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This paper introduces a credit portfolio framework which allows for de-
pendencies between default probabilities, secured and unsecured recovery
rates and exposures at default. The overall approach is an extension of the
factor-models of Pykhtin (2003) and Miu and Ozdemir (2006), with respect
to differentiated recovery rates and the inclusion of dependent exposures. As
there is empirical evidence for dependence between these risk parameters and
observations for the exposure at default, the secured and unsecured recovery
rates are available only in case of a default, we propose a multivariate exten-
sion of Heckman’s (1979) selection model in order to estimate the unknown
parameters within a Maximum-Likelihood framework. Finally, we empiri-
cally demonstrate the effects of the dependence structure on the portfolio
loss distribution and its risk measure for a hypothetical loan portfolio.

Keywords: dependent risk parameters; Factor model; Credit Metrics;
Merton model; secured and unsecured recovery rate; CCF

1 Introduction, Literature Review and Motivation

Without any doubt, CreditMetricsTM is one the most popular credit portfolio models in
the banking industry. It arises as a natural extension of the well-known Vasicek model,
see Vasicek [2002] which in turn forms the basis of the Basel II internal-ratings-based
(IRB) capital requirements for credit risk. As a representative of the class of structural
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models, CreditMetricsTM is based on the firm value model of Merton [1973] and assumes
that defaults or changes in the creditworthiness depend on the firm’s asset value, which
is driven by systematic as well as idiosyncratic factors. In order to calculate the portfolio
loss distribution, relevant input parameters for the underlying borrowers or contracts are
the exposure at default (EAD), the loss given default (LGD) and the borrowers’ default
indicator (D), where a default occurs (D = 1) with a given probability of default (PD).
In the classical setting, exposures and LGDs are assumed to be deterministic whereas
the default indicators are dependent (Bernoulli) random variables. Default dependence
arises, for instance, from a common industry background, the belonging to the same or
related countries or regions, or by legal or economical relationships.

Several extensions of this model framework can be found in the recent literature. Fo-
cusing on the above-mentioned input parameters, most of the subsequent contributions
treat the LGDs as random variables and, above that, allow for dependence between
them and the default indicators (commonly called as ”PD-LGD correlation”) within
a factor model approach, see Frye [2000a], Frye [2000b], Pykhtin [2003], Tasche [2004],
Miu and Ozdemir [2006], Witzany [2011], Bade et al. [2011] or Rösch and Scheule [2014].

Within this work we introduce a novel model which extends the single-factor model
of Pykhtin [2003] and the two-factor model of Miu and Ozdemir [2006] in the following
sense: Instead of capturing only dependence between the default indicator and the LGD,
we additionally take into account the remaining risk parameter EAD by means of the
utilization rate at default. Furthermore, we allow for a natural segmentation of the LGD
by distinguishing between secured and unsecured recovery rates. Hence, our generalized
multi-factor framework allows for dependence between all four risk parameters.

For this purpose, the outline of this article is as follows: Section 2 introduces the
underlying definitions and notions. In section 3 we introduce the above-mentioned multi-
factor model in order to capture dependence between the four relevant risk parameters.
In addition, some remarks are provided how to estimate the unknown parameter within
a multivariate sample selection framework. Finally, section 4 illustrates the effects on the
risk figures of the portfolio loss distribution for a hypothetical loan portfolio and under
different hypothetical but realistic parameter sets which where derived from various
empirical studies which at least deal with partial dependence structures. Section 5
concludes.

2 Probabilities of Default, Loss Rates, Exposure at Default and
Loss Distributions

We consider a portfolio of N ∈ N loans, which is aggregated at the borrower level. A
default occurs with probability PDi ∈ (0, 1) and will be represented by a random variable
Di ∼ Bern (PDi) describing if the default of i occurs (Di = 1) or not (Di = 0). Typically,
PDi is estimated for a one year horizon. In the event of default the loss arises from the
current amount of exposure EADi ∈ [0,∞) and the loss rate LGDi ∈ [0, 1]. The LGD
equals the percentage amount of the EAD that cannot be recovered. This contains both
the liquidation of collaterals and the insolvency quota. In general, the risk parameters
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EAD and LGD are a-priori unknown. Therefore, we treat them as random variables
within our model. The loss of the overall credit portfolio caused by borrower’s defaults1

equals:

L :=
N∑
i=1

Li =
N∑
i=1

EADi · LGDi · Di. (1)

In order to describe the shape of the portfolio loss distribution we observe the expected
loss EL := E (L), the standard deviation SD :=

√
Var (L) and the value at risk at 99.9%

VaR99.9% := F ∗L (99.9%), whereas F ∗L stands for the quantile function of L. Furthermore
we derive the economic capital at 99.9%

EC99.9% := VaR99.9% − EL,

as well as the expected shortfall at 99.9%

ES99.9% := E [L|L ≥ VaR99.9%] .

2.1 Exposure at Default

In general, a bank makes a credit commitment at the commencement of the contract
that the borrower is allowed to draw funds up to the specified limits. Therefore, a credit
position consists of two parts, the currently drawn (on balance) and the undrawn (off
balance) amount [Taplin et al., 2007, BCBS, 2004]. Hence, the amount of the exposure
in the event of default is unknown before the time of default. To determine the EAD the
utilization in the event of default has to be estimated. The off balance part that has not
been drawn yet, but will be utilized at the time of default is calculated by multiplying
the current unused amount with the credit conversion factor CCFi ∈ [0, 1]. Then the
EAD is given by

EADi = Drawn Amounti + CCFi ·Undrawn Amounti, (2)

which is also illustrated in figure 1. The CCF is also called loan equivalent or usage
given at default. Some authors define the CCF differently, for example as the conversion
factor applied to the the total commitment or to the current utilization. Following the
interpretation of the Basel II capital requirements [Taplin et al., 2007, BCBS, 2004] we
stick to the definition of the CCF as the factor applied to the undrawn amount. The
factor, applied to the whole commitment (Comi), is denoted as the utilization rate at
default URDi ∈ [0, 1]. In this case the EAD can be expressed by:

EADi = URDi · Comi. (3)

Our model uses the factor URD to specify the EAD. It should be noted that the estima-
tion methods of the various factors can be transformed into each other and are therefore
exchangeable.

1Since our focus is on the LGD and EAD, which are only relevant in case of a default, we restrict our
analysis to the default mode. Therefore, we do not consider any kind of migration risk.
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Figure 1: EAD in the context of the CCF and the URD

2.2 Loss Given Default in the Context of a Secured and an Unsecured
Recovery Rate

Typically, the loss rate at the time of default is described by the risk parameter LGD as
the ratio between the loss in case of a default and the EAD. A more detailed view can
be achieved by differentiating between the loss rates of secured and unsecured exposures
[BCBS, 2004]. Thereby, we can distinguish between the income from the realization
of collaterals and the additional income during the liquidation process. The secured
recovery rate SRRi ∈ [0, 1] describes the ratio between the payments from the realization
of collaterals and the recently stated market value of them denoted by Ci. On the contrary
the unsecured recovery rate URRi ∈ [0, 1] indicates how much of the residual debt is
settled by other payments reduced by the chargeable costs (for example handling and
legal costs) [Eller et al., 2010]. Therefore, the loss of a credit position is given by:

Li = (EADi − Ci · SRRi) · (1−URRi) . (4)

Using a deterministic collateralization quota q := Ci
EADi

∈ [0, 1], the LGD can be calcu-
lated from SRR and URR using the relation

LGDi = (1− q · SRRi) · (1−URRi) . (5)

The stepwise approach to determine the loss in the event of a default is illustrated in
figure 2.

For the definition of the risk parameters URD, SRR and URR, we follow an approach
similar to one of the “potential LGD” as described by Pykhtin [2003]. The potential LGD
is a function of the collateral value and is therefore defined irrespectively of the event
of default. By contrast, the potential LGD ist defined for all borrowers, whereas the
conventional LGD is defined only for defaulted borrowers. This distinction leads to the
fact that, assuming that PD and LGD depend on each other, the expected conventional
LGD is not only a function of the collateral value but also of the dependence upon PD.

4



Figure 2: Step by step determination of a borrower’s loss

This dependence can be captured by the sample selection model of Heckman [1979] (see
chapter 3.2). Neglecting the issue of sample selection might lead to an underestimation
of the conventional LGD. Our model framework takes this into account not only for the
LGD, but for all risk parameters affecting the borrowers loss in case of a default. These
are defined irrespectively of the event of default, but are only observable for defaulted
borrowers.

3 Coupling Risk Parameters within a Generalized Multi-Factor
Framework

3.1 Model Set-Up

Considering different points in time denoted by t = 1, ..., T , the creditworthiness of each
firm is driven by two factors: a systematic factor SAt , which also influences the other
firms simultaneously, and an idiosyncratic factor εAit, which only affects this specific firm.
The risk driver of default Ait of borrower i at time t is defined as:

Ait := Φ−1 (PDit)−
(
αSAt +

√
1− α2εAit

)
, (6)

where the random variables SAt and εAit are assumed to be independent and to follow a

standard normal distribution: SAt , ε
A
it
iid∼ N (0, 1). Φ−1 (PDit) represents the determin-

istic default threshold for a borrower with probability of default PDit. The parameter
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α ∈ (−1, 1) governs the impact of the systematic factor SAt on the risk driver of de-
fault Ait. If α is close to zero, the borrower has a minor connection to the overall state
of the economy. In this case the idiosyncratic risk is more important2. Analogous to
CreditMetricsTM we interpret the part αSAt +

√
1− α2εAit as the standardized form of

the logarithmic asset return. Particularly for unlisted companies the asset value is not
observable on a daily basis. Hence the risk driver of the default Ait has to be chosen as
an unobservable, latent variable. In our model a firm defaults if Ait exceeds 0. Let Dit
denote the default event of the firm i at time t, i.e.:

Dit =

{
1, ifAit ≥ 0

0, else.
(7)

In this setting, the same probability of default and the same conditional probability of
the default as in the CreditMetricsTM model emerge:

P (Dit = 1) = PDit, (8)

and:

PDit

(
sAt
)

: = P
(
Dit = 1 | SAt = sAt

)
= Φ

(
Φ−1 (PDit)− αsAt√

1− α2

)
. (9)

The systematic factor of default SAt in turn is partitioned into a systematic factor Xt,
which influences the systematic factors of all risk parameters, and a specific systematic
factor ZAt , which influences the systematic factor of default only:

SAt := θAXt +
√

1− θ2
AZ

A
t . (10)

Like α in case of the risk driver of default Ait, the parameter θA ∈ (−1, 1) measures the
sensitivity of the systematic factor of default SAt to the mutual systematic factor Xt. The
factors ZAt ∼ N (0, 1) and Xt ∼ N (0, 1) are assumed to be independent and standard
normally distributed, such that SAt again follows a standard normal distribution.

Analogously, the utilization rate at default URD is assumed to be driven by

Bit := βSBt +
√

1− β2IBit , (11)

where the systematic factor SBt and the idiosyncratic factor IBit are again independent
and standard normally distributed and β ∈ (0, 1). The risk driver Bit can be interpreted
as the transformation of the URD into a standard normally distributed random variable.
Letting FURDit be the cumulative distribution function of the URD of borrower i at time
t, the URD of the borrower i at time t can be expressed by:

URDit := F ∗URDit (Φ (Bit)) , (12)

2Andersen and Sidenius [2005] includes stochastic factor loadings α. This gives the opportunity to
model stronger dependencies during economic downturns compared to economic recovery.
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where F ∗URDit
(t) := inf {v ∈ (0, 1) : FURDit (v) ≥ t} denotes the quantile function. Also

in this case the systematic factor of the URD SBt is divided into two components:

SBt := θBXt +
√

1− θ2
BZ

B
t . (13)

The parameter θB ∈ (−1, 1) governs the impact of the mutual systematic factorXt on the
systematic factor of the risk driver of the URD SBt . The specific systematic factor of the
URD ZBt ∼ N (0, 1) and the mutual systematic factor Xt are assumed to be independent,
so that SBt follows a standard normal distribution. The idiosyncratic factor of the URD
IBit can be also divided into the idiosyncratic factor of default εAit, which influences the
idiosyncratic factors of all risk parameter, and a specific idiosyncratic factor εBit :

IBit := ρBε
A
it +

√
1− ρ2

Bε
B
it . (14)

The parameter ρB ∈ (−1, 1) controls how much the mutual idiosyncratic factor εAit affects
the idiosyncratic factor of the URD IBit . εBit ∼ N (0, 1) is assumed to be independent of
εAit. Therefore, the assumption holds that IBit is again standard normally distributed.

The secured recovery rate SRR and the unsecured recovery rate URR are mod-
eled in the same way. Additionally, we assume independence of the random variables:
εAit, ε

B
it , ε

C
it , ε

D
it , Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t , i = 1, . . . , N, t = 1, . . . , T . This implies the following

model framework:

Risk driver with:

D Ait := Φ−1 (PDit)−
(
αSAt +

√
1− α2UAit

) SAt := θAXt +
√

1− θ2
AZ

A
t

UAit := εAit

URD Bit := βSBt +
√

1− β2UBit
SBt := θBXt +

√
1− θ2

BZ
B
t

UBit := ρBε
A
it +

√
1− ρ2

Bε
B
it

SRR Cit := γSCt +
√

1− γ2UCit
SCt := θCXt +

√
1− θ2

CZ
C
t

UCit := ρCε
A
it +

√
1− ρ2

Cε
C
it

URR Dit := δSDt +
√

1− δ2UDit
SDt := θDXt +

√
1− θ2

DZ
D
t

UDit := ρDε
A
it +

√
1− ρ2

Dε
D
it

Table 1: Risk drivers of the particular risk parameters, with:

εAit, ε
B
it , ε

C
it , ε

D
it , Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t

iid∼ N (0, 1) , for i = 1, . . . , N, t = 1, ..., T.

Remark 3.1. It is straight forward to show that the risk drivers A, B, C and D again fol-

low a multivariate normal distribution with mean
(
Φ−1(PDit), 0, 0, 0

)T
and a covariance

given by

Cov (X,Y ) =

{
%X1 %

Y
1 + %X2 %

Y
2 for X,Y ∈ {A,B,C,D}, X 6= Y

1 for X,Y ∈ {A,B,C,D}, X = Y
, (15)
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where %
X/Y
1/2 is defined for risk driver X,Y ∈ {A,B,C,D} as

%X1 :=


−αθA for X = A

βθB for X = B
...

...

and %X2 :=


−
√

1− α2 for X = A√
1− β2ρB for X = B

...
...

.

3.2 Some Remarks on Parameter Estimation

Observations for the utilization rate at default, the secured and unsecured recovery rates
are available only in the event of default. Furthermore, there is empirical evidence for
dependence between the default variable and the other risk parameters. Hence, the
observable sample is necessarily truncated. Neglecting sample selection leads to biased
parameter estimators [Heckman, 1979]. The univariate selection model of Heckman
[1979], which was used by Bade et al. [2011] in their model for the dependence of default
and the recovery rate, provides a solution for this problem. In our multivariate extension
the risk drivers Bit, Cit, Dit are only observable (via URD, SRR and URR) if the loan i
at time t defaults. Therefore, the selection equation is given by:BitCit

Dit

 =

{
observable, in the event of default, i.e. Ait ≥ 0,

not observable, else, i.e. Ait < 0.
(16)

The regression function for the sub-sample of available data results in the conditional
expectation of the observable sub-sample:

E

BitCit
Dit

 ∣∣∣∣∣∣ Xt, Z
A
t , Z

B
t , Z

C
t , Z

D
t , selection

 (17)

=

βSBtγSCt
δSDt

+ E


√

1− β2UBit√
1− γ2UCit√
1− δ2UDit

 ∣∣∣∣∣∣ Xt, Z
A
t , Z

B
t , Z

C
t , Z

D
t , selection

 (18)

=

βSBtγSCt
δSDt

−
ρB

√
1− β2

ρC
√

1− γ2

ρD
√

1− δ2

 · λit,
with λit := ϕ(κit)

1−Φ(κit)
and κit :=

−Φ−1(PDit)+αS
A
t√

1−α2
.

Proof. The derivation of the conditional expectation of the observed sub-sample uses
Theorem 19.5 of Greene [2012].

Dependence between the default rate and the loss rate respectively the utilization
rate has been attested by the empirical literature, see Frye [2000b], Altman et al. [2005],
Miu and Ozdemir [2006], Asarnow and Marker [1995] and Jiménez et al. [2009]. There-
fore, we have to assume that, in general, the error terms UAit , U

B
it , U

C
it , U

D
it are not indepen-

dent and that the regression parameters of the variable λit are unequal to 0. Regression
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Realization of URR driver / unsecured LGD depending on default driver Ait
D
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n
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URR driver Dit Default driver Ait

Figure 3: Sample selection in case of URR / unsecured LGD

estimators of the risk parameters on the selected sample that do not take into account
the sample selection omit the final term of equation (18). This leads to a bias arising
from the well-known problem of omitted variables. The bias of the expectation of a risk
parameter directs toward the sign of the correlation between the error term UBit , UCit and
UDit , respectively, and the error term of the selection equation UAit .

The issue is illustrated in figure 3, where the histogram shows the distribution of
the URR driver Dit with and without sample selection. Similarly, realizations of the
unsecured LGD (=1-URR) are pictured on the right hand side of the figure. For the
marginal distribution of the unsecured LGD we choose a Beta distribution with mean
0.4 and standard deviation 0.15. The mean in case with (without) sample selection
is illustrated via a black (red) line. In the unconditional case Dit ∼ N(0, 1) and the
LGD mean equals the mean of the corresponding Beta distribution, whereas in the

conditional case E (Dit |Ait ≥ 0) = Cor (A,D)
φ(−Φ−1(PDit))

PDit
≈ −1.44.3 Therefore, the

observable mean of the unsecured LGD is shifted from 0.4 to approximately 0.62 in our
example.

In order to address the problem of sample selection, Heckman suggests two estima-
tion procedures: a two-step estimator and a maximum likelihood estimator. Like Bade
et al. [2011] we suggest the second option. The maximum likelihood estimator goes
back to Heckman [1974] and is asymptotically efficient if the assumption of normal dis-
tributed error terms is correct. Additionally, our multivariate extension of the Heckman
model takes into account several unobservable random variables, namely the systematic
factors Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t . The likelihood function for time t = 1, . . . , T conditional

on Xt, Z
A
t , Z

B
t , Z

C
t , Z

D
t with nt denoting the number of observations at time t can be

3Using Theorem 19.5 of Greene [2012] and remark 3.1 it is easy to show that the conditional expectation

of Bit under sample selection is given by Cor (A,D)
φ(−Φ−1(PDit))

PDit
, which in our parameter setting

(0.4 for all parameters α, β, γ, δ, θ, ρ) is around -1.44.
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calculated by

Lt
(
Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t

)
(19)

=

nt∏
i=1

[
P
(
Dit = 0 | Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t

)]1−Dit · [P (Dit = 1 | Xt, Z
A
t , Z

B
t , Z

C
t , Z

D
t

)
· f(Bit,Cit,Dit)

(
bit, cit, dit | Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t ,Dit = 1

)]Dit
=

nt∏
i=1

[
1− Φ

(
Φ−1 (PDit)− αsAt√

1− α2

)]1−Dit
·
[
Φ

(
Φ−1 (PDit)− αsAt√

1− α2

)

· f(Bit,Cit,Dit)

(
bit, cit, dit | Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t ,Dit = 1

) ]Dit
,

where f(Bit,Cit,Dit)

(
bit, cit, dit | Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t ,Dit = 1

)
denotes the conditional den-

sity of (Bit, Cit, Dit)
t given Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t ,Dit = 1. It holds that:

f (Bit,Cit,Dit)

(
bit, cit, dit | Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t ,Dit = 1

)
(20)

=
1

2πΦ
(

Φ−1(PDit)−αSAt√
1−α2

)√
(1− β2) (1− γ2) (1− δ2)

(
1− ρ2

B

) (
1− ρ2

C

) (
1− ρ2

D

)
· φ1

(
µ̃; 0, σ̃2

)
Φ

 Φ−1(PDit)−αSAt√
1−α2

+ µ̂

σ̂

 .

with:

µ̃ :=

 4∑
i=1

∑
j>i

(
µi − µj
σiσj

)2
 1

2

, µ̂ :=

∑4
i=1 σ

−2
i µi∑4

i=1 σ
−2
i

,

σ̃ :=

(
4∑
i=1

σ−2
i

) 1
2

, σ̂ :=σ̃−1,

and
µ1 :=

−bit+βsBt
ρB
√

1−β2
, µ2 :=

−cit+γsCt
ρC
√

1−γ2
, µ3 :=

−dit+δsDt
ρD
√

1−δ2
, µ4 := 0,

σ1 :=

√
1−ρ2

B

ρ2
B
, σ2 :=

√
1−ρ2

C

ρ2
C
, σ3 :=

√
1−ρ2

D

ρ2
D
, σ4 := 1.

Proof. The derivation of the conditional density is available upon request..

Since the realizations of Xt, Z
A
t , Z

B
t , Z

C
t , Z

D
t are not observable, one has to calculate

the respective expectation of the likelihood function unconditional of these parameters
in order to determine the likelihood function for time t:

E
[
Lt
(
Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t

)]
= (21)˙

Lt
(
xt, z

A
t , z

B
t , z

C
t , z

D
t

)
ϕ (xt)ϕ

(
zAt
)
ϕ
(
zBt
)
ϕ
(
zCt
)
ϕ
(
zDt
)
dxtdz

A
t dz

B
t dz

C
t dz

D
t .
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The log-likelihood function for all times t = 1, . . . , T is then given by:

lnL = ln

(
T∏
t=1

E
[
Lt
(
Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t

)])
=

T∑
t=1

lnE
[
Lt
(
Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t

)]
.

(22)
Maximizing the log-likelihood function by numerical optimization with respect to the
unknown parameters leads to the corresponding estimates.

4 Empirical Application

This section contains the numerical analysis regarding the impact of the dependence
between the different risk parameters on the risk figures. Results are based on sev-
eral Monte Carlo simulations. Besides a basic setting with hypothetical but reasonable
assumptions regarding the dependence parameters, sensitivity analysis are conducted.
After presenting the considered credit portfolio and deducing the sign of the depen-
dence parameters, we present the simulation algorithm and our results regarding the
uncertainties of different model specifications in terms of changing risk figures.

4.1 Portfolio characteristics and distributional assumptions

We consider a hypothetical credit portfolio with a total (drawn and undrawn) amount
of 1.000.000, which is distributed on 5000 borrowers heterogeneously. The probabilities
of default are expressed via a rating scale of seven categories, see table 2. The major
part of the overall commitment belongs to the better rating categories. Taking into
account the structure of our model, we do not distinguish between different economic
sectors. However, it is straight forward to generalize the framework in order to a deal
with multiple sectors.

Rating 1 2 3 4 5 6 7

PD 0,002 0,0005 0,0012 0,0041 0,014 0,047 0,15

Number of borrowers 246 92 1091 705 2700 70 96

% of commitment 27.45 12.26 28.43 21.26 7.76 2.25 0.58

Table 2: Rating categories and exposure distribution

The risk parameters utilization rate at default URD, secured recovery rate SRR, and
unsecured recovery rate URR are modeled by a Beta-distribution on the unit interval4.
The density is given by:

fBeta(p,q) (x) =
1

B (p, q)
xp−1 (1− x)q−1 , 0 < x < 1,

4This assumption is not irrefutable. For example, the SRR could take values higher than 1. This would
be the case, if the payments from the realization of collaterals is higher than the recently stated
market value of the collaterals.
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where B (·, ·) is the Beta-function and p > 0, q > 0. The parameters p, q are determined
by the expectation µ and the variance σ2 via moment-matching. Following Tasche [2004],
we choose a conservative value for the variance by specifying it as a fixed percentage
v = 0.25 of the maximum possible variance µ (1− µ) . In this case the two parameters
can be expressed by the first moment:

p = µ
1− v
v

, q = (1− µ)
1− v
v

.

Referring to the empirical study of Jiménez et al. [2009], the expectation of the utilization
rate at default is chosen as E(URD) = 0.6. Due to the lack of data, we choose hypo-
thetical values for the expectation of secured recovery rate and unsecured recovery rate
given by E (SRR) = 0.6, E (URR) = 0, 4, which imply a similar, but more conservative
expectation for the loss given default compared to Miu and Ozdemir [2006].

4.2 Dependence Parameters

In this section, our dependence parameters are specified as follows: In a first step, we
deduce the signs of the dependence parameters. Afterwards, we propose hypothetical
but plausible parameter values for the systematic and idiosyncratic factor weights in
particular for URD, SRR and URR, which form the basis for further analysis.

4.2.1 Signs of the Dependence Parameters

The basis of the following derivation is the assumption regarding the states of the risk
parameters in times of a high (low) creditworthiness of the borrower. A high credit-
worthiness can have two reasons: economic upturn (systematic) and borrower specific
success (idiosyncratic). The literature states that the asset return is high during an
economic upturn, whereas the loss given default and the utilization rate is low, see for
example Frye [2000b] and Jiménez et al. [2009]. Assuming analogous mechanisms for
the borrower specific success, the relations in table 3 hold.

Risk Driver of in Times of High Creditworthiness

D Low

URD Low

SRR High

URR High

Table 3: State of the risk parameters in times of high creditworthiness

Assuming without loss of generality that the systematic factors Xt, Z
A
t , Z

B
t , Z

C
t , Z

D
t

exhibit high values during economic upturns and the mutual idiosyncratic factor εAit is
also high during borrower specific success, we can derive the signs of the dependence
parameters in our model. We demonstrate exemplarily the procedure for the utilization
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rate at default. The URD is low in times of high creditworthiness and thus its risk driver:

Bit := β

(
θBXt +

√
1− θ2

BZ
B
t

)
+
√

1− β2

(
ρBε

A
it +

√
1− ρ2

Bε
B
it

)
.

Deriving its correlation with the total systematic factor, the mutual systematic factor and
the mutual idiosyncratic factor leads to the following signs of the dependence parameters:

• Cor
(
Bit, θBXt +

√
1− θ2

BZ
B
t

)
= β < 0 ⇒ β < 0.

• Cor (Bit, Xt) = βθB < 0 ⇒ θB > 0.

• Cor
(
Bit, ε

A
it

)
=
√

1− β2ρB < 0 ⇒ ρB < 0.

In doing so, the correlation of Bit with its risk parameter specific idiosyncratic factor

Cor
(
Bit, ε

B
it

)
=
√

1− β2
√

1− ρ2
B > 0 implies that the specific idiosyncratic factor εBit

exhibits low values under borrower specific success. The signs of the remaining risk
parameters can be derived analogously. The results are summarized in table 4.

Weight of the... D URD SRR URR

systematic factor α > 0 β < 0 γ > 0 δ > 0

mutual systematic factor θA > 0 θB > 0 θC > 0 θD > 0

mutual idiosyncratic factor / ρB < 0 ρC > 0 ρD > 0

Table 4: Signs of the dependence parameters

Moreover it should be noted that this constellation leads to high risk parameter specific
idiosyncratic drivers εCit , ε

D
it and low εBit during borrower specific success, which implies

that in this situations the recovery rates (secured and unsecured) tend to be high and
the usage rate is low.

4.2.2 Initial Values of the Dependence Parameters

On the basis of the deduced signs, we make hypothetical but realistic assumptions regard-
ing the dependence parameters. Given a suitable set of data they could be estimated by
the methods mentioned in section 3.2 instead. Referring to the asset correlation in Basel
II, the weight of the systematic factor of the default driver is set to α = 0.24. Following
Jiménez et al. [2009], a moderate, but significant decrease of the URD is associated with
a macroeconomic upturn. Therefore, we choose the weight of the systematic factor of
URD to β = −0.2. Due to the lack of empirical data, we assume that the weights of the
systematic factors of SRR and URR are equal to γ = 0.2 and δ = 0.1. Since the URR
represents the income of the insolvency estate, it depends more on jurisdiction than on
the macroeconomic state. Therefore, we propose a smaller value for δ compared to the
other risk parameters. We assume equality for the parameters of the mutual system-
atic factor θA = θB = θC = θD = θ and examine the cases θ ∈ {0, 0.5, 0.7, 0.9, 1} .
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For the basic setting we choose θ = 0.7, which implies relatively strong impact of
the mutual systematic factor and leads to a similar development of the four risk pa-
rameters. The weights of the mutual idiosyncratic factor are examined for the val-
ues (ρB, ρC , ρD) ∈ {(−0.1, 0.025, 0.1) , (−0.2, 0.05, 0.2) , (−0.3, 0.075, 0.3)}, whereas the
medium setting denotes the initial parameters from the basic setting.

Table 5 summarizes the definitions of the model parameters and their initial values
for our numerical analysis (Basic setting).

Weight of the ... D URD SRR URR

systematic factor α = 0.24 β = −0.2 γ = 0.2 δ = 0.01

mutual systematic factor θA = 0.7 θB = 0.7 θC = 0.7 θD = 0.7

mutual idiosyncratic factor / ρB = −0.2 ρC = 0.05 ρD = 0.2

Table 5: Initial values of the dependence parameters

4.3 Algorithm of the Monte Carlo Simulation

The following algorithm outlines the steps of our Monte Carlo simulation:

Algorithm 1 Simulation of portfolio loss distribution

For each scenario t = 1, . . . , T :

Draw a realization of the systematic factors:(
Xt, Z

A
t , Z

B
t , Z

C
t , Z

D
t

)t ∼ N5 (05, I5) , with 05 = (0, 0, 0, 0, 0)T and I5 being the
identity matrix of size 5.

For every borrower i = 1, . . . , N :
Draw the borrower specific, idiosyncratic factors:(
εAit, ε

B
it , ε

C
it , ε

D
it

)t ∼ N4 (04, I4) .
Compute the default driver Ait according to table 1.

If Ait ≥ 0 :
Compute the residual drivers Bit, Cit, and Dit according to table 1.
Compute the risk parameters by quantile transformation under the above
mentioned Beta distribution with v = 0, 25:

URDi = F−1
Beta(p,q) (Φ (Bit)) , with p = E(URDi)· 1−vv and q = (1−E(URDi))· 1−vv

SRRi = F−1
Beta(p,q) (Φ (Cit)) ,with p = E(SRRi) · 1−v

v and q = (1−E(SRRi)) · 1−v
v

URRi = F−1
Beta(p,q) (Φ (Dit)) ,with p = E(URRi)· 1−vv and q = (1−E(URRi))· 1−vv .

The portfolio loss of scenario t is given by:

Lt =
∑

i|Ait≥0

max ((Comi ·URDi − Ci · SRRi) · (1−URRi) , 0) (23)

Based on the realizations L1, . . . , LT , the portfolio loss distribution can be estimated
by the empirical distribution function. The maximum operator in (23) is necessary in
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Figure 4: Density function of the loss distribution: base case (BASE), multi factor model
under independence (INDEP), multi factor model (MFM), one factor model
(OFM) as well as indicators for VaR0.999.

order to ensure that losses are not negative (i.e. profits), in case of Comi · URDi <
Ci · SRRi. One should keep in mind that this leads to a truncation of the simulated
portfolio loss distribution.

4.4 Simulation Study

In order to better judge the results of our multi factor model, which takes into account
the dependencies between all risk parameters, we compare this model with the follow-
ing model specifications: In the base case (BASE) we use a model that simulates the
defaults similar to the CreditMetricsTM model, and treats the other risk parameters as
deterministic given by their expected values. Additional, we investigate our multi factor
model under independence (INDEP), by changing the weights of the mutual factors to
θA = θB = θC = θD = 0 and ρB = ρC = ρD = 0, and the one factor model (OFM),
i.e. θA = θB = θC = θD = 1. We perform a Monte Carlo simulation of each model and
estimate the loss distribution based on 5.000.000 repetitions5. The resulting portfolio
loss distributions are illustrated in figure 4 together with vertical lines, indicating the
VaR0.999. The horizontal axis represents the loss percentile in case of the BASE model.
Table 6 comprises the corresponding risk measures.

As expected, the risk figures increase together with dependence. Since the BASE and
the INDEP model assume independence between the different risk parameters, their
values are closer together compared to the OFM / MFM. The small deviation is a
consequence of the truncation to prevent negative losses in equation (23) and the fact
that, because of stochastic risk parameters, losses are no longer discrete. The second
effect also implies that scenarios of high losses (within the tail) now can have different
reasons, namely a high number of defaults, high utilization rates and/or low recovery

5Across 10 simulations of 5mio repetitions each, the maximum deviation for EC0.999 was below 0.4%.
Therefore, we think that simulation errors are negligible.
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Model EL SD VaR0.999 EC0.999 ES0.999

BASE 100% 100% 100% 100% 100%

INDEP 101% 114% 117% 121% 121%

MFM 157% 178% 186% 193% 192%

OFM 163% 196% 209% 218% 215%

Table 6: Simulated expected loss, standard deviation, value at risk, economic capital and
expected shortfall at 99.9%. The risk measures are denoted as multiples of the
values in the base case.

θ EL SD VaR0.999 EC0.999 ES0.999

0 96% 90% 87% 86% 87%

0.5 98% 95% 94% 93% 94%

0.7 100% 100% 100% 100% 100%

0.9 103% 106% 108% 109% 107%

1 (OFM) 104% 110% 112% 113% 112%

Table 7: Simulated expected loss, standard deviation, value at risk, economic capital and
expected shortfall at 99.9% with varying θ, as well as in the OFM. The risk
measures are denoted by multiples of the values in the original parametrization
θ = 0.7.

rates. The possibility of a combination of all these events (by incident because of missing
dependence) leads to a small increase of risk figures.

In the other two models, the dependence between the risk parameters splits in two
dimensions: the systematic and idiosyncratic component. Whereas both models share
identical risks in the idiosyncratic dimension, the two models differ strongly from each
other in the systematic dimension. In the OFM the systematic risks are completely
determined by the same single factor, and are therefore co-monotone. However, in the
MFM the systematic risks are reduced by diversification effects to some extend because
every risk parameter is influenced by a specific systematic factor besides the mutual
systematic factor. The risk measures of these two models exhibit strong growth, by up
to more than 100% in the OFM compared to the base case. Since, a stronger dependence
typically implicates a heavier right tail, this is a reasonable observation.

To illustrate the effect of the weight of the mutual systematic factor, we calculate the
mentioned risk measures under varying specifications: besides the original specification
(θ = θA = θB = θC = θD = 0.7), we consider the values θ = 0, 0.5, 0.9. The remaining
parameters are unchanged. The OFM represents the limiting case, i.e. θA = θB = θC =
θD = 1. Table 7 states that increasing weight of the mutual systematic factor has a
significant impact on risk figures.

In particular, the economic capital at 99.9% increases significantly from 86% under
systematic independence (θA = θB = θC = θD = 0) to 109% under θA = θB = θC =
θD = 0.9. Since, the OFM represents the limiting case, also the risk figures of the MFM
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Scenario ρB ρC ρD EL SD VaR0.999 EC0.999 ES0.999

low −0.1 0.025 0.1 84% 86% 87% 88% 87%

interm. −0.2 0.05 0.2 100% 100% 100% 100% 100%

high −0.3 0.075 0.3 117% 114% 113% 113% 113%

Table 8: Simulated expected loss, standard deviation, value at risk, economic capital
and expected shortfall at 99.9% under varying idiosyncratic scenarios of the
MFM. The risk measures are denoted as multiples of the values in the original
parametrization (interm.).

converge to those of the OFM when θ goes to 1.
The idiosyncratic factor splits up into a risk parameter specific and a mutual com-

ponent. We consider two additional idiosyncratic scenarios to investigate the influence
of the weight of the mutual idiosyncratic factor. The previously described idiosyncratic
weights ρB = 0, 2, ρC = 0, 05 and ρD = −0, 2 represent an intermediate idiosyncratic
dependence between the risk parameters. For a lower respectively higher dependence we
set these parameters to 0.5 respectively 1.5 times the original values. The other param-
eters coincide with the original specification. Table 8 lists the resulting risk measures
for each parameter setting. Increasing the weight of the mutual idiosyncratic factor
is associated with an increase of credit risk, ceteris paribus. Relative to the economic
capital at 99.9% of the MFM under intermediate idiosyncratic dependence, i.e. the
original parametrization, the EC0.999 increases from 88% under low to 113% under high
idiosyncratic dependence.

For our portfolio, the mutual factors of the risk parameters in the systematic as well
as in the idiosyncratic dimension have both similar strong influences. For example,
the economic capital at 99.9% of the artificial portfolio increases by 31% under perfect
dependence between the systematic factors compared to independent risk parameters.

5 Conclusion

A generalized credit portfolio framework of the CreditMetrics type is introduced which
captures the dependence between the default indicator, the secured and the unsecured
recovery rate as well as the utilization rate at default. Each of these variables is driven
by an individual risk driver which in turn depends on common (global) and specific sys-
tematic factors as well as on idiosyncratic factors. Risk drivers and factors are connected
through a linear structure and with individual (and in general unknown) weights. As
there is empirical evidence for dependence between the four relevant variables and be-
cause observations for the utilization rate at default, the secured and unsecured recovery
rates are available only in case of the default, we develop a multivariate extension of
Heckman’s (1979) selection model in order to estimate the unknown parameters within
a Maximum-Likelihood framework. Finally, we present some indicative results on the
(strong) sensitivity of the risk figures (expected loss, value at risk, expected shortfall)
with respect to the factor structure for a hypothetical credit portfolio. For this port-
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folio, both specific systematic factors and idiosyncratic factors indicate strong influence
on the risk figures. With this in mind, our results suggest that a correct specification
of the underlying dependence structure (here: weights of the factor model) in a credit
portfolio setting is essential. Because loss data collection is still an on-going process and
there are no (sufficiently large) data sets to jointly estimate the unknown parameter, the
parameterization of our multi-factor models was derived from different empirical studies
which itself only cover a partial aspects of our model.
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