clearly illustrates the effect of the special reg-

ulations for EEA governments that do not account for spread risk, which implies a severe un-

derestimation of risk especially for bonds with lower credit quality. 

 

As before, diversification benefits in the Solvency II standard model do not exist, since the 

market value of bonds is summed up without accounting for correlations and spread risk is 

not applicable. Besides the rating, another important factor for the SCR of bonds is their ma-

turity, which is exhibited in the lower graph in Figure 5 by means of A-rated EEA govern-

ment bonds. In this case, the SCR quantified by the internal model with spread risk lies below 

the standard model for all maturities due to the comparably low spread risk. The SCR is in-

creasing for longer maturities due to interest rate risk and credit risk, which is increasing over 

time. 

 

Furthermore, the analysis of the model risk illustrates that the initial value r(0) and particular-

ly the standard deviation σr of the CIR process have a strong impact on the SCR, which is 

highly prone to errors in the input parameters. The SCR even varies around +/-19% for the 

internal models both in the upper and lower graph when the actual standard deviation σr is 

20% higher or lower than the one originally assumed. Thus, a sensitivity analysis regarding 

the standard deviation is vital for insurers to assess the impact of potential model risk. 
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Figure 5: Solvency capital requirement for EEA government bonds (standalone and portfolio 

with equal proportions) 

 

 

 
* Spread risk is excluded for EEA government bonds. 
Notes: Straight fixed-income bonds, issued in the period range 2/2010 to 5/2011: Germany (Government of, r: 
AAA, m: 5, c: 2.00%), Czech Republic (Government, r: A, m: 5, c: 3.40%), Greece (Republic of, r: B, m: 5, 
6.10%), Czech Republic (Government, r: A, m: 3, c: 2.75%), Czech Republic (Government, r: A, m: 11, c: 
3.85%); model risk: +/-20% of original value. 

 

The special regulations with respect to spread risk do not only comprise EEA government 

bonds, but also AAA- and AA-rated government bonds issued by non-EEA states. The SCR 

calculations of an AAA-rated non-EEA government bond are given in Figure 6, again distin-

guishing between an internal model with and without accounting for spread risk. Here, one 

can observe again that the SCR increases with longer maturities and that the internal model 

implies lower SCR values as compared to the standard model, also with respect to the portfo-

lio view. In addition, the difference between the two internal models is similarly minor for the 

high rated non-EEA government bonds as in Figure 5. Regarding estimation risk, too, similar 

observations can be made as in the case of EEA government bonds, specifically showing high 

deviations in case of the interest rate volatility. 
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Figure 6: Solvency capital requirement for non-EEA government bonds (standalone and port-

folio with equal proportions) 

 

 
* Spread risk is excluded for AAA- and AA-rated non-EEA government bonds. 
Notes: Straight fixed-income bonds, issued in the period range 2/2010 to 5/2011: Canada (Government, r: AAA, 
m: 3, c: 2.25%), Canada (Government, r: AAA, m: 5, c: 2.75%), Canada (Government, r: AAA, m: 11, c: 
3.25%); model risk: +/-20% of original value. 

 

The impact of model risk in regard to the choice of risk processes for deriving the SCR of 

bond investments is laid out in Figure 7, thereby distinguishing between the underlying 

process for the interest rates and the credit spread. Thus, Figure 7 displays three different in-

ternal models, starting 1) with the CIR model and the JLT credit risk model; 2) substituting 

the CIR model with the Vasicek (1977) model while keeping the JLT credit risk model; and 

3) using the CIR model for interest rates but integrating the Duffie and Singleton (1999) cre-

dit risk model. The graph displays the SCR for corporate and government bonds with differ-

ent ratings. For high-rated corporate and government bonds, the results show higher SCRs 

when using the Vasicek (1997) instead of the CIR model (compare cases 1 and 2 in Figure 3). 

The SCR using internal model 2 even approximates the SCR of the Solvency II standard 

model, especially for AAA government bonds. For the B-rated bonds, the differences between 

the two internal models almost vanish as credit risk is the major risk driver for this type of 

bond exposures. 

 

When comparing the internal models 1 and 3, where the credit risk process is defined diffe-

rently using the model from Duffie and Singleton (1999), the SCR results are quite similar as 

in the case with the JLT model. However, when using the Duffie and Singleton (1999) model 

instead of the JLT model, the SCR tends to a slightly higher level for the high-rated bonds and 

to a slightly lower level for low-rated bond investments. The differences in the SCR for the 

credit risk models are mainly due to the underlying assumption in terms of the recovery rate. 

Non-EEA government bonds, rating: AAA, €100 million
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The JLT model supposes a recovery of treasury where the recovery is paid out at maturity as a 

fraction of a corresponding non-defaultable bond. In the model of Duffie and Singleton 

(1999), the recovery is received at the time of default as a fraction of the bonds’ market value 

(recovery of market value). While this appears minor at first glance, it can still have a consi-

derably impact when taking into account the large volumes of bonds. Thus, model risk in re-

gard to interest and credit risk should also be assessed in order to obtain a more detailed pic-

ture of the firm’s risk situation.29 

 

Figure 7: Solvency capital requirements for single bonds using the Solvency II standard 

model, the CIR and Vasicek (1977) model for interest rate risk as well as the JLT and Duffie 

and Singleton (1999) model for credit risk 

 

 
* The face value and, hence, the nominal annual coupon payment in the Solvency II standard model is calibrated 
with the CIR and JLT model. Notes: Straight fixed-income bonds issued in the period range 2/2010 to 5/2011: 
Colgate-Palmolive Company (rating (r): AA, maturity (m): 5, coupon (c): 1.375%), Air Canada (r: B, m: 5, c: 
9.25%), Germany (Government of, r: AAA, m: 5, c: 2.00%), Greece (Republic of, r: B, m: 5, c: 6.10%). 
 

4.4 SCR for the stock and bond portfolio 

 

We next study the implications of the SCR when investing €100 million in a stock portfolio 

and a bond portfolio as given in Tables 6 and 7 to assess diversification effects. In a second 

step, €100 million are put into an asset portfolio consisting half of the stock portfolio and half 

of the bond portfolio, i.e. the stock portion is set to 50%. Model risk for the internal approach 

is analyzed with respect to the risk of misestimated correlations included in the model. Thus, 

the correlation matrix P with the parameters given in Table 5 is changed by +/-20%. When 

                                              
29 The interest rate and credit risk models in Figure 7 are calibrated based on the same data set in order to en-

sure comparability and to isolate the effect of model risk. The general results thereby remain stable when 

changing, e.g., the length of the interest rate data set. 

Bonds, maturity: 5 years, €100 million

    Corporate bond, rating: AA                         Corporate bond, rating: B                  EEA government bond, rating: AAA             EEA Government bond, rating: B

S
C

R
 (i

n 
m

ill
io

n 
€)

1 2 3 1 2 3 1 2 3 1 2 3

0

5

10

15

20

25

30

35

40

45

50

55
1: CIR, JLT
2: Vasicek, JLT
3: CIR, Duffie/Singleton

Solvency II
standard model*(without spread risk*)

Internal model
(with spread risk)



 35

building a portfolio of stocks and bonds, correlation effects arise when using the square-root 

formula in Equation (3) for the equity risk sub-module and in Equation (6) for the market risk 

module of Solvency II with the predefined correlations. For the internal approach, the correla-

tion matrix P (with the parameters given in Table 8) is used. 

 
Figure 8: Solvency capital requirement for a portfolio of stocks (Table 6) and a portfolio of 
bonds (Table 7) (standalone and portfolio with equal proportions) 

 

 
* Spread risk is excluded for EEA governments and AAA- and AA-rated non-EEA governments. 
Notes: S1: DAX 30 (price index), S2: FTSE 100 (price index), S3: Dow Jones Industrials (price index), S4: India 
BSE 100 (price index), S5: MSCI World (price index), B1: Colgate-Palmolive Company, B2: Woolworth Ltd. 
Company, B3: Air Canada, B4: Germany (Government of), B5: Czech Republic (Government), B6: Greece (Re-
public of), B7: Canada (Government), B8:Russian Federation (Government), B9: Belarus (Republic of) (see 
Tables 6 and 7); model risk: +/-20% of original value. 

 

From Figure 8, it can be seen that the SCR obtained by the Solvency II standard model for a 

portfolio of stocks is slightly higher than the SCR of the internal models, even though the 

SCR for individual stocks is lower in case of a 30% / 40% capital charge (see the upper graph 

in Figure 2). This is due to the considerably higher diversification effects that are fully ac-

counted for in case of the internal model (-21.8%) as opposed to the standard model (-4.8%), 

which was already apparent in the analysis of the SCR of equity risk only. The diversification 

effects are even stronger in case of the bond portfolio, implying a considerably lower SCR in 

case of the full internal model (-58.7% diversification benefit), while the standard model im-

plies an SCR that is almost twice as high, despite diversification effects of -13.0%. Regarding 

the portfolio of stocks and bonds in Figure 8, the diversification effects of the internal models 

are higher (17.3% and 18.5%, respectively) than the one of the standard model (7.7%), lead-

ing to similar amounts of SCR in all three models.  

Stock portfolio, bond portfolio, portfolio of stocks and bonds, €100 million
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Concerning model risk, the SCR from the internal models vary until +/-7% when changing 

the correlation values by +/-20%. The model risk in case of the standard model induces a 

change in the SCR of around +/-10% and thus demonstrates a considerably larger impact of 

parameter uncertainty as compared to the internal model in the considered example. 

 

Figure 9: Solvency capital requirement for a stock and bond portfolio as a function of stock 

portion α 

 
    

 

 
* Spread risk is excluded for EEA governments and AAA- and AA-rated non-EEA governments. 
Notes: S1: DAX 30 (price index), S2: FTSE 100 (price index), S3: Dow Jones Industrials (price index), S4: India 
BSE 100 (price index), S5: MSCI World (price index), B1: Colgate-Palmolive Company, B2: Woolworth Ltd. 
Company, B3: Air Canada, B4: Germany (Government of), B5: Czech Republic (Government), B6: Greece (Re-
public of), B7: Canada (Government), B8:Russian Federation (Government), B9: Belarus (Republic of) (see 
Tables 6 and 7). 

 

To analyze the impact of the different SCR components for different stock portions α, Fig-

ure 9 displays the composition of the Solvency II sub-modules in the market risk module for 

the considered asset portfolio and an overall increasing SCR for a higher portion of stocks. 

The total SCR for market risk as shown by the line with stars accounts for diversification ben-
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efits. The lower graph in Figure 9 shows that the SCR of the internal approach lies always 

below the scenario-based Solvency II approach. Moreover, as α increases, the gap between 

the internal models with and without spread risk becomes smaller, which is due to the de-

creasing impact of spread risk in the asset portfolio for an increasing stock portion. 

 

Finally, we consider a representative asset portfolio consisting of 20% stocks (in equal pro-

portions: S1, S2, S3, S4, S5; see Table 6), 60% investment grade corporate and government 

bonds (in equal proportions: B1, B2, B4, B5, B6, B7; see Table 7) and 20% of corporate and 

government bonds with speculative grade credit ratings (in equal proportions: B3, B6, B9; see 

Table 7). Based on this asset portfolio, the partial internal model leads to a considerable lower 

SCR compared to the Solvency II standard approach. Investing €100 million, the internal 

model (with spread risk) results in an SCR of €8.27 million, while the standard model implies 

a capital requirement of €11.85 million, which is almost twice as high. 

 

5. CONCLUSIONS 

 

This paper examines the differences of calculating the SCR for market and credit risk using 

the current standard model of Solvency II and an internal approach. In doing so, we concen-

trate on the asset classes of stocks and bonds and on the most important sub-modules for mar-

ket risk in Solvency II: equity risk, interest rate risk, and spread risk. To obtain comparability 

between the standard model and the internal approach, the latter approach includes the same 

risks considered in the respective sub-modules of the Solvency II framework. Considering the 

asset class of bonds, we distinguish between corporate bonds and government bonds and 

quantify the risk of changes in the term structure of interest rates and changes of the credit 

spread (over the risk-free interest rate term structure). The risk of fluctuations in prices of 

equity investments is quantified in the Solvency II equity risk-sub-module. 

 

The procedure of quantifying the SCR in the spread risk sub-module is based on the current 

credit rating of the corporate or government bonds, which determine the spread risk factor in 

the sub-module. Therefore, to obtain comparability with the standard model of Solvency II, 

we also use a rating-based credit risk model for the internal approach along with the Cox-

Ingersoll-Ross (1985) model for interest rate risk. The development of equity prices is de-

scribed by a geometric Brownian motion. In the rating-based internal approach for bonds, the 

credit risk model by Jarrow, Lando, and Turnbull (1997) is used, which quantifies the credit 

risk through credit ratings and the probability of a change in the credit rating. Transition rates 
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for credit ratings allow the consideration of consequences of up- and downgrading the credit 

quality. 

 

One major result is that even though the standard approach is easier to use, the insurance 

company’s risk situation is generally not sufficiently reflected by the predefined scenarios, 

both over- or underestimating the risk associated with investments, depending on the actual 

underlying asset risk. The internal model allows for adjustments and differentiated assump-

tions to better reflect the insurer’s individual and actual credit and market risk situation. The 

dimension of underestimating the credit and market risk in Solvency II by ignoring spread 

risk of EEA governments and AAA- and AA-rated non-EEA governments specifically de-

pends on the credit quality of the bonds. A comparative analysis indicated that compared to 

the partial internal model considered in this paper, the standard model appears to particularly 

underestimate the risk of low-rated bonds, while it overestimates the risk of high-rated bonds. 

 

In contrast, the solvency capital of the empirically estimated stock indices studied was gener-

ally underestimated when using the standard model and an adjustment factor as applied in 

QIS 5 that implies a capital charge of 30% and 40% for stocks in the category “Global” and 

“Other”, respectively. However, this result depends on the adjustment factor. In case no ad-

justment is made (capital charge of 39% and 49%), only the India BSE 100 stock index from 

the category “Other” implied a higher internal model SCR than the one induced by the stan-

dard model, while for the other considered stock indices from the category “Global”, the in-

ternal model led to lower SCRs than in the case of the standard model.  

 

In general, diversification effects played an important role in the total SCR for market risk. In 

particular, even though the SCRs of individual stock indices derived according the internal 

model were above the ones of the standard model, diversification effects implied a considera-

ble reduction in solvency capital requirements, thus generally leading to lower SCR values in 

case of the internal model. In particular, correlation effects between different stocks within the 

asset class “Global” (e.g. EEA and OECD) and between “Global” and “Other” were not suffi-

ciently accounted for in the standard model (approximately -5% in case of the standard model 

versus -22% in case of the internal model in the cases considered), thus not adequately reflect-

ing diversification benefits. 

 

Thus, insurers should use a partial internal model with respect to equity risk and credit spread 

risk instead of or in addition to the standard model when calculating the necessary solvency 

capital to achieve a predefined safety level. In case of stocks, this generally allows fully bene-
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fiting from diversification benefits and in case of bonds, the actual credit risk can be more 

detailed and adequately assessed. Additionally, model risk should be taken into consideration 

by means of an adequate internal model choice, and moreover by conducting sensitivity ana-

lyses with respect to the parameter calibration to obtain a more comprehensive picture of an 

insurer’s risk situation. Further analysis should critically study the calibration of the standard 

model and its adequacy regarding a firm’s individual risk situation.  

 

Overall, in addition to the SCR quantification, an internal model further offers the opportunity 

to integrate the model in the internal control process of the insurer, which is also of high re-

levance in the context of the insurer’s own risk and solvency assessment (ORSA) as required 

in Solvency II’s Pillar 2. Further research should also look at the implications and incentives 

generated by the standard model and internal models regarding the capital allocation behavior 

of insurance companies as one of the largest investors in Europe, as systematic and pro-

cyclical behavior during adverse capital market developments might severely impact the fi-

nancial markets. 
  



 40

REFERENCES 

 

Artzner, P., Delbaen, F., Eber, J.-M., and Heath D. (1999): Coherent Measures of Risk, Ma-

thematical Finance 9(3): 203-228. 

Bangia, A., Diebold, F. X., Kronimus, A., Schagen, C., and Schuermann, T. (2002): Ratings 

Migration and the Business Cycle, with Application to Credit Portfolio Stress Testing, 

Journal of Banking & Finance 26(2-3): 445-474. 

Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) (2011): Ergebnisse der Fünften 

Quantitativen Auswirkungsstudie zu Solvency II (QIS 5), Bonn, available at 

http://www.bafin.de, access 10/12/2011. 

Bank of International Settlements (BIS) (2006): International Convergence of Capital Mea-

surement and Capital Standards - A Revised Framework - Comprehensive Version, Basel, 

available at http://www.bis.org, access 10/12/2011. 

Björk, T. (2009): Arbitrage Theory in Continuous Finance, 3rd edition, Oxford University 

Press, Oxford. 

Black, F., and Cox, J. (1976): Valuing Corporate Securities: Some Effects of Bond Indenture 

Provisions, Journal of Finance 31(2): 351-367. 

Black, F., and Scholes, M. (1973): The Pricing of Options and Corporate Liabilities, Journal 

of Political Economy 81(3): 637-654. 

Brigo, D., Dalessandro, A., Neugebauer, M., and Triki, F. (2009): A Stochastic Processes 

toolkit for Risk Management: Mean Reverting Processes and Jumps, Journal of Risk Man-

agement in Financial Institutions 3(1): 65-83. 

Brigo, D., and Mercurio, F. (2007): Interest Rate Models - Theory and Practice, 2nd Edition, 

Springer, Berlin. 

Brigo, D., and Pallavicini, A. (2007): Counterparty Risk under Correlation between Default 

and Interest Rates, in Numerical Methods for Finance (Ed. Appleby, J. A. D., Edelman, D. 

C., and Miller, J. J. H.), Chapman and Hall, 63-81. 

Cairns, A. (2004): Interest Rate Models - An Introduction, Princeton University Press, Prince-

ton. 

Cantor, R., Emery, K., Duggar, E., and Cailleteau, P. (2008): Sovereign Default and Recovery 

Rates, 1983-2007, Moody’s Global Credit Research, Moody’s Investors Service, Inc., New 

York. 



 41

Chambers, J., Ontko, J., and Beers, D. T. (2011): Default, Transition and Recovery - Sove-

reign Defaults and Rating Transition Data, 2010 Update, RatingsDirect, Standard & Poor’s 

Financial Services LLC (S&P), New York. 

Christiansen, M. C., Denuit, M. M., and Lazar, D. (2012): The Solvency II Square-Root For-

mula for Systematic Biometric Risk, Insurance: Mathematics and Economics 50(2): 257-

265. 

Christiansen, M., and Niemeyer, A. (2012): The Fundamental Definition of the Solvency 

Capital Requirement in Solvency II, Working Paper, Ulm University. 

Committee of European Insurance and Occupational Pensions Supervisors (CEIOPS) (2010): 

Quantitative Impact Study 5 - Questions & Answers, Frankfurt, available at 

https://eiopa.europa.eu, access 10/12/2011. 

Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985): A Theory of the Term Structure of Interest 

Rates, Econometrica 53(2): 385-407. 

Das, S., and Tufano, P. (1996): Pricing Credit Sensitive Debt when Interest Rates, Credit Rat-

ings and Credit Spreads are Stochastic, Journal of Financial Engineering 5(2): 161-198. 

Duffie, D., and Singleton, K. (1997): An Econometric Model of the Term Structure of Interest 

Rate Swap Yields, Journal of Finance 52(4): 1287-1321. 

Duffie, D., and Singleton, K. (1999): Modeling Term Structures of Defaultable Bonds, Re-

view of Financial Studies 12(4): 687-720. 

Eling, M., Schmeiser, H., and Schmit, J. T. (2007): The Solvency II Process: Overview and 

Critical Analysis, Risk Management and Insurance Review 10(1): 69-85. 

Embrechts, P., McNeil, A. J., and Straumann, D. (2002): Correlation and Dependence in Risk 

Management: Properties and Pitfalls, in Risk Management: Value at Risk and Beyond (Ed. 

Dempster, M. A. H.), Cambridge University Press, Cambridge, 176-223. 

European Insurance and Occupational Pensions Authority (EIOPA) (2010a): QIS5 Technical 

Specifications, European Commission, Brussels, available at https://eiopa.europa.eu, access 

10/12/2011. 

European Insurance and Occupational Pensions Authority (EIOPA) (2010b): Errata to the 

QIS5 Technical Specifications, European Commission, Brussels, available at 

https://eiopa.europa.eu, access 10/12/2011. 

European Insurance and Occupational Pensions Authority (EIOPA) (2010c): Solvency II Ca-

libration Paper, European Commission, Brussels, available at https://eiopa.europa.eu, 

access 10/12/2011. 



 42

European Insurance and Occupational Pensions Authority (EIOPA) (2011): Consultation 

Document on the Level 2 Implementing Measures for Directive 2009 /138/EC on the Tak-

ing-up and Pursuit of the Business of Insurance and Reinsurance (Solvency II), European 

Commission, Brussels, available at http://ec.europa.eu/, access 10/12/2011. 

European Parliament and of the Council (2005): Council Directive of 20 December 1985 on 

the Coordination of Laws, Regulations and Administrative Provisions Relating to Under-

takings for Collective Investment in Transferable Securities (UCITS) (85/611/EEC) , Brus-

sels, available at http://europa.eu, access 10/12/2011. 

European Parliament and the Council (2009): Directive 2009/138/EC of the European Parlia-

ment and of the Council of 25 November 2009 on the Taking-up and Pursuit of the Busi-

ness of Insurance and Reinsurance (Solvency II), Brussels, available at http://europa.eu, 

access 10/12/2011. 

Garcia, R., and Tsafack, G. (2011): Dependence Structure and Extreme Comovements in In-

ternational Equity and Bond Markets, Journal of Banking and Finance 35(8): 1954-1970. 

Gatzert, N., and Wesker, H. (2012): A Comparative Assessment of Basel II/III and Solvency 

II, Geneva Papers on Risk and Insurance - Issues and Practice 37(3), 539-570. 

Grünbichler, A., and Longstaff, F.A. (1996): Valuing Futures and Options on Volatility, 

Journal of Banking and Finance 20(6): 985-1001. 

Heston, S. L. (1993): A Closed-Form Solution for Options with Stochastic Volatility with 

Applications to Bond and Currency Options, Review of Financial Studies 6(2): 327-343. 

Jarrow, R. A., Lando, D., and Turnbull, S. M. (1997): A Markov Model for the Term Struc-

ture of Credit Risk Spreads, Review of Financial Studies 10(2): 481-523. 

Jarrow, R. A., and Turnbull, S. M. (1995): Pricing Derivatives on Financial Securities Subject 

to Credit Risk, Journal of Finance 50(1): 53-85. 

Jarrow, R. A., and Turnbull, S. M. (2000): The Intersection of Market and Credit Risk, Jour-

nal of Banking & Finance 24(1-2): 271-299. 

Lando, D. (1998): On Cox Processes and Credit Risky Bonds, Review of Derivatives Re-

search 2(2-3): 99-120. 

Leland, H. (1994): Corporate Debt Value, Bond Covenants, and Optimal Capital Structure, 

Journal of Finance 49(4): 1213-1252. 

Longstaff, F. A., and Schwartz, E. S. (1995): A Simple Approach to Valuing Risky Fixed and 

Floating Rate Debt, Journal of Finance 50(3): 789-819. 



 43

Macaulay, F. R. (1938): Some Theoretical Problems Suggested by the Movements of Interest 

Rates, Bond Yields and Stock Prices in the United States since 1856, National Bureau of 

Economic Research, New York. 

McNeil, A., Frey, R., and Embrechts, P. (2005): Quantitative Risk Management: Concepts, 

Techniques and Tools, Princeton University Press, Princeton. 

Merton, R. C. (1973): Theory of Rational Option Pricing, Bell Journal of Economics and 

Management Science 4(1): 141-183. 

Merton, R. C. (1974): On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, 

Journal of Finance 29(2): 449-470. 

Mittnik, S. (2011): Solvency II Calibrations: Where Curiosity Meets Spuriosity, Working 

Paper Number 04, 2011, Center for Quantitative Risk Analysis University of Munich. 

Pfeifer, D., and Strassburger, D. (2008): Solvency II: Stability Problems with the SCR Aggre-

gation Formula, Scandinavian Actuarial Journal 2008(1): 61-77. 

Piozot, A., Hughes, C., Prowse, D., and Insoll, M. (2011): Solvency II Set to Reshape Asset 

Allocation and Capital Markets, Insurance Rating Group Special Report, Fitch Ratings. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007): Numerical Rec-

ipes - The Art of Scientific Computing, 3rd Edition, Cambridge University Press, Cam-

bridge. 

Sandström, A. (2007): Solvency II: Calibration for Skewness, Scandinavian Actuarial Jour-

nal 2007(2): 126-134. 

Vasicek, O. (1977): An Equilibrium Characterization of the Term Structure, Journal of Fi-

nancial Economics 5(2): 177-188. 

Vazza, D., Aurora, D., and Kraemer, N. (2010): Default, Transition, and Recovery: 2009 An-

nual Global Corporate Default Study And Rating Transitions, RatingsDirect on the Global 

Credit Portal, Standard & Poor’s Financial Services LLC (S&P), New York. 

  



 44

APPENDIX 

 

Table A.1: Global corporates average one-year transition rates (%) (see Vazza, Aurora and 

Kraemer, 2010, p. 27) 
AAA  AA A BBB BB B C D NR 

AAA 88.21 7.73 0.52 0.06 0.08 0.03 0.06 0.00 3.31 
AA 0.56 86.60 8.10 0.55 0.06 0.09 0.02 0.02 4.00 
A 0.04 1.95 87.05 5.47 0.40 0.16 0.02 0.08 4.83 
BBB 0.01 0.14 3.76 84.16 4.13 0.70 0.16 0.26 6.68 
BB 0.02 0.05 0.18 5.17 75.52 7.48 0.79 0.97 9.82 
B 0.00 0.04 0.15 0.24 5.43 72.73 4.65 4.93 11.83 
C 0.00 0.00 0.21 0.31 0.88 11.28 44.98 27.98 14.36 

 

Table A.2: Governments average one-year transition rates (%) (see Chambers, Ontko and 

Beers, 2011, p. 41)30 
AAA  AA A BBB BB B C D NR 

AAA  97.78  2.22  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
AA  3.37  93.64  2.25  0.00  0.37  0.37  0.00  0.00  0.00 
A  0.00  3.60  92.80  3.60  0.00  0.00  0.00  0.00  0.00 
BBB  0.00  0.00  6.75  89.03  3.38  0.84  0.00  0.00  0.00 
BB  0.00  0.00  0.00  6.14  88.06  4.10  1.02  0.68  0.00 
B  0.00  0.00  0.00  0.00  7.20  86.36  3.41  1.89  1.14 
C  0.00  0.00  0.00  0.00  0.00  31.82  31.82  36.36  0.00 

 

Table A.3: Global corporates average one-year transition rates derived from Table A.1 ac-

counting for non-rated corporates (NR) (%, rounded values) 
AAA  AA A BBB BB B C D 

AAA 91.23 7.99 0.54 0.06 0.08 0.03 0.06 0.00 
AA 0.58 90.21 8.44 0.57 0.06 0.09 0.02 0.02 
A 0.04 2.05 91.47 5.75 0.42 0.17 0.02 0.08 
BBB 0.01 0.15 4.03 90.18 4.43 0.75 0.17 0.28 
BB 0.02 0.06 0.20 5.73 83.74 8.29 0.88 1.08 
B 0.00 0.05 0.17 0.27 6.16 82.49 5.27 5.59 
C 0.00 0.00 0.25 0.36 1.03 13.17 52.52 32.67 

  

                                              
30 To obtain row sums equal to one and thus a cumulative distribution function for each row, we adjust individ-

ual values in Table A.2. 
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Table A.4: Governments average one-year transition rates derived from Table A.2 accounting 

for non-rated governments (NR) (%, rounded values) 
AAA  AA A BBB BB B C D 

AAA  97.78  2.22  0.00  0.00  0.00  0.00  0.00  0.00  
AA  3.37  93.64  2.25  0.00  0.37  0.37  0.00  0.00  
A  0.00  3.60  92.80  3.60  0.00  0.00  0.00  0.00  
BBB  0.00  0.00  6.75  89.03  3.38  0.84  0.00  0.00  
BB  0.00  0.00  0.00  6.14  88.06  4.10  1.02  0.68  
B  0.00  0.00  0.00  0.00  7.28  87.36  3.45  1.91  
C  0.00  0.00  0.00  0.00  0.00  31.82  31.82  36.36  

 


