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CREATING CUSTOMER VALUE IN PARTICIPATING L IFE INSURANCE 
 

Nadine Gatzert, Ines Holzmüller, Hato Schmeiser∗
 

 
ABSTRACT 

 
The value of a life insurance contract may differ depending on whether it is looked at from the 
customer’s point of view or that of the insurance company. We assume that the insurer is able 
to replicate the life insurance contract’s cash flows via assets traded on the capital market and 
can hence apply risk-neutral valuation techniques. The policyholder, on the other hand, will 
take risk preferences and diversification opportunities into account when placing a value on that 
same contract. Customer value is represented by policyholder willingness to pay and depends 
on the contract parameters, i.e., the guaranteed interest rate and the annual and terminal surplus 
participation rate. The aim of this paper is to analyze and compare these two perspectives. In 
particular, we identify contract parameter combinations that––while keeping the contract value 
fixed for the insurer––maximize customer value. In addition, we derive explicit expressions for 
a selection of specific cases. Our results suggest that a customer segmentation in this sense, i.e., 
based on the different ways customers evaluate life insurance contracts and embedded invest-
ment guarantees while ensuring fair values, is worthwhile for insurance companies as doing so 
can result in substantial increases in policyholder willingness to pay. 

 
Keywords: Participating life insurance, risk-neutral valuation, customer value, mean-variance 

preferences 

JEL classification: D46; G13; G22; G28 

 

 

1. INTRODUCTION  

 

Participating life insurance contracts generally feature a minimum interest rate guarantee, 

guaranteed participation in the annual return of the insurer’s asset portfolio, and a terminal 

bonus payment. Appropriate pricing of these features is crucial to an insurance company’s 

financial stability. Risk-neutral valuation and other premium principles based on the duplica-

tion of cash flow serve well to evaluate contracts from the insurer’s perspective. However, 

these techniques are only relevant, if insurance policies priced according to them actually 
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meet customer demand. Since policyholders may not be able to duplicate their claims via 

capital market instruments for valuation purposes, they will often judge its value based on 

individual preferences. Thus, their willingness to pay––referred to here as “customer value” 

of the contract––may be quite different from the fair premium calculated by the insurance 

company. The aim of this paper is to combine the insurer’s perspective with that of the poli-

cyholders, which is done by identifying those fair contract parameters (guaranteed interest 

rate and annual and terminal surplus participation rate) that, while keeping the fair value fixed 

for the insurer, maximize customer value. 

 

We extend previous literature by combining these two approaches; however, there is a fair 

amount of previous research on each individual perspective. From the insurer perspective, the 

relevant area is option pricing theory and its application to participating life insurance con-

tracts. Among this literature, we find in particular Briys and de Varenne (1997), Grosen and 

Jørgensen (2002), Bacinello (2003), Ballotta, Haberman, and Wang (2006), and Gatzert 

(2008). All these papers use option pricing models to determine the price of life insurance 

policies, but their objectives are various. Briys and de Varenne (1997), for example, use a 

contingent claims approach to derive prices for life insurance liabilities and to compare the 

durations of equity and liabilities in the insurance and banking industries, respectively. In 

contrast, Gatzert (2008) analyzes the influence of asset management and surplus distribution 

strategies on the fair value of participating life insurance contracts. 

 

From the policyholder perspective, the literature on utility theory and, in particular, on the 

demand for insurance, is relevant. In our paper, the demand for insurance is derived by as-

suming that the policyholders follow mean-variance preferences, a common assumption in the 

literature. For example, Berketi (1999) assumes mean-variance preferences in an analysis of 

insurers’ risk management activity, finding that although such activity does reduce the risk of 

insolvency, it also reduces the expected payments to the policyholders when considering par-

ticipating life insurance contracts. Berketi (1999) applies a mean-variance framework to ana-

lyze policyholder preferences with regard to these activities, but does not derive their willing-

ness to pay. Various other research has been conducted to analyze the demand for insurance 

by corporate entities (see, e.g., Mayers and Smith, 1982; Doherty and Richter, 2002; Doherty 

and Tinic, 1981). Generally, demand for insurance depends not only on an individual’s prefe-

rences, but also on the person’s economic situation. Accordingly, Mayers and Smith (1983) 

examine insurance holdings as one of many interrelated portfolio decisions. Inspired by this 
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paper, Showers and Shotick (1994) conduct an empirical analysis and verify the interdepen-

dence between individuals’ demand for insurance and household characteristics (e.g., income, 

number of family members, number of working family members). Ehrlich and Becker (1972) 

combine expected utility theory with consumption theory and analyze substitution effects. In 

particular, they examine the relationship between insurance, self-insurance (reduction of the 

loss extent), and self-protection (reduction of the loss probability). To account for the findings 

of this research, we consider the special case in which the policyholder’s wealth develops sto-

chastically and thus there are diversification opportunities between the private wealth and 

investment in a life insurance contract. 

 

However, our approach can as well be extended and applied based on different preference 

models such as prospect theory used by Wakker, Thaler, and Tversky (1997), developed by 

Kahneman and Tversky (1979), to explain experimental data on the demand for probabilistic 

insurance. Probabilistic insurance is a type of insurance policy that indemnifies the policy-

holder with a probability only strictly less than one due to the insurer’s default risk. Recent 

experimental research on demand for insurance under default risk includes Zimmer, Schade, 

and Gründl (2009), who show that awareness of even a very small positive probability of in-

solvency hugely reduces customer willingness to pay. 

 

In this paper, we combine the insurer and policyholder viewpoints in the context of partici-

pating life insurance contracts. The insurer conducts (preference-independent) risk-neutral 

valuation and arrives at the fair price of the insurance contract. This fair price is the minimum 

premium the insurance company needs to charge in order for its equityholders—who could 

also and simultaneously be policyholders—to receive a risk-adequate return on their invest-

ment. Policyholders, who generally cannot duplicate cash flows to the same extent as the in-

surance company, possibly will not base their decision on risk-neutral valuation. Instead, it is 

likely that their willingness to pay depends on their individual degree of risk aversion and, in 

our model, is thus based on mean-variance preferences. On this basis, we are able to derive 

explicit expressions for policyholder willingness to pay and analyze its sensitivity for changes 

in the payoff structure of the participating life insurance policy. 

 

Our findings show how an insurance company can alter policy characteristics to increase 

customer value, while, at the same time, keeping the fair premium value fixed. Furthermore, 

we investigate whether existing regulatory specifications regarding the design of participating 
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life insurance contracts actually fulfill their intended purpose of protecting policyholder inter-

ests. If, by disregarding those specifications, the insurance company can increase customer 

value, this justification comes into doubt. Our findings are relevant for both the insured and 

insurance companies, who may be able to realize premiums above the fair premium level by 

increasing policyholder willingness to pay. Taking the lead from Mayers and Smith (1983), 

Showers and Shotick (1994), and Ehrlich and Becker (1972), we also aim to investigate the 

effects on insurance demand when policyholder basis wealth is stochastic and the policy-

holder thus has diversification possibilities. 

 

The remainder of this paper is organized as follows. In Section 2, the basic setting is intro-

duced. In Section 3, we present the valuation procedures employed by the insurer and by the 

policyholders. Keeping the fair (from the insurer’s perspective) premium value fixed, we op-

timize customer value in Section 4. Section 5 provides numerical examples. Selected policy 

implications and a summary are found in Section 6. 

 

2. BASIC SETTING  

 

We analyze participating life insurance contracts similar to those offered in many European 

countries, including Germany, Switzerland, the United Kingdom, and France. The insurance 

company’s initial assets are denoted by 0A . At inception of the contract, policyholders pay a 

single up-front premium 0P ( )0Aβ= ⋅  and the insurance company equityholders make an 

initial contribution of 0Eq ( )( )01 Aβ= − ⋅ . Here, 0 0/P Aβ =  can be considered as the leve-

rage of the company. The total value of initial payments 0 0 0= +A P Eq  is then invested in the 

capital market, which leads to uncertainty about the value of the insurer’s assets ( )A t  at time 

t = 1,2,…,T, where T denotes the fixed maturity of the contract(s). Having the assets follow a 

geometric Brownian motion captures this uncertainty. Under the real-world measure P , this 

stochastic process is characterized by drift Aµ  and volatility Aσ  leading to 

 

( ) ( ) ( ) ( )( )2  1 exp / 2 1A A A AA t A t W t W tµ σ σ = − ⋅ − + − −  , (1) 

 

with 

 

( ) 0 0 00      + = =A A P Eq , (2) 
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where AW  is a standard P -Brownian motion. In the case the insurer is solvent at time t = T, 

the assets A(T) should exceed the liabilities to the policyholders. The amount of liabilities at 

maturity T is determined by three parameters. The first is a guaranteed minimum annual inter-

est rate g regarding the policyholder reserves. In several European countries, this minimum 

interest rate is determined by law and changed periodically—depending on capital market 

conditions. 

 

The second parameter is the annual surplus distribution rate α. In general, this rate is regu-

lated, too, similar to the minimum annual interest rate (e.g., Germany, Switzerland, and 

France). Hence, in the case of positive market developments, the policyholders participate in 

the insurer’s investment returns above the guaranteed interest rate. The participation rate is 

applied to earnings on book values, which can differ considerably from earnings on market 

values. We therefore introduce a constant parameter γ , as is done in Kling, Richter, and Ruß 

(2007), to capture the difference between book and market values. In this sense, the factor γ  

also serves as a smoothing parameter as it allows the insurance company to build up reserves 

and thus to even out policyholder payments between years of “low” and “high” investment 

returns. The parameter γ takes values between 0 and 1. 

 

The third contract parameter is the optional terminal surplus bonus δ. This terminal bonus is 

not guaranteed, but is optionally credited to the policyholder account according to the initial 

contribution rate 0 0/P Aβ =  at maturity. As we are mainly interested in the financial risk 

situation, we do not take early surrender and deaths into account. Under the assumption that 

mortality risk is diversifiable, it can be dealt with using expected values when writing a suffi-

ciently large number of similar contracts. However, we presume that any additional options 

are priced adequately and paid for separately. Thus, the policyholder account ( )P t  in our 

model is as follows: 

 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 1 1 0P t P t g max A t A t g P t ,α γ = − ⋅ + + ⋅ ⋅ − − − ⋅ −  , (3) 

 

where ( ) 00P P=  and γ  is the relation of book value to market value. The interest rate and 

the annual participation payment are locked in each year and thus become part of the guaran-

tee (so-called cliquet-style guarantee). The terminal bonus is given by a fraction δ of ( )B T , 

where 
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( ) ( ) ( )( )0B T max A T P T ,β= ⋅ − . (4) 

 

The total payoff to the policyholder at maturity ( )L T  thus consists of the policyholder’s 

guaranteed accumulated account ( )P T —including guaranteed interest rate payments and 

annual surplus participation—as well as an optional terminal surplus participation payment 

( )B Tδ ⋅ . The policyholder will receive the guaranteed payoff only if the insurance company 

is solvent at maturity, i.e., if the market value of assets ( )A T  is sufficient to cover the 

guaranteed maturity payoff ( )P T . If the company is insolvent––( ) ( )P T A T> ––

policyholders receive only the total market value of the insurer’s assets. Hence, the expected 

cost of insolvency is represented by the default put option ( )D T : 

 

( ) ( ) ( )( )0D T max P T A T ,= − . (5) 

 

The default put option is deducted from the policyholder claims (see, e.g., Doherty and 

Garven, 1986), leading to a total policyholder payoff ( )L T
, with 

 

( ) ( ) ( ) ( )L T P T B T D Tδ= + ⋅ − . (6) 

 

The insurance company equityholders have limited liability, which means that they either re-

ceive the residual difference between the market value of the assets and the policyholder 

payoff at time t = T or, in the case of insolvency, nothing: 

 

( ) ( ) ( ) ( ) ( )( ) ( )0= − = − − ⋅Eq T A T L T max A T P T , B Tδ . (7) 

 

The first term on the right-hand side of Equation (7) represents a call option on the insurer’s 

assets with strike price ( )P T , which illustrates the equityholders’ limited liability. 
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3. VALUATION FROM THE PERSPECTIVE OF INSURERS AND POLICYHOLDERS  

 

We now turn to the valuation and determination of fair premiums, which will be different, 

depending on the perspective taken—policyholder or insurer (equityholder). Since we believe 

that policyholders generally cannot duplicate cash flows to the same extent as can an insur-

ance company, their valuation and thus their willingness to pay for the contract depends on 

individual preferences. In this paper, policyholder willingness to pay is referred to as the 

“customer value” of the insurance contract. From the insurance company point of view, we 

assume that claims are replicable in order to derive fair (or minimum) premiums. Thus, a pre-

ference-free valuation approach, for a given combination of the parameters g, α, and δ, can be 

applied to provide a risk-adequate return for the company’s equityholders. If the customer 

value exceeds the minimum premium derived, we obtain a positive premium agreement 

range. If this range is negative, it is not likely the contract will be bought by this particular 

policyholder. 

 

3.1 Insurer perspective 

 

Assuming an arbitrage-free capital market, the insurer evaluates claims under the risk-neutral 

measure Q . Under Q , the drift of the asset process changes from Aµ  to the risk-free interest 

rate r, 

 

( ) ( ) ( ) ( )( )2  1 exp / 2 1A AA t A t r W t W tσ σ = − ⋅ − + − − 
ℚ ℚ  (8) 

 

where AW Q  is a Q -Brownian motion. The values of the policyholder ( )∗Π  and the equity-

holder claims ( )EΠ  under the risk-neutral measure are then given by: 

 

( )( ) ( ) ( )( ) ( )( )rT rT rT

DPO

e E L T e E P T B T e E D Tδ∗ − − − Π = ⋅ = ⋅ + ⋅ − ⋅ 

= Π − Π

Q Q Q

 (9) 

 

and 

 

( )( )E rTe E E T−Π = ⋅ Q . (10) 
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An up-front premium 0P  is called “fair” if it equals the market value of the contract under the 

risk-neutral measure at time t = 0. This is expressed as 

 

0
* PΠ = ,  (11) 

 

which, due to no arbitrage, is equivalent to solving  

 

0Π =E Eq . (12) 

 

The value of the policyholder claim is determined by the guaranteed interest rate g, the annual 

surplus participation α, and the terminal bonus δ. Keeping all else equal, a decrease in any 

one of the three parameters – e.g., of g – decreases the fair contract value ( ) 0
* g, , Pα δΠ < . 

However, by increasing the remaining parameters – in this example, α, δ, or both – the value 

of the contract can be kept constant at 0
* PΠ = . Hence, there are in general an infinite number 

of contract specifications that all have the same fair value but, because of their different 

payoff structures, will vary in the degree to which policyholders find them attractive, that is, 

each variant, although of equal value to the insurer, may have a different customer value. 

 

Any fair premium provides a net present value of zero for the insurance company 

equityholders. The fair premium 0P  thus provides the lower end of the premium agreement 

range. 

 

3.2 Policyholder perspective 

 

The upper end of the premium agreement range is determined by policyholder willingness to 

pay, denoted by 0PΦ . Assuming mean-variance preferences (see, e.g., Berketi, 1999; Mayers 

and Smith, 1983), the policyholder’s order of preferences under the real-world measure P  is 

given by the difference between expected wealth and the variance of the wealth multiplied by 

the policyholder’s individual risk aversion coefficient a (times one-half; see, e.g., Doherty and 

Richter, 2002): 
 

( ) ( )2

2T T

a
E Z ZσΦ = − ⋅ . (13) 
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Here, ZT denotes the policyholder’s wealth at maturity. The procedure and analyses can ana-

logously be applied based on other preference models.  

 

To determine policyholder willingness to pay, we compare the preference function for the 

case of no insurance (NI) to the one with insurance (WI) (see Eisenhauer, 2004). The maxi-

mum willingness to pay is exactly the price at which the customer becomes indifferent be-

tween the two cases: 

 
WI NIΦ = Φ  (14) 

 

with 

 

( ) ( )2

2
NI NI NI

T T

a
E Z ZσΦ = − ⋅  (15) 

 

and 

 

( )( ) ( )( )2

2
WI WI WI

T T

a
E Z L T Z L TσΦ = + − ⋅ + .  (16) 

 

The policyholder’s initial wealth is denoted by 0Z , where 0 0Z > . In the case without 

insurance, 0 0
NIZ Z= . Alternatively, 0 0 0

WIZ Z PΦ= − . The remainder of the initial wealth is 

either compounded with the risk-free interest rate (if the policyholder has no chance to 

diversify) or is invested in a stochastic portfolio (i.e., the policyholder can diversify). We 

distinguish between these two cases below. 

 

Part A—Deterministic wealth of policyholder 

 

In the case of deterministic wealth, the policyholder must choose between investing in the 

risk-free asset or using at least part of the wealth to purchase the life insurance contract. If the 

policyholder invests all the wealth in the risk-free investment opportunity, his or her future 

wealth is given by 0
rTZ e . If the policyholder decides to purchase life insurance, initial wealth 

is reduced by the premium he or she is willing to pay, 0PΦ , i.e., 0 0 0
WIZ Z PΦ= − . 
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Furthermore, a variance term is deducted from the preference function to account for the risk 

associated with the life insurance policy’s payback. For the two cases, the following holds: 

 

0Φ = ⋅NI rTZ e  (17) 

 

and 

 

( ) ( )( ) ( ) ( )( )2
0 0 0 02

WI rT rTa
E Z P e L T Z P e L TσΦ ΦΦ = − ⋅ + − ⋅ − ⋅ + . (18) 

 

According to Equation (14), the policyholder solves 

 

( ) ( )( ) ( )( )2
0 0 0 2

rT rT a
Z e Z P e E L T L TσΦ⋅ = − ⋅ + − ⋅ . (19) 

 

Hence, maximum willingness to pay does not depend on the policyholder’s initial wealth: 

 

( )( ) ( )( )2
0 2

rT a
P e E L T L TσΦ −  = ⋅ − ⋅  

. (20) 

 

Part B—Stochastic wealth of policyholder 

 

Following Mayers and Smith (1983), who emphasize the interaction between demand for in-

surance and other portfolio decisions, we introduce a stochastic investment opportunity. The 

policyholder may now invest his or her total initial wealth at time 0t =  in the stochastic asset 

process, or use parts of it to purchase life insurance. We assume that the stochastic asset 

process of the investment opportunity evolves according to a geometric Brownian motion 

with drift Zµ  and volatility Zσ . Under the objective measure P , ZW —in analogue to the 

assets process of the insurance company—is a standard P -Brownian motion. Development of 

the investment opportunity is thus given by 

 

( ) ( ) ( ) ( )( )21 exp / 2 1Z Z Z Z ZZ t Z t W t W tµ σ σ = − ⋅ − + − −  , (21) 
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with ( ) 00 WIZ Z=  (with insurance) or ( ) 00 NIZ Z= (no insurance). Furthermore, the two 

Brownian motions of the insurer’s asset process ( )A t  and the private investment opportunity 

( )Z t  are correlated with a constant coefficient of correlation ρ, 

 
.A ZdW dW dtρ=  (22) 

 

As before, if the policyholder chooses not to purchase life insurance, the initial investment 

sum equals the initial wealth ( )0 0
NIZ Z= . If the policyholder decides to take out an insurance 

contract, his or her investment sum equals the initial wealth reduced by a premium payment, 

0 0 0
WIZ Z PΦ= − . 

 

Again, the policyholder’s marginal willingness to pay 0PΦ  is derived by comparing the 

policyholder’s preference function for the case with and without insurance (see Equations 

(14)–(16)). The policyholder thus solves 

 

( ) ( ) ( )( ) ( )( )2 2

2 2
NI NI WI WI

T T T T

a a
E Z Z E Z L T Z L Tσ σ− ⋅ = + − ⋅ + . (23) 

 

with 

 

0 0 0 0 0
Φ Φ= − = −WI NIZ Z P Z P  

 

and (24) 

 

( ) ( ) ( )( )2exp / 2 0T Z Z Z Z ZZ T W T Wµ σ σ = − ⋅ + ⋅ − 
ɶ ,  (25) 

 

which can be rewritten as ( )0 0
WI NI

T TZ Z P ZΦ= − ⋅ ɶ , and 0
NI NI

T TZ Z Z= ⋅ ɶ . Solving Equation 

(23) leads to an explicit formula for policyholder willingness to pay, hence for the customer 

value ( )0PΦ  of the life insurance contract (see Appendix A for the detailed derivation): 
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( ) ( ) ( )( )
( )

( )( ) ( )( ) ( )( )
( )

( ) ( ) ( )( )
( )

1
2 2

2

0

2

2

2

1

2
2

1

NI
T T T T

T

NI
T

T

NI
T T T T

T

E Z Cov Z ,Z Cov Z ,L T
a

Z
P

L T Cov Z ,L T E L T
a

Z

E Z Cov Z ,Z Cov Z ,L T
a .

Z

σ

σ

σ

σ

Φ

  ⋅ − −  
 − 
  
  =
 
 + ⋅ − ⋅
 − 
 

⋅ − −
−

ɶ ɶ ɶ

ɶ

ɶ

ɶ ɶ ɶ

ɶ

 (26) 

 

Hence, this premium 0PΦ  stands for the upper end of the premium agreement range in the 

case where the policyholder has, in addition to the life insurance contract, a second stochastic 

investment opportunity. 

 

4. CREATING CUSTOMER VALUE FOR FAIR CONTRACTS 

 

This section combines the two valuation approaches presented above so as to analyze how 

customer value can be maximized and, at the same time, ensure fair contract conditions for 

the insurer. 

 

The participating life insurance policy under investigation here has three features that affect 

the policyholder payoff. Even if contracts are calibrated to be fair according to Equation (11), 

the value to the customer (see Equations (20) and (26)) can differ substantially. From the in-

surer perspective, maximizing customer value 0PΦ  (hence the policyholder willingness to 

pay) is a worthwhile undertaking toward increasing the chances of obtaining a positive net 

present value on the insurance market. The corresponding optimization problem can be de-

scribed as follows: 

 

( ) ( )( )*
0 0

, ,
max , , .rT

g
Fair contract

Customer value under the risk neutral measure
under the real world measure

P such that P g e E L T
α δ

α δΦ −

−
−

→ = Π = ⋅
�����������������

�����

Q

Q
P

 (27) 
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Hence, for a fixed nominal premium P0, a fair parameter combination (g, α, δ) is chosen that 

leads to the highest customer value, while providing, at a minimum, risk-adequate returns for 

company’s equityholders. A higher customer value increases the premium agreement range 

and thus may enable the company to realize a higher rate of return for its equityholders. How-

ever, these optimal contracts may not comply with regulatory restrictions on minimum inter-

est rates or other legal requirements. We will consider this situation for the case of Germany 

in the numerical examples conducted in Section 5. 

 

We now use some specific model cases to demonstrate the procedure required by Equation 

(27). We focus on the case of deterministic wealth (see Section 3.2, Part A) and aim to derive 

explicit expressions for the customer value of fair contracts. The procedure is, in principle, the 

same for the case of stochastic wealth (Part B); however, derivation of explicit expressions is 

far more complex. 

 

For participating life insurance contracts with all three features, that is, g, α , and δ , the accu-

mulated policy reserve at maturity, ( ) ( ),P T f g α= , is a function of g and α. For a given g* 

and α*, the fairness condition in Equation (11) is satisfied if δ is given by 

 

( )( ) ( )0* * *,
rTP e E P T Put

h g
Call

δ α
−− ⋅ +

= =
Q

, (28) 

 

where ( ) ( )( )max ,0rTCall e E A T P Tβ−  = ⋅ ⋅ − 
Q  and Put  is a put option with value 

( ) ( )( )max ,0rTe E P T A T−  ⋅ − 
Q . In Equation (28), *δ  is a function of *g  and *α  (de-

noted by ( )* *,h g α ). Thus, ( )* * *, ,g α δ  represents a fair parameter combination that serves 

as a starting point for further calculation of customer value using Equations (20) and (26). Our 

final goal is to find a fair parameter combination that maximizes customer value as expressed 

by Equation (27). 

 

4.1 The general case 

 

For the case of deterministic wealth, we replace *δ  with the expression in Equation (28) and 

rewrite the second term in Equation (20)—the variance term—as 
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( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )
( )( )

2 2 *

* * * *

max ,0 max ,0

, , , .

L T P T A T P T P T A T

f g h g

σ σ δ β

α α

= + ⋅ ⋅ − − −

=
 (29) 

 

Hence, the variance of the policyholder payoff ( )L T  depends on the functions f and h. The 

customer value 0PΦ  under fair contract conditions is thus given by 

 

( )( ) ( )( )

( )( ) ( ) ( )
( ) ( )( )( )

2
0

* * * *

* * * * * *

2

, ,

, , , , ,
2

Φ −

−

−

 = ⋅ − ⋅  

= ⋅ + ⋅

− − ⋅ ⋅

rT

rT P

P rT

a
P e E L T L T

e E P T h g Call g

a
Put g e f g h g

σ

α α

α α α

 (30) 

 

where 

 

( ) ( )( )max ,0P rTCall e E A T P Tβ−  = ⋅ ⋅ −  ,  

    (31) 

( ) ( )( )max ,0P rTPut e E P T A T−  = ⋅ −  .  

 

Equation (30) shows that 0PΦ  is a function of *g  and *α only, since the fair *δ  is a function 

of these two parameters. Thus with δ  being replaced by the function ( )* *,h g α , *g  or *α  

can be increased and still satisfy the fairness constraint. 

 

Further, with an increasing risk aversion parameter a, 0PΦ  is decreasing if 

 

( )( )* * * *, , , 0>f g h gα α .   (32) 

 

The optimization problem in Equation (27) can be solved using the Lagrange method. If, for 

instance, the guaranteed interest rate is fixed by the regulatory authorities, the annual surplus 

participation parameter α that maximizes 0PΦ  is given by the implicit solution of the equation 

 

( )*
0

0
P g

α

Φ∂
=

∂
   (33) 
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if the second derivative is negative. The partial derivatives can also be used to see how cus-

tomer value will change when increasing or decreasing g or α given fair contracts. However, 

more general statements regarding the impact of each contract parameter cannot be derived 

due to the complexity of the expression. For instance, one cannot be sure that an increasing 

guaranteed interest rate will raise the customer value under fair contract conditions. This is 

likely to be the case only for certain intervals, which we will illustrate in numerical examples 

in Section 5. 

 

4.2 Contracts with one option 

 

Let us now consider the special case of contracts that contain only one of the three parame-

ters: either a guaranteed interest rate, or annual surplus participation, or terminal bonus. Our 

goal is to derive explicit expressions for willingness to pay for all three contract types and to 

see which of them generates the highest customer value. Furthermore, these simple types of 

contracts may generally imply a higher customer value than the more complicated contracts 

that include all three parameters. 

 

For simplicity, we assume that the equity capital is sufficiently high for a default put option 

value of approximately zero. This allows derivation of explicit expressions for each fair con-

tract parameter and for the customer value (for a detailed derivation, see Appendix B). 

 

Guaranteed interest rate 

 

For a contract that features only a guaranteed interest rate and does not include annual or ter-

minal surplus participation, i.e., g > 0, α = 0, δ = 0, we proceed as in the general case and first 

calibrate g to be fair under the risk-neutral measure Q , resulting in 

 

( )1
T* rTg e .+ =  (34) 

 

Given g*, we obtain the following expression for the customer value: 

 

( )*
0 0 01 .

TrTP e P g PΦ −= ⋅ ⋅ + =  (35) 
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This outcome is intuitive since this contract carries no risk. Therefore, the guaranteed interest 

rate must be equal to the risk-free rate in order to ensure no arbitrage possibilities. Hence, a 

policyholder would be willing to pay only the nominal value P0 for a contract that guarantees 

the risk-free rate. 

 

Annual guaranteed surplus participation 

 

Second, we examine a contract with annual guaranteed surplus participation and a money-

back guarantee that, at a minimum, returns the premiums paid into the contract, i.e., g = 0, α > 

0, δ = 0. In this case, the fair annual surplus participation rate is given by (see Equations (B5)-

(B8), Appendix B) 

 

( )
( ) ( )( )( )

0

1

1

1 0

rT

*

T
rT

i

P e

e E max A i A i ,
α

γ

−

−

=

⋅ −
=

 ⋅ ⋅ − − ∑ Q

. (36) 

 

The customer value for this fair *α  results in (see Equation (B9), Appendix B) 

 

( )
( ) ( )( )( )
( ) ( )( )( )

( )
( ) ( )( )

( ) ( )( )( )

1
0 0 0

1

2 1
0

1

max 1 ,0
1

max 1 ,0

max 1 ,0
1 .

2
max 1 ,0

T

rT rT i
T

i

T

rT rT i
T

rT

i

E A i A i
P e P P e

E A i A i

A i A i
a

e P e
e E A i A i

σ

Φ − − =

=

− − =

−

=

 − − 
= ⋅ + ⋅ − ⋅

 − − 

 
 − −  

 − ⋅ ⋅ ⋅ − ⋅
  ⋅ − −  
 

∑

∑

∑

∑

Q

Q

 (37) 

 

Terminal bonus payment and money-back guarantee 

 

We finally consider a contract with a terminal bonus payment and a money-back guarantee, g 

= 0, α = 0, δ > 0. Similar to the previous case, the fair terminal surplus participation rate is 

(see Equation (B14), Appendix B) 
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( )
( )( )( )

0

0

1

0

rT

*

rT

P e

e E max A T P ,
δ

β

−

−

⋅ −
=

⋅ ⋅ −Q
. (38) 

 

Inserting this participation rate into the customer value formula yields (see Equation (B15), 

Appendix B) 

 

( ) ( )( )( )
( )( )( )

( ) ( )( )
( )( )( )

0

0 0 0

0

02
0

0

max ,0
1

max ,0

max ,0
1 .

2 max ,0

rT

rT rT

rT

rT rT

rT

e E A T P
P e P P e

e E A T P

A T Pa
e P e

e E A T P

β

β

β
σ

β

−
Φ − −

−

− −
−

⋅ ⋅ −
= ⋅ + ⋅ − ⋅

⋅ ⋅ −

 ⋅ −
 − ⋅ ⋅ ⋅ − ⋅

⋅ ⋅ −  

Q

Q

 (39) 

 

We can reformulate Equation (39) by using the fact that 

 

( ) ( )( )( ) ( ) ( )( )
1

max 0 ,0 max 1 ,0
T

rT rT

i

e E A T A e E A i A iβ β− −

=

 ⋅ ⋅ − = ⋅ ⋅ − − 
 
∑ . (40) 

 

However, even though 

 

( ) ( )( ) ( ) ( )
1 1

max 1 ,0 max 1 ,0
T T

i i

E A i A i E A i A i
= =

    − − ≥ − −   
    
∑ ∑ , (41) 

 

a general ranking between, e.g., Equations (37) and (39) cannot be derived due to the ratios of 

expected values under the real-world and risk-neutral measures contained in these equations. 

For the same reason, they cannot be explicitly compared to Equation (35) for the contract with 

a guaranteed interest rate only. It is not clear whether the customer values of the fair contracts 

with annual or terminal surplus participation are below or above the premium P0 and thus pre-

ferable compared to a contract that contains only a guaranteed interest rate. However, we be-

lieve the explicit formulas in Equations (35), (37), and (39) to be useful for practical imple-

mentation, as numerical inputs will deliver comparable results. 
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5. NUMERICAL EXAMPLES  

 

This section illustrates application of the explicit formulas derived in the previous section 

using numerical examples. In particular, we demonstrate how contract parameters in a partici-

pating life policy can be adjusted to lead to fair contracts and, at the same time, increase cus-

tomer value. 

 

Input parameters 

 

Until otherwise stated, we use the following input parameters as the basis for all our numeri-

cal analyses. The case considered reflects the condition of the German market; however, the 

analysis can easily be adjusted to meet conditions prevalent in other countries. 

 
r = 4.5%, µΑ = 7%, σΑ = 6%, P0 = 100, Eq0 = 30, γ = 50%, T = 10. 

 

The assets of the insurance company ( )A t  are invested in a portfolio with mean annual return 

of 7% ( )Aµ= , and a standard deviation of the annual return of 6% ( )Aσ= ; the risk-free 

interest rate r is set to 4.5%. Further, the fair premium and thus the starting value of the poli-

cyholder account is set to 100 ( )0P= . The contribution of the equityholders is set to Eq0 = 

30. As in Kling, Richter, and Ruß (2007), the relation of book to market values, which at the 

same time is an (inverse) flexibility parameter for the insurance company to build up hidden 

reserves, is set to γ  = 50%. The input parameters reflect a high safety level for the insurance 

company. Numerical results are derived using Monte Carlo simulation, where necessary, on 

the basis of 100,000 simulation runs. 

 

Currently, e.g., German regulations concerning policy reserves require a minimum annual 

interest rate of 2.25% until maturity ( )g=  for all German life insurance contracts issued after 

January 2007. Furthermore, German law generally ensures that at least 90% of the investment 

earnings on book values are credited to the policyholder account ( )α . In the base case, we 

use these preset parameters and calculate the terminal surplus participation rate ( )δ  such that 

the fairness condition of Equation (11) is satisfied. Hence, the present value of the policy-

holder payoff is equal to the initial nominal premium of *Π  = 100. This is achieved by setting 

δ = 68%. 
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Table 1 contains numerical results for the cases of deterministic and stochastic wealth. The 

left part of the table displays parameter combinations that lead to a fair contract value of 
*Π  = 100 (fair premium from the insurer perspective in order to achieve a risk-adequate re-

turn). To provide an indication of the risk associated with the contracts, we list the corres-

ponding default put option value (DPO) and the shortfall probability. The right part of the 

table contains the corresponding customer value based on the policyholders’ mean-variance 

preferences for the case of deterministic (first column in the right part) and stochastic wealth 

(second to seventh column in the right part). Customer values are calculated using the expres-

sions in Equations (20) and (26). 

 

Panel A of Table 1 displays the base case, i.e., the contract satisfying regulatory restrictions. 

For better comparison, we adjust the risk-aversion parameter a such that the customer value in 

this base case is equal to the fair policy price of 100 ( )*
0PΦ= = Π . Thus, we start the analysis 

with standardized parameters. For the cases of deterministic and stochastic wealth, these val-

ues are given by a = 0.0685 and a = 0.0105, respectively. In all examples, we first calibrate 

contract parameters to have the same fair value from the insurer perspective using risk-neutral 

valuation. Second, we calculate the corresponding customer value for these contracts by using 

the explicit expressions for deterministic and stochastic wealth derived in the previous sec-

tions. 

 

Table 1 illustrate the different values of the contracts to a risk-averse customer with mean-

variance preferences, even though all contracts in the left column have the same fair value 

( )*Π  of 100 for the insurer. In particular, the customer value varies substantially, i.e., con-

tracts can be designed such that policyholder willingness to pay considerably exceeds the 

minimum premium required to achieve a risk-adequate return on equity. 
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Table 1: Fair contracts and corresponding customer value for deterministic and stochastic wealth. 
Fair contract parameters (insurer perspective) Customer value 0PΦ  (policyholder perspective) 

Guaranteed 
interest rate (g) 

Terminal 
participation 

rate (δ) 

Annual 
participation 

rate (α) 

*Π  DPO 
Shortfall 

probability 

Part A: 
deterministic 
(a = 0.0685) 

Part B: 
stochastic 

(a = 0.0105) 
ρ = 0.9 σΖ = 8% σΖ = 4% Z0 = 200 a = 0.0685 

Panel A: Contract with regulatory restrictions:          
2.25% 68% 90% 100 0.06 0.02% 100.0 100.0 96.6 106.7 95.5 104.2 133.7 

             
Panel B: Simple contracts with one parameter only:          

4.56% 0% 0% 100 1.07 0.69% 100.9 85.4 85.3 91.7 81.3 89.0 133.8 

0.00% 99.89% 0% 100 0.06 0.02% 96.5 104.1 100.3 110.9 99.5 108.4 130.6 

0.00% 0% 130% 100 0.14 0.09% 101.3 99.9 96.7 106.7 95.5 104.1 134.7 
             
Panel C: Maximizing customer value:          

1.00% 0% 123% 100 0.02 0.01% 102.4 98.6 95.6 105.3 94.2 102.7 135.7 
 40% 117% 100 0.02 0.01% 100.8 99.9 96.6 106.6 95.5 104.1 134.3 
 80% 101% 100 0.01 0.00% 98.3 101.9 98.3 108.7 97.4 106.1 132.0 

2.00% 0% 113% 100 0.07 0.03% 103.5 96.9 94.1 103.5 92.5 101.0 136.6 
 40% 105% 100 0.06 0.02% 101.8 98.7 95.5 105.4 94.2 102.8 135.1 
 80% 85% 100 0.04 0.01% 98.8 101.3 97.7 108.0 96.8 105.5 132.5 

3.00% 0% 99% 100 0.18 0.08% 104.3 94.6 92.2 101.2 90.2 98.5 137.3 
 40% 89% 100 0.15 0.06% 102.9 97.0 94.1 103.6 92.5 101.0 136.1 
 80% 58% 100 0.11 0.04% 99.6 100.2 96.8 106.9 95.7 104.4 133.2 

4.00% 0% 77% 100 0.47 0.26% 104.3 91.0 89.3 97.4 86.7 94.8 137.2 
 40% 58% 100 0.42 0.22% 104.2 94.0 91.6 100.5 89.6 97.9 137.2 
 50% 47% 100 0.41 0.21% 104.0 94.6 92.2 101.2 90.3 98.6 137.1 

4.30% 0% 67% 100 0.62 0.39% 103.7 89.3 88.1 95.7 85.1 93.0 136.9 
 10% 62% 100 0.61 0.39% 104.1 90.0 88.6 96.5 85.8 93.8 137.2 
 30% 45% 100 0.60 0.37% 104.6 91.3 89.6 97.8 87.1 95.1 137.6 

4.40% 0% 62% 100 0.69 0.42% 103.3 87.7 87.5 95.0 84.4 92.3 136.6 
 25% 37% 100 0.67 0.38% 104.4 88.3 88.6 96.4 85.7 93.7 137.5 

 27% 9% 100 0.67 0.38% 104.7 90.1 88.8 96.6 85.9 93.9 137.7 
4.50% 0% 56% 100 0.76 0.45% 102.8 87.7 86.9 94.1 83.6 91.4 136.2 

 15% 39% 100 0.75 0.42% 103.6 88.4 87.4 94.8 84.2 92.1 136.8 
 17% 26% 100 0.75 0.42% 103.7 - - - - - 136.9 
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Part A: Numerical results for deterministic wealth of policyholder 

 

We look first at the results for the case of deterministic wealth. As mentioned above, the risk-

aversion parameter for this case is set to a = 0.0685 so that the customer value 0PΦ  will be 

equal to the fair premium P0 = 100 in Panel A of Table 1. When considering fair contracts 

with only one of the three contract parameters (g, α, δ)—as discussed in Section 4—we find 

that the customer value can be increased above this level (see Panel B of Table 1). In particu-

lar, the highest value for deterministic wealth (0PΦ  = 101.3) among the three simple contracts 

is achieved when offering a contract with an annual surplus participation rate and a money-

back guarantee (g = 0%) only. To ensure fair contract conditions, this fair annual rate even 

exceeds 100%. A contract with a guaranteed interest rate on the premium paid is also more 

valuable to a customer with mean-variance preferences than the fair contract that complies 

with regulatory restrictions (Panel A of Table 1). In particular, this result demonstrates that 

the premium agreement range can be increased by freely adjusting contract parameters with 

the aim of maximizing customer value while continuing to keep the contracts fair from the 

insurer perspective. 

 

To illustrate this process, Panel C in Table 1 contains customer values for different choices of 

g, α, and δ. As discussed in Section 4, the results show that customer value is a complex 

function of these three parameters. For lower fixed values of g (1%, 2%, 3%, 4%), customer 

value is highest if the terminal bonus participation rate is zero. At the same time, customer 

value is increasing with increasing guaranteed rate. This pattern changes, however, when the 

guaranteed rate approaches the risk-free rate. Here, policyholders prefer higher terminal bonus 

with low annual surplus participation. The highest customer value in the examples considered 

is obtained for g = 4.4%, α = 5%, and δ = 27%. However, this combination represents maxi-

mum customer value regarding fair contracts only for these numerical examples. Since there 

are in general an infinite number of parameter combinations leading to one specific fair con-

tract value, analyzing a larger set of contracts may lead to a further increase in customer 

value. 

 

Part B: Numerical results for stochastic wealth of policyholders 

 

Next, the case of stochastic wealth is considered. Here, we assume that the drift and volatility 

of the investment open to the policyholders are given by 7Z %µ =  and 6Z %σ = , which are 
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the same parameters applicable to the policyholder account. For simplicity, we start by as-

suming that policyholder and insurer investments are uncorrelated ( )0ρ =  and then consider 

the case of positively correlated cash flows ( )0 9.ρ = . Results are exhibited in Part B of the 

right-hand side customer value area in Table 1. In contrast to the case of deterministic wealth, 

we now find the maximum customer value of 0PΦ =104.1 for a simple contract with a terminal 

bonus participation rate only. 

 

For a positive correlation coefficient of 0.9 between the payoff from the life insurance con-

tract and insurer investments, customer value is reduced compared to the contract with uncor-

related cash flows. This is due to a lower diversification effect achieved when investing in the 

life policy. A higher volatility of the wealth process Z of 8Z %σ =  makes (ceteris paribus) 

the less volatile life insurance contract ( )6A %σ =  more attractive from the policyholder 

perspective and, hence, 0PΦ  is increasing. The opposite is observed for a lower wealth process 

volatility of 4Z %σ = . We further find that a higher initial wealth of 200, compared to 150, 

increases the customer value of the contract. In addition, if the risk-aversion coefficient is the 

same as in the case of deterministic wealth (a = 0.0685), customer value increases substan-

tially. However, the differences in customer value for different fair parameter combinations 

are quite small for a = 0.0685. 

 

Overall, we find that restrictions on contract parameters can––at least in our model setup––

seriously depress customer value. The extent of the loss in utility depends on the preference 

function of the policyholders. 

 

6. SUMMARY AND POLICY IMPLICATIONS  

 

Most literature on participating life insurance focuses on pricing from the insurer perspective 

and does not take into consideration how policyholders might value the contract. In this paper, 

we examine how insurers can generate customer value for participating life insurance con-

tracts by combining their perspective with that of the policyholders. Participating life insur-

ance contracts feature a minimum interest rate guarantee, a guaranteed annual participation in 

the surplus generated by the asset portfolio of the insurer, and a terminal bonus. In this paper, 

customer value is defined as policyholder willingness to pay and is calculated based on mean-

variance preferences. We compare the cases of policyholders with deterministic wealth and 

those with stochastic wealth, i.e., with and without diversification opportunities and derive 
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closed-form solutions for selected cases of fair contract combinations and customer value. 

 

For the insurer, we assume that the preference-free approach of risk-neutral valuation is used 

(hence, cash flows of an insurance contract can be replicated by means of assets traded on the 

capital market). We combine customer value and the insurer’s valuation by first calibrating 

contract parameters so that all contracts have the same fair risk-neutral value from the insurer 

perspective. In the second step, we derive explicit expressions for the customer value of these 

same contracts. 

 

Our findings show that customer value varies substantially, even though all contracts have the 

same value from the insurer perspective. The results suggest that customer segmentation (in 

this sense) is a viable tool for increasing insurer profit and achieving a shareholder return 

above the risk-adequate rate. If insurers know how particular segments of the customer popu-

lation value the financial part of the contracts, they can design contracts (by adjusting the 

guaranteed interest rate and/or annual and terminal surplus participation rate) to specifically 

increase customer value compared to standard contracts. In particular, preferred contracts may 

be simple contracts with, e.g., only one of the three parameters, as illustrated by our numerical 

example for stochastic policyholder wealth. For instance, a change from the regulatory para-

meter combination to the case with terminal participation rate increases customer value by 

approximately 4%, given our input assumptions. 

 

Depending on the respective preferences, customer value may be even further increased for 

higher default put option values (or shortfall probability). Hence, policyholders may prefer a 

fair product parameter combination that is associated with higher shortfall risk but are simpler 

by only including one contract parameter, for instance. Future steps in the customer value 

analysis should take behavioral aspects into consideration. If the safety level is a main deci-

sion variable for policyholders, results may differ and default put option values could have a 

much more negative impact on customer value. 
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APPENDIX A 

 

Derivation of the customer value given the case of stochastic wealth 

 

In the following, explicit expressions of customer value in the case of stochastic wealth are 

derived. 

 

( ) ( ) ( ) ( )( ) ( )( )2 2

2 2
NI NI WI WI

T T T T

a a
Z Z Z E L T Z L Tσ σΕ − ⋅ = Ε + − ⋅ +  
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0 0

2 2
NI WI

T T T

a a
P E Z E L T Z Z L Tσ σΦ⇔ ⋅ − − ⋅ + ⋅ + =ɶ , (A1) 

 

with 
 

( ) ( ) ( )( )2exp / 2 0T Z Z Z Z ZZ T W T Wµ σ σ = − ⋅ + ⋅ − 
ɶ . 

 

Calculation of the last variance term in Equation (A1) leads to: 
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Replacing the variance term in Equation (A1) with the result derived in Equation (A2) leads 

to 
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APPENDIX B 

Derivation of formulas in Section 4.2 (Contracts with one option—deterministic wealth) 

 

i) g > 0, α = 0, δ = 0. 

 

In this case, we have 

 

( ) ( ) ( ) ( ) ( ) ( )0 1
T

L T P T B T D T P T P gδ= + ⋅ − = = ⋅ + , (B1) 

 

and that the contract is fair if 

 

( )( ) ( )0 0 1
TrT rT *P E e L T e P g− −= ⋅ = ⋅ +Q . (B2) 

 

Hence, from the insurer perspective, the fair guaranteed interest rate satisfies 
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( )1
T* rTg e+ = .  (B3) 

 

For the customer value, Equation (20) implies that 
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0 0 0
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1 1
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− −

− −
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= ⋅ ⋅ + = ⋅ ⋅ =

 (B4) 

 

ii)  g = 0, α > 0, δ = 0. 

 

For the policy reserves, one obtains 

 

( ) ( ) ( ) ( ) ( )( ) ( )
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α γ

α γ

α γ α γ

α γ
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 (B5) 

 

For the payoff to the policyholder, the money-back guarantee is added, leading to 

 

( ) ( ) ( ) ( ) ( ) ( )( )0
1

1 0
T

i

L T P T B T D T P max A i A i ,δ α γ
=
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The insurance contract is fair, if 
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∑

Q Q

Q

 (B7) 

 

which implies a fair annual surplus participation rate of 
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The customer value for the fair α* results in 
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 (B9) 

 

The formula shows that the ratio of the sum of the value of ( ) ( )( )max 1 ,0A i A i − −   under 

the real-world measure P  and under the risk-neutral measure Q  is an important factor in 

determination of customer value. 

 

iii)  g = 0, α = 0, δ > 0. 

 

For the policy reserves, we adjust the up-front premium and the terminal bonus accordingly: 
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( ) ( ) ( ) ( ) ( )( ) ( ) 01 1 1 1 0P t P t g max A t A t g P t , Pα γ = − ⋅ + + ⋅ ⋅ − − − ⋅ − =   (B10) 

 

( ) ( ) ( )( ) ( )( )00 0B T max A T P T , max A T P ,β β= ⋅ − = ⋅ − . (B11) 

 

Therefore, the policyholder payoff is given by 

 

( ) ( ) ( ) ( ) ( )( )0 0 0L T P T B T D T P max A T P ,δ δ β= + ⋅ − = + ⋅ ⋅ −  (B12) 

 

and the contract is fair, if 
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Hence, 
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The customer value is given by 
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