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CREATING CUSTOMER VALUE IN PARTICIPATING LIFE INSURANCE

Nadine Gatzert, Ines Holzmiuller, Hato Schméiser

ABSTRACT

The value of a life insurance contract may diffepending on whether it is looked at from the
customer’s point of view or that of the insuranocenpany. We assume that the insurer is able
to replicate the life insurance contract's cashvfiozia assets traded on the capital market and
can hence apply risk-neutral valuation techniqdéd® policyholder, on the other hand, will
take risk preferences and diversification oppottesiinto account when placing a value on that
same contract. Customer value is represented hgypolder willingness to pay and depends
on the contract parameters, i.e., the guarantderest rate and the annual and terminal surplus
participation rate. The aim of this paper is tolgr® and compare these two perspectives. In
particular, we identify contract parameter comborag that—while keeping the contract value
fixed for the insurer—maximize customer valueadidition, we derive explicit expressions for
a selection of specific cases. Our results sugbast customer segmentation in this sense, i.e.,
based on the different ways customers evaluatengerance contracts and embedded invest-
ment guarantees while ensuring fair values, is hvartle for insurance companies as doing so
can result in substantial increases in policyholdéingness to pay.

Keywords:Participating life insurance, risk-neutral valuati@eustomer value, mean-variance
preferences
JEL classificationD46; G13; G22; G28

1.INTRODUCTION

Participating life insurance contracts generallgtdiee a minimum interest rate guarantee,
guaranteed participation in the annual return ef ittsurer’s asset portfolio, and a terminal
bonus payment. Appropriate pricing of these featusecrucial to an insurance company’s
financial stability. Risk-neutral valuation and ethpremium principles based on the duplica-
tion of cash flow serve well to evaluate contrdcten the insurer's perspective. However,

these techniques are only relevant, if insurandecips priced according to them actually
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meet customer demand. Since policyholders may aocalide to duplicate their claims via
capital market instruments for valuation purposhsy will often judge its value based on
individual preferences. Thus, their willingnesspty—referred to here as “customer value”
of the contract—may be quite different from th& faemium calculated by the insurance
company. The aim of this paper is to combine tlsaii@r's perspective with that of the poli-
cyholders, which is done by identifying those faontract parameters (guaranteed interest
rate and annual and terminal surplus participatae) that, while keeping the fair value fixed

for the insurer, maximize customer value.

We extend previous literature by combining these approaches; however, there is a fair
amount of previous research on each individualgemtsve. From the insurer perspective, the
relevant area is option pricing theory and its agapion to participating life insurance con-

tracts. Among this literature, we find in partiauBriys and de Varenne (1997), Grosen and
Jargensen (2002), Bacinello (2003), Ballotta, Hadzer, and Wang (2006), and Gatzert
(2008). All these papers use option pricing modelsletermine the price of life insurance

policies, but their objectives are various. Briyglade Varenne (1997), for example, use a
contingent claims approach to derive prices far iifsurance liabilities and to compare the
durations of equity and liabilities in the insuranand banking industries, respectively. In
contrast, Gatzert (2008) analyzes the influencassket management and surplus distribution

strategies on the fair value of participating liisurance contracts.

From the policyholder perspective, the literatureutility theory and, in particular, on the
demand for insurance, is relevant. In our paper,démand for insurance is derived by as-
suming that the policyholders follow mean-variapceferences, a common assumption in the
literature. For example, Berketi (1999) assumesmweaaiance preferences in an analysis of
insurers’ risk management activity, finding thahaligh such activity does reduce the risk of
insolvency, it also reduces the expected paymentiset policyholders when considering par-
ticipating life insurance contracts. Berketi (192@plies a mean-variance framework to ana-
lyze policyholder preferences with regard to thaestvities, but does not derive their willing-
ness to pay. Various other research has been cmadtacanalyze the demand for insurance
by corporate entities (see, e.g., Mayers and Srh@82; Doherty and Richter, 2002; Doherty
and Tinic, 1981). Generally, demand for insuranggetds not only on an individual’s prefe-
rences, but also on the person’s economic situafienordingly, Mayers and Smith (1983)

examine insurance holdings as one of many intee@lportfolio decisions. Inspired by this
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paper, Showers and Shotick (1994) conduct an ecapianalysis and verify the interdepen-
dence between individuals’ demand for insurancehrenehold characteristics (e.g., income,
number of family members, number of working famigmbers). Ehrlich and Becker (1972)
combine expected utility theory with consumptioedhy and analyze substitution effects. In
particular, they examine the relationship betwaeuiliance, self-insurance (reduction of the
loss extent), and self-protection (reduction ofltyes probability). To account for the findings
of this research, we consider the special caseninhathe policyholder’s wealth develops sto-
chastically and thus there are diversification oppaties between the private wealth and

investment in a life insurance contract.

However, our approach can as well be extended pptied based on different preference
models such as prospect theory used by Wakkeref,hrahd Tversky (1997), developed by
Kahneman and Tversky (1979), to explain experimatdta on the demand for probabilistic
insurance. Probabilistic insurance is a type ofiiasce policy that indemnifies the policy-

holder with a probability only strictly less thameodue to the insurer's default risk. Recent
experimental research on demand for insurance uwhefault risk includes Zimmer, Schade,
and Griandl (2009), who show that awareness of eveery small positive probability of in-

solvency hugely reduces customer willingness to pay

In this paper, we combine the insurer and policgapliewpoints in the context of partici-
pating life insurance contracts. The insurer cotslpreference-independent) risk-neutral
valuation and arrives at the fair price of the nasice contract. This fair price is the minimum
premium the insurance company needs to chargeder dor its equityholders—who could
also and simultaneously be policyholders—to recaivesk-adequate return on their invest-
ment. Policyholders, who generally cannot duplicash flows to the same extent as the in-
surance company, possibly will not base their dexisn risk-neutral valuation. Instead, it is
likely that their willingness to pay depends onithedividual degree of risk aversion and, in
our model, is thus based on mean-variance prefeser@n this basis, we are able to derive
explicit expressions for policyholder willingnessgay and analyze its sensitivity for changes

in the payoff structure of the participating lifesurance policy.

Our findings show how an insurance company carr @itdéicy characteristics to increase
customer value, while, at the same time, keepiegfdéir premium value fixed. Furthermore,

we investigate whether existing regulatory speatfans regarding the design of participating
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life insurance contracts actually fulfill their ertded purpose of protecting policyholder inter-
ests. If, by disregarding those specifications, itfteirance company can increase customer
value, this justification comes into doubt. Ourdimgs are relevant for both the insured and
insurance companies, who may be able to realizmipres above the fair premium level by
increasing policyholder willingness to pay. Takitng lead from Mayers and Smith (1983),
Showers and Shotick (1994), and Ehrlich and Be¢k872), we also aim to investigate the
effects on insurance demand when policyholder basilth is stochastic and the policy-

holder thus has diversification possibilities.

The remainder of this paper is organized as follawsSection 2, the basic setting is intro-
duced. In Section 3, we present the valuation ghaess employed by the insurer and by the
policyholders. Keeping the fair (from the insurgparspective) premium value fixed, we op-
timize customer value in Section 4. Section 5 mtesinumerical examples. Selected policy

implications and a summary are found in Section 6.
2.BAsIC SETTING

We analyze participating life insurance contraatsilar to those offered in many European
countries, including Germany, Switzerland, the BaiKingdom, and France. The insurance
company'’s initial assets are denoted Ay. At inception of the contract, policyholders pay a
single up-front premiumP, (:,BD%) and the insurance company equityholders make an
initial contribution of Eq, (= (1~ 8) () . Here, 3=P,/ A, can be considered as the leve-
rage of the company. The total value of initial m@ynts A, = P, + Eq, is then invested in the
capital market, which leads to uncertainty aboatwhlue of the insurer's assef{t) at time
t=1,2,...,T whereT denotes the fixed maturity of the contract(s). iHgwthe assets follow a
geometric Brownian motion captures this uncertaitbyder the real-world measui®, this

stochastic process is characterized by giftand volatilityo, leading to

A(t) = A(t=1)Cexd 1, ~o,” 12+ a(W,()-W,(t )], (1)

A(0) = A = R +Eg, )
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whereW, is a standardP -Brownian motion. In the case the insurer is saiartimet = T,

the asset®\(T) should exceed the liabilities to the policyhokleFhe amount of liabilities at
maturity T is determined by three parameters. The firstgaaranteed minimum annual inter-
est rateg regarding the policyholder reserves. In severabgean countries, this minimum
interest rate is determined by law and changedogieally—depending on capital market

conditions.

The second parameter is the annual surplus distiibuate a. In general, this rate is regu-
lated, too, similar to the minimum annual intereste (e.g., Germany, Switzerland, and
France). Hence, in the case of positive marketldpweents, the policyholders participate in
the insurer’'s investment returns above the guaednieterest rate. The participation rate is
applied to earnings on book values, which can diffansiderably from earnings on market
values. We therefore introduce a constant paramet@s is done in Kling, Richter, and Rul3
(2007), to capture the difference between bookraadket values. In this sense, the fagtor
also serves as a smoothing parameter as it allosvgrxsurance company to build up reserves
and thus to even out policyholder payments betweams of “low” and “high” investment

returns. The parametgtakes values between 0 and 1.

The third contract parameter is the optional teahsurplus bonu®. This terminal bonus is
not guaranteed, but is optionally credited to tbecgholder account according to the initial
contribution rate5 = P,/ A, at maturity. As we are mainly interested in theaficial risk
situation, we do not take early surrender and deitio account. Under the assumption that
mortality risk is diversifiable, it can be dealttlviusing expected values when writing a suffi-
ciently large number of similar contracts. Howewee presume that any additional options
are priced adequately and paid for separately. ,Tthes policyholder accounP(t) in our

model is as follows:

P(t) = P(t-1) {1+ g)+ maxa i A }- A t1)- @+ 0, 3)

where P(0) = B andy is the relation of book value to market value. Titerest rate and
the annual participation payment are locked in gear and thus become part of the guaran-
tee (so-called cliquet-style guarantee). The teairfionus is given by a fractiodiof B(T),

where



B(T)=ma{S0A )- § 7). (4)

The total payoff to the policyholder at maturiLy(T) thus consists of the policyholder’'s
guaranteed accumulated accouﬁ(T)—including guaranteed interest rate payments and
annual surplus participation—as well as an optideaiinal surplus participation payment
d[B(T). The policyholder will receive the guaranteed gaypaly if the insurance company

is solvent at maturity, i.e., if the market vaqueassetsA(T) is sufficient to cover the
guaranteed maturity payoffP(T). If the company is insolventP(T)> A(T)—
policyholders receive only the total market valdighe insurer’s assets. Hence, the expected

cost of insolvency is represented by the defautioption D (T):

D(T)=ma{ H T)- 47 0). (5)

The default put option is deducted from the polalgder claims (see, e.g., Doherty and
Garven, 1986), leading to a total policyholder ﬁaylb(T) , with

L(T)=P(T)+otB(T)- O(T). (6)

The insurance company equityholders have limitelility, which means that they either re-
ceive the residual difference between the markaievaf the assets and the policyholder

payoff at time t = T or, in the case of insolvenegthing:
Eq(T)= A(T)- UT)= mag £ T~ P JO)-o0 B ) (7

The first term on the right-hand side of Equati@hrepresents a call option on the insurer’'s

assets with strike pricE’(T) , which illustrates the equityholders’ limited liaty.



3. VALUATION FROM THE PERSPECTIVE OF |NSURERS ANDPOLICYHOLDERS

We now turn to the valuation and determination af premiums, which will be different,
depending on the perspective taken—policyholdensurer (equityholder). Since we believe
that policyholders generally cannot duplicate cieivs to the same extent as can an insur-
ance company, their valuation and thus their wgitiess to pay for the contract depends on
individual preferences. In this paper, policyholdgtlingness to pay is referred to as the
“customer value” of the insurance contract. From itisurance company point of view, we
assume that claims are replicable in order to éefaur (or minimum) premiums. Thus, a pre-
ference-free valuation approach, for a given comuioom of the parameters a, andg, can be
applied to provide a risk-adequate return for thengany’s equityholders. If the customer
value exceeds the minimum premium derived, we obégipositive premium agreement
range. If this range is negative, it is not likéiye contract will be bought by this particular

policyholder.

3.1 Insurer perspective

Assuming an arbitrage-free capital market, thengisavaluates claims under the risk-neutral
measureQQ . UnderQ, the drift of the asset process changes fggmto the risk-free interest

rater,

A(t) = A(t-1)Cexd r-o® / 2+a (W2 (1) - W2 (t 3) ] ®)

whereWAQ is a Q -Brownian motion. The values of the policyhol((é'rl D) and the equity-

holder claims(l'l E) under the risk-neutral measure are then given by:

n"=e™E2(LT))
=M -nP®

e" DE[( R J+o08 §)]- €0 O ) ©

and

n°=e e (1) a0
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An up-front premiumP, is called “fair” if it equals the market value thle contract under the

risk-neutral measure at tinie= 0. This is expressed as

n =p, (11)

which, due to no arbitrage, is equivalent to savin

Ne = Eq,. (12)

The value of the policyholder claim is determingdiioe guaranteed interest ratehe annual
surplus participatiorr, and the terminal bonud Keeping all else equal, a decrease in any
one of the three parameters — e.g.g ef decreases the fair contract vaIUé(g a ,5) <RB.
However, by increasing the remaining parameters this exampleg, J, or both — the value

of the contract can be kept constanflat= P,. Hence, there are in general an infinite number
of contract specifications that all have the samie ¥alue but, because of their different
payoff structures, will vary in the degree to whitlicyholders find them attractive, that is,

each variant, although of equal value to the insunay have a different customer value.

Any fair premium provides a net present value ofozéor the insurance company
equityholders. The fair premiur, thus provides the lower end of the premium agregme

range.
3.2 Policyholder perspective

The upper end of the premium agreement range &rdeted by policyholder willingness to
pay, denoted b)F{f’. Assuming mean-variance preferences (see, e.tke3e1999; Mayers
and Smith, 1983), the policyholder’s order of prefees under the real-world measites
given by the difference between expected wealththed/ariance of the wealth multiplied by
the policyholder’s individual risk aversion coef@ata (times one-half; see, e.g., Doherty and
Richter, 2002):

®=E(2)-J W (Z). (13)
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Here,Zr denotes the policyholder's wealth at maturity. finecedure and analyses can ana-

logously be applied based on other preference rmodel

To determine policyholder willingness to pay, wangare the preference function for the
case of no insuranc&ll) to the one with insuranc&\) (see Eisenhauer, 2004). The maxi-
mum willingness to pay is exactly the price at vihtbe customer becomes indifferent be-

tween the two cases:

O = N (14)
with
o' =E(z")-S 1w (2") (19)
and
oM =E(Z"+ L(T)) =S w? (2" + L(T)). (1)

The policyholder’s initial wealth is denoted hy,, where Z, >0. In the case without
insurance,Z)" = Z,. Alternatively, Z;" = Z,— P’. The remainder of the initial wealth is
either compounded with the risk-free interest r@tethe policyholder has no chance to
diversify) or is invested in a stochastic portfo(ice., the policyholder can diversify). We

distinguish between these two cases below.
Part A—Deterministic wealth of policyholder

In the case of deterministic wealth, the policyoldnust choose between investing in the
risk-free asset or using at least part of the Wwealtpurchase the life insurance contract. If the
policyholder invests all the wealth in the riskdravestment opportunity, his or her future
wealth is given byZOéT. If the policyholder decides to purchase life mace, initial wealth

is reduced by the premium he or she is wiling tay,pP’, ie., Z)' =Z,—- P°.
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Furthermore, a variance term is deducted from tleépence function to account for the risk

associated with the life insurance policy’s paybaak the two cases, the following holds:

oM :Zo@ﬂ a7
and
" =E((z,- B°) 0 + L(ﬂ)—%ﬂfz((%- F)OE+ (7). (18)

According to Equation (14), the policyholder solves
2,7 =(2,- )0¢ + & (9)-J°( (7). (19
Hence, maximum willingness to pay does not depenithe policyholder’s initial wealth:

A =e D E(1()- S (1) @

Part B—Stochastic wealth of policyholder

Following Mayers and Smith (1983), who emphasizeitheraction between demand for in-
surance and other portfolio decisions, we introdaigtochastic investment opportunity. The
policyholder may now invest his or her total inlitieealth at timet = 0 in the stochastic asset
process, or use parts of it to purchase life instga We assume that the stochastic asset
process of the investment opportunity evolves alingrto a geometric Brownian motion
with drift £, and volatility g,. Under the objective measui®, W, —in analogue to the
assets process of the insurance company—is a staifd&rownian motion. Development of

the investment opportunity is thus given by

Z(t)=Z(t-1)exp 4, ~0,° 12+ 0, (W, () - W(t )], (21)
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with Z(0)=2Z" (with insurance) orZ(0)= Z," (no insurance). Furthermore, the two
Brownian motions of the insurer’s asset procé@) and the private investment opportunity

Z (t) are correlated with a constant coefficient of etationp,

dW, dw, = p dt (22)

As before, if the policyholder chooses not to passh life insurance, the initial investment
sum equals the initial wealtﬁzg“' = ZO). If the policyholder decides to take out an insee
contract, his or her investment sum equals thaintealth reduced by a premium payment,
z"'=2,-P°.

Again, the policyholder's marginal willingness t@yp F{f’ is derived by comparing the

policyholder’s preference function for the casehwdind without insurance (see Equations
(14)—(16)). The policyholder thus solves

E(ZTNI)_%w_Z(ZTNI): ( Wi L(T)) wz( yALE L('l)) 23)
with

2y =2,-R' =2 -F

and (24)

-exp[ 1T+, W, (T V\é(())]. (25)

which can be rewritten a&, " :(ZON' - F(’)‘I’) [Z., and Z,"' = Z,"' [Z, . Solving Equation
(23) leads to an explicit formula for policyholdeillingness to pay, hence for the customer

value ( F{f") of the life insurance contract (see Appendix Atfar detailed derivation):
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LE(2,)-cof 2 7)- cof 7 (1)
o - UZ(ZT) )
o (L(T))+2Co 2" . 7))~ 20 | )
) O'Z(ZT)

(26)

|

E(Z)-Co( 2" Z)- CofZ .L )
JZ(ZT) '

Hence, this premiurTPoq’ stands for the upper end of the premium agreemsrge in the
case where the policyholder has, in addition tolifeansurance contract, a second stochastic

investment opportunity.
4.CREATING CUSTOMER VALUE FOR FAIR CONTRACTS

This section combines the two valuation approaghresented above so as to analyze how
customer value can be maximized and, at the same #nsure fair contract conditions for

the insurer.

The patrticipating life insurance policy under ingation here has three features that affect
the policyholder payoff. Even if contracts are loedied to be fair according to Equation (11),
the value to the customer (see Equations (20) 26)) ¢an differ substantially. From the in-
surer perspective, maximizing customer vaIE{E (hence the policyholder willingness to
pay) is a worthwhile undertaking toward increasihg chances of obtaining a positive net
present value on the insurance market. The cornespg optimization problem can be de-

scribed as follows:

R - max suchthat p=N"( gz d)= € OB( L)) @7
g.a,0

Fair contract

%/—/
Customer value under the risk- neutral measu@
under the reat world measui@
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Hence, for a fixed nominal premiuRy, a fair parameter combinatiog, (@, J) is chosen that
leads to the highest customer value, while progdat a minimum, risk-adequate returns for
company’s equityholders. A higher customer valugaases the premium agreement range
and thus may enable the company to realize a higibeiof return for its equityholders. How-
ever, these optimal contracts may not comply watluiatory restrictions on minimum inter-
est rates or other legal requirements. We will mersthis situation for the case of Germany

in the numerical examples conducted in Section 5.

We now use some specific model cases to demonskatprocedure required by Equation
(27). We focus on the case of deterministic weg@dde Section 3.2, Part A) and aim to derive
explicit expressions for the customer value of ¢aintracts. The procedure is, in principle, the
same for the case of stochastic wealth (Part B)elver, derivation of explicit expressions is

far more complex.

For participating life insurance contracts withtallee features, that ig, a, andJd, the accu-
mulated policy reserve at maturitp(T) = f(g,a), is a function oy anda. For a giverg*

anda*, the fairness condition in Equation (11) is da&id if dis given by

_R-eTE(AT)+ Put_
& = i =h(g.a'), (28)

where Call =e™" EEQ[max(,BDA(T) L (ﬂ and Put is a put option with value
e’ EEQ[max( P(T)- AT) O)J In Equation (28),0 is a function ofg” and a” (de-
noted byh( g.a )). Thus, (g* a0 ) represents a fair parameter combination that serve
as a starting point for further calculation of amser value using Equations (20) and (26). Our
final goal is to find a fair parameter combinatibiat maximizes customer value as expressed
by Equation (27).

4.1 The general case

For the case of deterministic wealth, we replacewith the expression in Equation (28) and

rewrite the second term in Equation (20)—the vargaierm—as
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o*(L(T))=0?(P(T)+o" tnax(BOAT)- K T),0- ma{ K J- £ 7.9)

(29)
= f(g*,a*,h(g* a ))

Hence, the variance of the policyholder paybffT) depends on the functiofisandh. The

customer valud:’oq’ under fair contract conditions is thus given by

e =e E((1)-32°( 1)
=e"" (E(P(T))+ H{ g.a")OcCal( 3.0 ) (30)
pue(g.a)- e B f 6.6, { 0a ).

where

Call®” =e ™ EE[max(,BDA(T) L (ﬂ

(31)

Put”=e O max( { )~ A 7.0].

Equation (30) shows thd®” is a function ofg” and @’ only, since the faird is a function
of these two parameters. Thus withbeing replaced by the functidm( g.a ) g ora

can be increased and still satisfy the fairnesstcamt.
Further, with an increasing risk aversion pararnziztei?o‘D is decreasing if

f(g*,a*,h(gj,cf ))>O. (32)

The optimization problem in Equation (27) can blved using the Lagrange method. If, for
instance, the guaranteed interest rate is fixethbyegulatory authorities, the annual surplus

participation parameter that maximizeéDCf’ is given by the implicit solution of the equation

R’ (g)
Ja
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if the second derivative is negative. The partiiivchtives can also be used to see how cus-
tomer value will change when increasing or decreggior a given fair contracts. However,
more general statements regarding the impact df eantract parameter cannot be derived
due to the complexity of the expression. For insarone cannot be sure that an increasing
guaranteed interest rate will raise the customé&revander fair contract conditions. This is
likely to be the case only for certain interval$iigh we will illustrate in numerical examples

in Section 5.
4.2 Contracts with one option

Let us now consider the special case of contréeisdontain only one of the three parame-
ters: either a guaranteed interest rate, or arswalus participation, or terminal bonus. Our
goal is to derive explicit expressions for williregs to pay for all three contract types and to
see which of them generates the highest custontge.vBurthermore, these simple types of
contracts may generally imply a higher customeu@dhan the more complicated contracts

that include all three parameters.

For simplicity, we assume that the equity capisasufficiently high for a default put option
value of approximately zero. This allows derivatmexplicit expressions for each fair con-
tract parameter and for the customer value (fagtailbd derivation, see Appendix B).
Guaranteed interest rate

For a contract that features only a guaranteedestteate and does not include annual or ter-
minal surplus participation, i.e3,> 0,a = 0,0 = 0, we proceed as in the general case and first

calibrateg to be fair under the risk-neutral meas@e resulting in

(1+g) =€". (34)

Given g*, we obtain the following expression foe ttustomer value:

POGJ - e—rT EPO [q1+ (j)T - E)) (35)
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This outcome is intuitive since this contract asrno risk. Therefore, the guaranteed interest
rate must be equal to the risk-free rate in ordegrtsure no arbitrage possibilities. Hence, a
policyholder would be willing to pay only the norairvalueP, for a contract that guarantees

the risk-free rate.
Annual guaranteed surplus participation

Second, we examine a contract with annual guardrdagplus participation and a money-
back guarantee that, at a minimum, returns the ijprespaid into the contract, i.g¢= 0, a >

0, 0= 0. In this case, the fair annual surplus paréition rate is given by (see Equations (B5)-
(B8), Appendix B)

P f1-e")

a = - . (36)
WL E°(maX( 4)- 4 F1) 0])
The customer value for this fair results in (see Equation (B9), Appendix B)
> E(max{ (A(i)- A(i-1) 0]
P°=e” R+ R[f1- ") B2
> ¢ (max] (A() - A(i-1) 0]
= (37)

O O L U G L |
2

e > E (mao (A1)~ Ai-1) .0)

i=1

Terminal bonus payment and money-back guarantee

We finally consider a contract with a terminal bempayment and a money-back guarangee,
=0,a=0,0> 0. Similar to the previous case, the fair temhisurplus participation rate is
(see Equation (B14), Appendix B)
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5 = Rifi-e) .
e [E*(ma{ 04 - Pa))

(38)

Inserting this participation rate into the custormalue formula yields (see Equation (B15),

Appendix B)

(39)

6 max(SA(T) - R ,0
e [E? (max(BOAT)- B.,0) |

We can reformulate Equation (39) by using the tflaat
pre tE(max( AT)- A9 Q)= 506" D%Z mat A)- A+ ) ,30] (40)

However, even though

E{gmax(A(i)—A(i—]),C)}z E{ ma{i ) A(i- ).ﬂ @)

i=1

a general ranking between, e.g., Equations (37)3®dcannot be derived due to the ratios of
expected values under the real-world and risk-aéuntieasures contained in these equations.
For the same reason, they cannot be explicitly @atpto Equation (35) for the contract with
a guaranteed interest rate only. It is not cleagtivr the customer values of the fair contracts
with annual or terminal surplus participation aetdw or above the premiuf, and thus pre-
ferable compared to a contract that contains orgyaranteed interest rate. However, we be-
lieve the explicit formulas in Equations (35), (3@hd (39) to be useful for practical imple-

mentation, as numerical inputs will deliver comjdearesults.
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5.NUMERICAL EXAMPLES

This section illustrates application of the explifmrmulas derived in the previous section
using numerical examples. In particular, we dematsthow contract parameters in a partici-
pating life policy can be adjusted to lead to faintracts and, at the same time, increase cus-

tomer value.
Input parameters

Until otherwise stated, we use the following inpatameters as the basis for all our numeri-
cal analyses. The case considered reflects thatmmmdf the German market; however, the

analysis can easily be adjusted to meet condipoegalent in other countries.

I = 4.5%, 144 = 7%, 04 = 6%, Po = 100,Eqp = 30,y = 50%, T = 10.

The assets of the insurance comp:A(y) are invested in a portfolio with mean annual metur
of 7% (= u,), and a standard deviation of the annual retur6%f(=0,); the risk-free
interest rate is set to 4.5%. Further, the fair premium and tesstarting value of the poli-
cyholder account is set to 14& B,). The contribution of the equityholders is et =
30. As in Kling, Richter, and Ruf3 (2007), the relatof book to market values, which at the
same time is an (inverse) flexibility parameter floe insurance company to build up hidden
reserves, is set tp = 50%. The input parameters reflect a high safetgll for the insurance
company. Numerical results are derived using M&dedo simulation, where necessary, on

the basis of 100,000 simulation runs.

Currently, e.g., German regulations concerninggyotieserves require a minimum annual
interest rate of 2.25% until maturi(y: g) for all German life insurance contracts issuedraft
January 2007. Furthermore, German law generallyresghat at least 90% of the investment
earnings on book values are credited to the pabicidr accounl(a'). In the base case, we
use these preset parameters and calculate then&rsarplus participation rat(e5) such that
the fairness condition of Equation (11) is satwfielence, the present value of the policy-
holder payoff is equal to the initial nominal premmi of 1~ = 100. This is achieved by setting
0= 68%.
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Table 1 contains numerical results for the casedetérministic and stochastic wealth. The
left part of the table displays parameter combaretithat lead to a fair contract value of
M" = 100 (fair premium from the insurer perspectiweider to achieve a risk-adequate re-
turn). To provide an indication of the risk asstaiawith the contracts, we list the corres-
ponding default put option value (DPO) and the ghbrprobability. The right part of the
table contains the corresponding customer valuedas the policyholders’ mean-variance
preferences for the case of deterministic (firdticm in the right part) and stochastic wealth
(second to seventh column in the right part). Qustovalues are calculated using the expres-

sions in Equations (20) and (26).

Panel A of Table 1 displays the base case, i.e.ctimtract satisfying regulatory restrictions.
For better comparison, we adjust the risk-averpemameten such that the customer value in
this base case is equal to the fair policy pricé(‘iﬁ(: Pg’ = I'I*) . Thus, we start the analysis
with standardized parameters. For the cases ofrdetistic and stochastic wealth, these val-
ues are given by = 0.0685 anda= 0.0105, respectively. In all examples, we firglilrate
contract parameters to have the same fair value fthe insurer perspective using risk-neutral
valuation. Second, we calculate the correspondirsgoener value for these contracts by using
the explicit expressions for deterministic and B&stic wealth derived in the previous sec-

tions.

Table 1 illustrate the different values of the caots to a risk-averse customer with mean-
variance preferences, even though all contracthenleft column have the same fair value
(I'l*) of 100 for the insurer. In particular, the customelue varies substantially, i.e., con-

tracts can be designed such that policyholder ngiiess to pay considerably exceeds the

minimum premium required to achieve a risk-adequetien on equity.
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Fair contract parameters (insurer perspective)

Customer valuePf (policyholder perspective)

Guaranteed Tgrmina}l A.nr.1ual' . Shortfall Part.A.: . Part B:.
interest rateg) participation  participation 1 DPO probability deterministic| stochastic =09 0;=8% 0;=4% Z,=200 a=0.0685
rate ©) rate @) (a=0.0685) | (a=0.0105)
Panel A: Contract with regulatory restrictions:
2.25% 68% 90% 100 0.06 0.02% 100.0 100.0 96.6 106.7 95.5 104.2 133.7
Panel B: Simple contracts with one parameter only:
4.56% 0% 0% 100 1.07 0.69% 100.9 85.4 85.3 91.7 81.3 89.0 133.8
0.00% 99.89% 0% 100 0.06 0.02% 96.5 104.1 100.3 110.9 99.5 108.4 130.6
0.00% 0% 130% 100 0.14 0.09% 101.3 99.9 96.7 106.7 95.5 104.1 134.7
Panel C: Maximizing customer value:
1.00% 0% 123% 100 0.02 0.01% 102.4 98.6 95.6 105.3 94.2 102.7 135.7
40% 117% 100 0.02 0.01% 100.8 99.9 96.6 106.6 95.5 104.1 1343
80% 101% 100 0.01 0.00% 98.3 101.9 98.3 108.7 97.4 106.1 132.0
2.00% 0% 113% 100 0.07 0.03% 103.5 96.9 94.1 103.5 92.5 101.0 136.6
40% 105% 100 0.06 0.02% 101.8 98.7 95.5 105.4 94.2 102.8 135/1
80% 85% 100 0.04 0.01% 98.8 101.3 97.7 108.0 96.8 1055 1325
3.00% 0% 99% 100 0.18 0.08% 104.3 94.6 92.2 101.2 90.2 98.5 137.3
40% 89% 100 0.15 0.06% 102.9 97.0 94.1 103.6 92.5 101.0 1361
80% 58% 100 0.11 0.04% 99.6 100.2 96.8 106.9 95.7 104.4 133.2
4.00% 0% 77% 100 0.47 0.26% 104.3 91.0 89.3 97.4 86.7 94.8 137.2
40% 58% 100 0.42 0.22% 104.2 94.0 91.6 100.5 89.6 97.9 137.2
50% 47% 100 0.41 0.21% 104.0 94.6 92.2 101.2 90.3 98.6 137.1
4.30% 0% 67% 100 0.62 0.39% 103.7 89.3 88.1 95.7 85.1 93.0 136.9
10% 62% 100 0.61 0.39% 104.1 90.0 88.6 96.5 85.8 93.8 137.p
30% 45% 100 0.60 0.37% 104.6 91.3 89.6 97.8 87.1 95.1 137.6
4.40% 0% 62% 100 0.69 0.42% 103.3 87.7 87.5 95.0 84.4 92.3 136.p
25% 37% 100 0.67 0.38% 104.4 88.3 88.6 96.4 85.7 93.7 137.6
27% 9% 100 0.67 0.38% 104.7 90.1 88.8 96.6 85.9 93.9 137.7
4.50% 0% 56% 100 0.76 0.45% 102.8 87.7 86.9 94.1 83.6 91.4 136.2
15% 39% 100 0.75 0.42% 103.6 88.4 87.4 94.8 84.2 92.1 136.8
17% 26% 100 0.75 0.42% 103.7 - - - - - 136.9
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Part A: Numerical results for deterministic weatthpolicyholder

We look first at the results for the case of detarstic wealth. As mentioned above, the risk-
aversion parameter for this case is seh £00.0685 so that the customer valB8 will be
equal to the fair premiur®, = 100 in Panel A of Table 1. When considering tantracts
with only one of the three contract parametegrsa( d—as discussed in Section 4—we find
that the customer value can be increased abovéetrak(see Panel B of Table 1). In particu-
lar, the highest value for deterministic Wealﬂ@q’(: 101.3) among the three simple contracts
is achieved when offering a contract with an anrsumplus participation rate and a money-
back guaranteeg(= 0%) only. To ensure fair contract conditiongs tfair annual rate even
exceeds 100%. A contract with a guaranteed inteagéston the premium paid is also more
valuable to a customer with mean-variance prefa®rban the fair contract that complies
with regulatory restrictions (Panel A of Table I).particular, this result demonstrates that
the premium agreement range can be increased ély fadjusting contract parameters with
the aim of maximizing customer value while contimgiito keep the contracts fair from the

insurer perspective.

To illustrate this process, Panel C in Table 1 aimst customer values for different choices of
0, a, and o. As discussed in Section 4, the results show ¢bhatomer value is a complex
function of these three parameters. For lower fixaeldies ofg (1%, 2%, 3%, 4%), customer
value is highest if the terminal bonus participatrate is zero. At the same time, customer
value is increasing with increasing guaranteed rEtés pattern changes, however, when the
guaranteed rate approaches the risk-free rate, pelieyholders prefer higher terminal bonus
with low annual surplus participation. The highesstomer value in the examples considered
is obtained folg = 4.4%,a = 5%, andd = 27%. However, this combination represents maxi-
mum customer value regarding fair contracts ontytii@se numerical examples. Since there
are in general an infinite number of parameter doations leading to one specific fair con-
tract value, analyzing a larger set of contracty head to a further increase in customer

value.
Part B: Numerical results for stochastic wealthpoticyholders

Next, the case of stochastic wealth is considdfede, we assume that the drift and volatility

of the investment open to the policyholders arewiby £, = 7% and g, = 6%, which are
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the same parameters applicable to the policyha@ddeount. For simplicity, we start by as-
suming that policyholder and insurer investmenBLarcorreIatec(,o = O) and then consider

the case of positively correlated cash flo(/yz: 0.9) . Results are exhibited in Part B of the
right-hand side customer value area in Table tolmtrast to the case of deterministic wealth,
we now find the maximum customer valueRf =104.1 for a simple contract with a terminal

bonus participation rate only.

For a positive correlation coefficient of 0.9 beemethe payoff from the life insurance con-
tract and insurer investments, customer valuedaaed compared to the contract with uncor-
related cash flows. This is due to a lower diveratfon effect achieved when investing in the
life policy. A higher volatility of the wealth pressZ of g, =8% makes (ceteris paribus)
the less volatile life insurance contra(czITA :6%) more attractive from the policyholder
perspective and, hencE’oq> Is increasing. The opposite is observed for a tomealth process
volatility of o, =4%. We further find that a higher initial wealth 0d@ compared to 150,
increases the customer value of the contract. ditiad, if the risk-aversion coefficient is the
same as in the case of deterministic weadthlr (0.0685), customer value increases substan-
tially. However, the differences in customer vafae different fair parameter combinations

are quite small foa = 0.0685.

Overall, we find that restrictions on contract paesers can—at least in our model setup—
seriously depress customer value. The extent ofo$eein utility depends on the preference

function of the policyholders.
6. SUMMARY AND POLICY |MPLICATIONS

Most literature on participating life insurance tigses on pricing from the insurer perspective
and does not take into consideration how policyliddnight value the contract. In this paper,
we examine how insurers can generate customer Vatugarticipating life insurance con-
tracts by combining their perspective with thatttod policyholders. Participating life insur-
ance contracts feature a minimum interest rateagit@e, a guaranteed annual participation in
the surplus generated by the asset portfolio ofrtherer, and a terminal bonus. In this paper,
customer value is defined as policyholder willingméo pay and is calculated based on mean-
variance preferences. We compare the cases ofypoldaers with deterministic wealth and

those with stochastic wealth, i.e., with and withdiversification opportunities and derive
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closed-form solutions for selected cases of famtia@t combinations and customer value.

For the insurer, we assume that the preferenceafspenach of risk-neutral valuation is used
(hence, cash flows of an insurance contract carfecated by means of assets traded on the
capital market). We combine customer value andirtkarer’'s valuation by first calibrating
contract parameters so that all contracts haveadhee fair risk-neutral value from the insurer
perspective. In the second step, we derive ex@igitessions for the customer value of these

same contracts.

Our findings show that customer value varies suibistily, even though all contracts have the
same value from the insurer perspective. The ®suijgest that customer segmentation (in
this sense) is a viable tool for increasing insyrafit and achieving a shareholder return
above the risk-adequate rate. If insurers know particular segments of the customer popu-
lation value the financial part of the contractsgyt can design contracts (by adjusting the
guaranteed interest rate and/or annual and termunalus participation rate) to specifically

increase customer value compared to standard ctsitia particular, preferred contracts may
be simple contracts with, e.g., only one of the¢hparameters, as illustrated by our numerical
example for stochastic policyholder wealth. Fotanse, a change from the regulatory para-
meter combination to the case with terminal pgstition rate increases customer value by

approximately 4%, given our input assumptions.

Depending on the respective preferences, custoalaemnay be even further increased for
higher default put option values (or shortfall pmbbity). Hence, policyholders may prefer a
fair product parameter combination that is assediatith higher shortfall risk but are simpler
by only including one contract parameter, for ins@ Future steps in the customer value
analysis should take behavioral aspects into cergiidn. If the safety level is a main deci-
sion variable for policyholders, results may diféard default put option values could have a

much more negative impact on customer value.
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APPENDIX A

Derivation of the customer value given the casgt@thastic wealth

In the following, explicit expressions of customalue in the case of stochastic wealth are
derived.

E(ZTN')—ng(zTN') E(z")+ E(T))- wz(;W'+L(1))

- B E(2)- (U M) -5 5 (3")+ 502 ( 3" + (9) =0, (a)
with
Z, =exp| (1, ~0,> 12T+, 1w, (T)- W (9) |-

Calculation of the last variance term in Equatidd)(leads to:

o?(z." +L(T))

=0*(z," -R° & + (T))

=0°(z,")+0?(R° )+ o*(L(T))-20Coy 2", POZ)
+2[Cov( 2", (T))-20Coy P OZ, L 7)

=0?(z," )+ R?w*(Z)+0?((T))- 208 OCoy 2", Z)
+2[Cov( ", L(T))- 208 OCoY Z, ( J)

= P2 (2, ) - 2R o\ 2V, Z)-20F oy Z, L(T))
+0?(z,") +o?(L(T)) + 2o\ 2™, 1 T)).

(A2)

Replacing the variance term in Equation (A1) whie tesult derived in Equation (A2) leads
to



P E(2)- E( Y1) -5 @ (2")+ 508 w7(7)- apocd 2.7
—aEPO"’[CO\(Z,L(‘I))+—wZ( N')+_m72 (1 9)+ acd 2", £ )=0

EEP‘“DITZ( - )-alR’ OCoy 2", Z)+ POEZ)- apOcdvZ (L))-
—E(L(T))+§w2(L( )+ aCo( zV, I §)=0

- P® [ﬁ ra j )- aicof 2", 7)- acdz ()]
" 2wt (L(r) +accou un) { (9)]=0

EEE(ZT)—CO\( zM,Z)- cof’z ()
o PP2+2[R° (2 yE

o (ZT)
L(T))+20Co( 2", L(q))_sz( 18)) By

JZ(ZT)

TE(Z)-Coy 3", 3)- CofZ ()

- PP +2R R 7(2)

+FE(ZT)-00»( z",3)-cof 7 ( 7)}2
JZ(ZT)

F[E(ZT)—CO\( z".Z)- cofz T)}Zaz( ( )+20cqv.2, (L)‘)—ig EL)

UZ(ZT) O'Z(ZT)
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a
R+ 7(Z,)

. { LiE(2,)-co( 2", 7)- cof Z ¢ 7)]2

FE(Z)—&»« 2.2)- oof 7 ( 7)[&( 920 oy 2, (=20 E L)

o*(Z,) o*(Z,)

iE(Z)-CO% z".7)-cof 7 7)}2

o o*(Z;)
~o*(L(1))+2Co( 2", L(T))‘:IDE( {7)
02(Z~T)
(A3)
LiE(2)-cof 2%, 7)- cof 2 ()
UZ(ZT) -
APPENDIX B

Derivation of formulas in Section 4.2 (Contractshnane option—deterministic wealth)
i)g>0,0a=0,6=0.

In this case, we have

L(T)=P(T)+omB(T)- O(T)= R )= pl1+ §, (B1)
and that the contract is fair if

P =E°(e" 1)) = " OR{L+ ) €2

Hence, from the insurer perspective, the fair guiaed interest rate satisfies
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(1+g) =¢". (B3)

For the customer value, Equation (20) implies that

Re=e " E(YT)- e S (4 )
=" DE( Rf1+ d)T)— & %Dbz( prf1+ Q)T) (B4)
=e"Rf1+g) = RO 08 = P

i) g=0,0>0,0=0.

For the policy reserves, one obtains

P(t-1) {1+ o)+ mafa if A}~ A1)~ @1 ¢
(t- 1)+aEyE|ma>{ A)- A1) ] .
(t-2) +aymaf( 4 1~ 4 +3) grayoma( p)- p+d) §

=R +a ) ymaf( A )- A 1) 0]

P(t)

P
P

For the payoff to the policyholder, the money-bgakrantee is added, leading to
T

L(T)=P(T)+3B(T)- D(T)= P+ad yOmax A)i- A+1)a). (86)
i=1

The insurance contract is fair, if

R=E%(e"OYT))=¢€" ( p+a’ EZmeBR Q) f41) D

. (B7)
=e" [R+d @yEE"T D@( maE A)i- A +1)) Q]) :

which implies a fair annual surplus participatiaer of
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. R(1-¢")
a == : (B8)
>y = (maf( 4)- 4 1)) 0])
The customer value for the fait* results in
= e E(YT)- &7 So%( 1)
e E( R+a’ Diymax[( A)- Ai-D) O]J
_e-ngW[ P+a’ Dé:ymax[( A)- Ali- ) Cﬂj
> yte" (E(max (A)- Ali-1) )
_eRep(1-eT) B
Zy@'” (B (max{ ( A() - ACi- 1) ,0])
. iyﬁmax[(A(i)—A(i—])) 0]
-« Zw?| R(l-e7)—=
2 e‘”ZyEEQ(max[( Ai)- Ai-1) 0])
iE(max[(A(i)— A(i-1) Cﬂ)
=R+ R(1-e") 7
> EC (max[(A(i) - A(i-1) 0])
= ) (B9)
. > max (A(i)- A -9) ,0
-« 2| B(1-eT)—= .
2 e’ > EQ(max[( AD- Ai-D) Cﬂ)

The formula shows that the ratio of the sum ofvaiere of max| (A(i) - A(i— 1) ,0] under
the real-world measur® and under the risk-neutral measi{ge is an important factor in
determination of customer value.

ii) g=0,a=0,5> 0.

For the policy reserves, we adjust the up-fronbmpuen and the terminal bonus accordingly:



P(t)=P(t-) {1+ g)+ maxa [ )~ A tD)- @k ) 0=
B(T)=ma{B0A - R J Q)= mes0 @ )

Therefore, the policyholder payoft is given by

L(T)=P(T)+o0B(T)- O(T)= P+30mas0 A T~ )

and the contract is fair, if

R=E°(e"O(T)= e"OE( P+& maB0 A F- ,R))
=e"R+5 &7 OF ( makBO A - F0))
— T ;1T R)
=e"[R+0 BB DEz(maE /é\T—f Oj]

=" [R+J [BLET DI’:@( mak A J- () O)) .
Hence,

5= R(1-e) |
e EEQ(ma>(,8D/( M- (PQ))

The customer value is given by
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(B10)

(B11)

(B12)

(B13)

(B14)
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=" [E(T))- e" Jo*( I )
e [E( R+4 nax( ,BDA(T) F.0)
- %wz ( R +0" Mnax(B0A(T)- E;,o)) (B15)
e’ (max(,BDA(T @)
" (max{ A0 T) - B.0)

T %wz P [ql_ e—rT) maX(IB DB\(T) -R ,O)

e [E° (max( SN T) - B.0) |

:e—rT D%"‘ Pol:ql_ e—rT)

REFERENCES

Bacinello, A. R., 2003, Fair Valuation of a Guaesd Life Insurance Participating Contract
Embedding a Surrender Optialgurnal of Risk and Insurancé0(3): 461-487.

Ballotta, L., S. Haberman, and N. Wang, 2006, Guaes in With-Profit and Unitized With-
Profit Life Insurance Contracts: Fair Valuation Bleon in Presence of the Default Option,
Journal of Risk and Insuranc@3(1): 97-121.

Berketi, A. K., 1999, Insolvency Risk and its Impamn the Policyholders’ Investment
Choices: A Mean-Variance Approach for Participatiig Insurance Business in UKy-
surance: Mathematics and Economi2§(3): 349-372.

Briys, E., and F. de Varenne, 1997, On the Risknsfirance Liabilities: Debunking Some
Common Pitfalls,Journal of Risk and Insurancé4(4): 673—694.

Bundesanstalt flr Finanzdienstleistungsaufsichfig3a2008, Jahresbericht 2007, Bonn und

Frankfurt am Main.

Doherty, N. A., and J. R. Garven, 1986, Price Rafiuh in Property-Liability Insurance: A
Contingent-Claims Approachlpurnal of Finance41(5): 1031-1050.

Doherty, N. A., and A. Richter, 2002, Moral HazaBdsis Risk, and Gap Insurandeurnal
of Risk and Insuran¢&9(1): 9-24.

Doherty, N. A., and S. M. Tinic, 1981, Reinsurandeder Conditions of Capital Market
Equilibrium: A Note,Journal of Finance36(4): 949-953.



31

Ehrlich, I., and G. S. Becker, 1972, Market InsemnSelf-Insurance, and Self-Protection,
Journal of Political EconomyB0(4): 623—648.

Eisenhauer, J. G., 2004, Risk Aversion and theilgitiess to Pay for Insurance: A Cautio-
nary Discussion of Adverse Selecti®tisk Management and Insurance Reyié{): 165—
175.

Gatzert, N., 2008, Asset Management and Surplusilison Strategies in Life Insurance:
An Examination with Respect to Risk Pricing andkRi4deasurementinsurance: Mathe-
matics and Economicd2(2): 839-849.

Grosen, A., and P. L. Jargensen, 2002, Life Insigdmabilities at Market Value: An Analy-
sis of Insolvency Risk, Bonus Policy, and Regubatimtervention Rules in a Barrier Op-

tion Framework,Journal of Risk and Insuranc69(1): 63-91.

Kahneman, D., and A. Tversky, 1979, Prospect ThelanyAnalysis of Decision Under Risk,
Econometrica47(2): 263—-292.

Kling, A., A. Richter, and J. Rul3, 2007, The Int#ian of Guarantees, Surplus Distribution,
and Asset Allocation in With-Profit Life Insuran&mlicies,Insurance: Mathematics and
Economics2007(40): 164-178.

Mayers, D., and C. W. Smith, Jr., 1982, On the Gaje Demand for Insurancéurnal of
Business55(2): 281-296.

Mayers, D., and C. W. Smith, Jr., 1983, The Intpaselence of Individual Portfolio Deci-
sions and the Demand for Insurandeyrnal of Political Economy91(2): 304-311.

Showers, V. E., and J. A. Shotick, 1994, The EffedtHousehold Characteristics on Demand
for Insurance: A Tobit Analysigournal of Risk and Insuranc61(3): 492-502.

Wakker, P. P., R. H. Thaler, and A. Tversky, 19Bibabilistic Insurancelournal of Risk
and Uncertainty15(1): 7-28.

Zimmer, A., C. Schade, and H. Grindl, 2009, Is D&fRisk Acceptable When Purchasing
Insurance? Experimental Evidence for Different Rfolity Representations, Reasons for
Default, and Framingsournal of Economic Psychologypl. 30(1): 11-23.



