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ABSTRACT

The aim of this paper is to study the impact oflikty insurance on an insurer's
risk situation for a portfolio also consisting ofrauity and term life contracts. We
provide a model framework using discrete time nombgeneous Markov renewal
processes and focus on diversification benefitwelsas potential natural hedging
effects that may arise within the portfolio duethe different types of biometric
risks. Our analyses emphasize that disability musces are a less efficient tool to
hedge shocks to mortality and that their high d4bfitsi towards shocks to
disability risks cannot be easily counterbalancgdther life insurance products.
However, the addition of disability insurance cdill €onsiderably lower the
overall company risk.

Keywords: Disability insurance, life insurance, mortality kjisnatural hedging, non-homogenous
Markov renewal model
JEL classification:G22, G23, G32, J11

1.INTRODUCTION

Due to an increasing social relevance and demauwlisability insurance, the management of
disability risk within life insurance portfolios i®ecoming increasingly important. The
importance of disability insurance has also beentpd out by Chandra and Samwick (2005),
for instance, who concluded that precautionaryrgais a less useful hedge against disability
risk. At the same time, the risk associated wiflerafig these products is increasingly focused
by insurers and regulators due to the developmenew risk-based regulatory frameworks
such as Solvency Il in the European Union and ttr@duction of the own risk and solvency
assessment (ORSA) in the United States (see Widkamd Christopher, 2012). In this
context, especially diversification benefits thaaymarise within an insurance portfolio as a
whole play an important role to reduce the oveiak level. Due to the specific exposure of
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disability insurance towards disability and mottaliisks, in this paper we extend previous
analysis and specifically focus on the effect aathility insurance policies in a life insurer’s
portfolio also consisting of annuities and terme lipolicies. We thereby also study the
effectiveness of natural hedging in case of shaocksortality and disability risk.

Previous literature has already emphasized theaete of diversification benefits in regard
to mortality risk by means of natural hedging, whan help immunizing an insurer’s risk
situation against changes in mortality, as welbder hedging approaches (see, e.g., Blake et
al., 2006; Cox, Lin, and Pedersen, 2010; Gatzedt \Alesker, 2012a; Gatzert and Wesker,
2012b; Wang et al., 2010; Wetzel and Zwiesler, 2008ng, Sherris, and Stevens, 2013). In
general, in the literature concerning mortalitykriene objective is to hedge this risk which
comprises all forms of uncertainty that are relateduture mortality rates (e.g., Cairns,
Blake, and Dowd, 2006a). Mortality risk can genlgréle decomposed into systematic and
unsystematic risk as well as basis risk (see Gatmed Wesker, 2012a). In contrast to
unsystematic mortality risk, which refers to thexdamness of deaths in a life insurance
portfolio given a fixed mortality intensity, systatic mortality risk is not diversifiable but
may be reduced either by including a safety loadingrremiums or by transferring part of it
to the insured, e.g. by offering mortality-linkedntracts (see Dahl, 2004; Dahl, Melchior,
and Mgller, 2008; Richter and Weber, 2011). Systemmortality risk itself can be further
divided into process risk, parameter risk and moc#l (see, e.g., Levantesi and Menzietti,
2012). Basis risk may arise due to adverse seteétffects from the difference between the
mortality of policyholders and the population métya(see Gatzert and Wesker, 2012a). A
partition of disability risk into systematic risknsystematic risk and basis risk can be defined
analogously.

The management of biometric risk including mornjalgnd disability risk plays a major
important role in risk management (see, e.g., GaiBlake, and Dowd, 2008). The mortality
risk inherent to life insurance or annuity contsagtay be hedged using financial instruments
such as longevity or mortality bonds, for instaf®ee Dowd et al., 2006). As an alternative,
natural hedging effects can be exploited as desdridmbove to reduce mortality risk by
stabilizing the aggregated cashflows resulting faomnsurance product portfolio making use
of the opposed development of the value of liabditdue to changes in mortality (see Cox
and Lin, 2007). Several papers have studied andrshioe effect of natural hedging between
annuity and term life insurance and proposed diffenatural hedging techniques (see, e.g.,
Bayraktar and Young, 2007; Cox and Lin, 2007; Gataed Wesker, 2012a; Gatzert and
Wesker, 2012b; Grindl, Post, and Schulze, 2006iano¢ Regis, and Vigna, 2011; Luciano,



Regis, and Vigna, 2012; Tsai, Wang, and Tzeng, 20¥@ng et al., 2010; Wetzel and

Zwiesler, 2008). While a relevant amount of reseanas been conducted in regard to
mortality risk associated with life insurance amohaities, the literature concerning disability
insurance so far has not focused on studying disabisurance in a portfolio context, but

rather on the adequate modeling and evaluationsabdity insurance risk and policies using
several state models and processes (see, e.gsnhband Pitacco, 1999; D’Amico, Guillen,

and Manca, 2009; D’Amico, Guillen, and Manca, 20d8jwich, 2008; Janssen and Manca,
2007; Maegebier, 2013; Stenberg, Manca, and Sitwes2007).

In this paper, we aim to combine the two strandshefliterature and incorporate disability
insurances in a life insurance portfolio proposagnulti-period framework to analyze and
quantify the effectiveness of hedging effects betwennuity, disability and term life
insurance. Toward this end, we model the insuracm®pany as a whole and calibrate
discrete time non-homogeneous Markov renewal psasegor all three insurance types
following the approach in Stenberg, Manca, andé&Siinov (2007). Our results show that,
although disability insurance is less efficienhedge mortality risk, and term life insurances
in general are not well suited to limit the impatdisability risk, an optimal (in the sense of
risk-minimizing or risk-immunizing) product mix mayevertheless considerably decrease the
shortfall risk inherent in the insurance portfolio.

The remainder of this article is structured asof@. In Section 2, the model of the insurance
company along with assets and liabilities is premsgnSection 3 presents results of the
numerical analyses and Section 4 concludes.

2.MODEL FRAMEWORK

This section first presents the model for mortatdyes and survival probabilities. Then, we
introduce general Markov renewal models as a fraonlevior life and disability insurance.
Afterwards, the model for the insurance companiaid out based on Gatzert and Wesker
(2012a) along with the relevant risk measures.

2.1 The modeling of mortality rates

We use the model by Brouhns, Denuit, and Vermud®22), which assumes that the number
of deaths at ageduring period (Dy) is Poisson distributed, i.e.,



Dy ~ Poissorf E ().

with an exposure-to-risk,; and the force of mortality,(t) that in the following is assumed to
be defined according to the Lee and Carter (1998jah(see Brouhns, Denuit, and Vermunt,
2002b), where the natural logarithm of the forcemafrtality u«(t) at agex during periodt is
split into age-specific components, and px as well as a time-varying parameterthat
describes the time trend of mortality

In (/ux(t)) =0y +,Bx re +£x(t) < ,Ux(t) = @MxtAdiirex(t) )

and the homoskedastic centered error terms of thaehare denoted bay(t) (2,4« =0and
>.B«=1). The model is calibrated based on a uni-dimemgiblewton method as proposed
by Goodman (1979). Based on the projected foramartality u(t), the one-period survival
probability for a person agedin periodt can be computed by,(t) =exp(-u« ) (see
Brouhns, Denuit, and Vermunt, 2002a).

In the following, we apply the notation for Markoeenewal processes as laid out in D’Amico,
Guillen, and Manca (2009), where the one-periodvigal probability is included as the
associated waiting time distributigh;(s,?). In general, the waiting time distribution derste
the probability that a transition from an alivetstato the dead stateoccurs up to time
given that arx-year old individual entered statat times and thaj is the next state. It can be
calculated by

«Fij(s,1) :;_Z::Zx fi (s stJ) with
51

(1-p ., (s+9-0))0] p,., (st9-9), if < T-190[1T }

J'=1

0, if s=T ord=0,

X fij (S, S+Z9) =

whereT denotes the time horizon axfg(s,s+%) depicts the probability that a transition from
an alive state to the dead stafjetakes place exactly at tinga9, given thaf is the next state
and that an individual agex entered state at times. Both, active and disabled states are
considered as alive states. Since homogeneousragpsgwill be studied in the subsequent
analysis, the index is omitted in the following.



2.2 The discrete time non-homogeneous Markov renewgarocess

Based on the notations and definitions given in migo, Guillen, and Manca (2009), the
model framework applied to disability insurancentdife insurance and annuity policies is
presented in this subsection. This general framlewmmsists of a discrete time non-
homogeneous bivariate Markov renewal process.

The random variable®, andT, are defined on a probability staf@,2,P) asJ,:Q - | and
T.:Q - N, where Q is the sample space amd:{l,...,m} Is the state space including the
active and the (absorbing) dead states well as all potential disability levels. Thdsm
random variables run together and the corresponstionchastic procesgl),, T,), nON, is
described as a non-homogeneous bivariate Markoawanprocess, wherd,, denotes the
state occupied at then-th transition, T, the time of the n-th transition and
F.=0(J,, T,;us n the natural filtration. In the context of disabjliinsurance, each
transition may represent changes of the disaldawgl or the event of death and the time of
each transition corresponds to the time when taagh in the health state is registered by the
insurer. Then, for the procesk,T), the information regarding theth transition is sufficient
to state the conditional distribution of the susbes state J,., entered at timeT,.,
Oi,jOr1, Os,tON, s<t,

P[‘]n+l: j!-l-n+:l_stlo-(‘]m-l-u)loS US n ‘Jn: iy-l;\: g

=P[Jha= TSt 3, =0T, = 9= Q( S}
as well as the transition probabily

Pi (9 =lim Q(s}).

The first transition probabilit®) thereby describes the probability that the suceestatg is
entered up to timeand the second transition probabilitglenotes that stajas the next state
occupied, regardless of the time of the associttsition. Both transition probabilitied
andp are conditional upon the statdeing entered at time The matrixP(s) =[ p;(9] is
introduced as the transition matrix, which corresf®to the embedded non-homogeneous
Markov chain in the process, and the probabil@yis constrained by the following
assumptions:

1. Q;(s9=0, 0i,j0I, OsON and

2. Qi(st)=0,t-s>0, OsON.



The first assumption forbids multiple transitionsamy times and the second restriction
excludes virtual transitions from a state to itsBlased on the previously defined transition
probabilities and on condition that the successtaéej is known, the distribution function of
the waiting time in the current states defined as

Qi(s/ p(9, ifp(3#0,
Fi(s)=P[Tustld=1i3n=jT=§= 1, if p(3=0
0, ifi=j=m.

This waiting time distribution specifies, e.g., bat time an active policyholder will die,
given that this policyholder will die without becarg disabled prior to death. Therefore, this
distribution is crucial in the context of disabjlinsurance as well as term life insurance and
annuity products as it takes the duration in tlaestinto account and, thus, determines the
time of disability, of death and of potential reeoes. Furthermore, witim being the number

of states in the considered model, the followingpabilities can be defined:

i(s)-Q(stD, if t
'%'(SI):FNHFHi+1=t|~1:m:$:{Q ° ;?(s ) ilf t::and

| 1-3Qi(s,t), ifi=j,
4 (8 0= ATu>t 3= iT= 81" &Y j
0, ifiz].

Probability bjj(s,?) is almost equivalent to probabili) except that the transition to stgte
takes place exactly at timieThe distributiord;(s,?) represents the probability that the current
statei, which was entered at tinge will not be left up to timé. For notational reasons, this
definition makes sense iff= j. The previously defined probabilitidg(s,) andd;(s,) are
extended by conditioning them on the time alreaplgns the present state, i.e. the initial
backward recurrence time (see, e.g., D’Amico, @uilland Manca, 2009; Stenberg, Manca,
and Silvestrov, 2007):

0, ifdi;(,s)=0ort=s,

B;(,89= H b= J ha= U b= 10 = 1 Tha> 971 B, (0 otherwise
dii(I,9)

dii (I,t)

L T > 9= di(l,s)’
0, ifizj or ifd;(s)=0.

ifi=j,

dj(Lst)=HTu>t J=1T



The difference between the original and extendedtbadvilities is thaty(s,) andd;(s,) are
conditional upon state being entered at timg while bj(l,s;t) andd;(l,s;t) assume that the
health state did not change after timeup to times. These probabilities are of importance for
the computation of the book values as defined bdlesause the time already spent in the
current statea may affect the next transition, i.e. the waitimge distribution may not be
memoryless.

2.3 Multiple state models in disability and life irsurance

In the context of disability insurances, severatestmodels have been suggested and
implemented. Generally, a three-state-model igzetll to display the health states of the
policyholder: active (1), disabled (2) and dead. (B) the case of permanent disability,
recoveries, i.e. transitions from the disabledestatthe active state, are not allowed (see, e.g.,
Pitacco, 2004), while in the case of potentiallymperary disability, recoveries are
considered. In addition, the disabled state cafutiber split according to the duration of the
disability and further states can be added to adcéar lapses and pensioners (see, e.g.,
D’Amico, Guillen, and Manca, 2009; Haberman anda&ib, 1999). In this paper, we will
employ a three-state-model with recoveries to madkeldisability insurance contract. The
corresponding set of states and set of transiaoa®xhibited in Figure 1.

Figure 1: Set of states and set of transitions for the disaimsurance model

@ disabled (2)

dead (3)

Term life insurances and annuity policies can bedefed using a two-state-model with

transitions only from the active state (1) to theadl state (2) (see Macdonald, 1996). To
ensure comparability between the model used fodigebility insurance on one hand and the
term life insurance as well as annuity contracttlom other hand, we will apply a Markov

renewal model to all three contract types. In aaflsannuities and term life, the transition

probability from the active state to the dead siateequal to one and the waiting time

distribution is only affected by the rate of moitialand thus specifies when the transition
takes place. The associated set of states andl tsahsitions are depicted in Figure 2.



Figure 2: Set of states and set of transitions for the {demnsurance and annuity model

2.4 Modeling the insurance company

The considered insurance company is assumed ta digability insurances, term life
insurances and annuity policies with a simplifiedelnce sheet as laid out in Table 1.

Table 1: Balance sheet of the insurance company attime

Assets Liabilities
A(t) BA(t)

B°()

BA(t)

E(®)
At) A(t)

The market value of the assets of the insurancepaaosn at timet is denoted byA(t).
Furthermore, the book value of liabilities is reéet to byB¥(t) with superscripk specifying
the type of insurance, i.e. annuity policiég, (disability insurancel}) and term life insurance
(L), which are sold with the same time to matufitye(t) is the insurer’s equity at timeand
residually given by the difference between as#¢ts and liabilitiesL(t) = BA(t) + B°(t) +
B~(t). The equityholders are assumed to make an initi@stmentE(0) and in return obtain
an annual dividend, which is given as a constaationr. of the difference of the surplus,

div(t) =r. Mmax(E" ¢)- E¢t-1);0,

with E (t) being the value of equity at timdefore the dividend is paid (see, e.g., Gatzait an
Wesker, 2012a).

We assume that the insurer’s assets yield a canigione-period retury at timet, which is
normally distributed with an expected valpe and a standard deviatie i.e.

Alt) = A(t—l)@xdé‘t) with &, ~ N (,ug,aﬁ).



The development of the asset base is also inflaerme premiums, benefits and the
previously described dividends. At the beginninghef contract term, i.e. at tinffe= 0", the
asset base of the insurance company consists afitla equity and the premiums received
in t = 0. Any shocks to input parameters such as chaimgemrtality or disability rates are
assumed to occur after the contracts are closeddanabt affect the initial balance sheet.
From the insurer’s perspective and for all insueanontracts, the premiums are received in
advance, while the benefits and dividends are jpaddirears.

The book values of liabilities of an insurance cact at timdt, i.e. the prospective reserve for
all cash flows after time¢, are computed based on the respective Markov r@nprecess,
which is extended by taking into account premiumd benefits (see Table 2). In this paper,
we follow the approach in Stenberg, Manca, andeSthov (2007) to incorporate premiums
and benefits as “rewards” in the Markov renewalkpss and assume that the market risk, the
disability risk as well as the mortality risk arelependent.

Table 2: Description of rewards (premiums and benefits)

Parameter Description

SP Single premium (annuity) (paid at contract incepio

¢/1A Annual benefit (annuity), also: annuity (paid imezars)

¢/1D Annual premium (disability insurance) (receivedivance)
¢/2D Annual benefit (disability insurance) (paid in &g

VR = Vo Death benefit (disability insurance) (paid in arsda

t/llL Annual premium (term life insurance) (received dvance)
yle Single death benefit (term life insurance) (paidirears)

The risk-free interest rate is denotedrbyet B(t) be the prospective reserve foramuity
contract at timé being in state at timet and let reward/{ be the annuity paid in arrears.
B (t) is computed as the difference between future erpecliscounted benefits and
premium payments, i.e.

BAM) = dAO,tT) X ATE™ + 3 150, t t ﬂ)[ﬁﬂz_ll/l AE ”3’}
9=1 9=1 9=1

1-F2(0)

§=1

{ER )
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The first summand considers the case that the yhalider stays in the initial active state,
which implies the reception of annuities throughth& considered time horizon. The second
summand accounts for death occurring during thetraon duration inferring a stop of
annuities at and after the time of death. As dealicyholders do not receive further
annuities, being in state 2 implies zero furthabilities, i.e. B;'(t) =0,0t. Hence, the total
book value of liabilities resulting from the pofifoof annuities at timéis given by

BA(t) = () (B(Y,

with nf(t) denoting the number of policyholders still alietine t. The prospective reserve
of adisability insurancecontract at time, given that the individual has been in healthestat
sinces time periods, is denoted tﬁiD(s D),i=1, 2. In this case/; describes the premium
and (7 the disability benefit, while the death benefidisnoted byy2 and )2, paid upon
transition from the active (1) or disabled stat§ (@ the dead state (3)Moreover,

By (s )=0,0s 1. The number of active policyholders, who have baetive since exactly
periods at timd, is described withn (s t) and the number of disabled policyholders, who
have been disabled since exacHyperiods at timet, is specified with ny(st). The
prospective reserves for the active (1) and thabdiésl (2) policyholders are thus calculated as

B (s =di(t- st DDE:—.///? e
+YbY(t-s g t+ﬂ)EE'9z_1 PO 4yl e + B (O, w)méﬂ
9=1 2'=0

+;z:ibf’3(t— St t+z9)EE:Zi—wf 7 4 y?gme-fﬂ

and
-
BY(s )= dl(t- st nag;wg 0e®
T-t 9-1 )
+YbY(t-s t t+z9)[EZl//2D 7+ B (O, t+z9)me-fﬂ
9=1 2'=1

+;z:;b53(t— St t+) ::zwz B 4 y23me-fﬂ.

! Disability insurances typically provide coverafge disability only and, therefore, do not includeath

benefits. However, the policy may be sold as arrideterm life insurance, for instance, such that t
resulting product covers disabilities as well aatdeFor simplicity, we will refer to this combing@doduct as
a disability insurance contract with death benefit.
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In the first equation, the prospective reserve wiheing in the active state is determined. The
first summand describes that the initial activeestia not left until contract maturity and
hence, only premiums are received. The second sachroansiders a transition to the
disabled state during the contract duration. Heremiums are received up to the beginning
of the disability and the disability benefiz; is added. The prospective reserve for the
upcoming disability is then assessed IBS/(O,Hz?). At last, direct transitions from the active
state to death are included in the third summamthis case, premiums are received up to the
time of death and the death beney@ is paid upon death. The second equation comples t
prospective reserve for a disabled policyholddgmagt. The disability benefits are either paid
for the remaining contract duration, as descrilvethe first summand, or paid up to the time
of recovery or death, as depicted in the secondtartilsummand respectively. In the second
summand, the future premium payments due to regaver assessed B (0,t+2) and, in
the third summand, the death bengflf is included. Hence, the total book value for ditsgb
insurances at timeis computed by

t t
BP()=Xn'(s )R’ (s)+ 2 H(sYIB( s).
The book value for germ life insuranceontract at time, B (t), is computed as

BL(H) = d4(0,tT)Y —wt 877 + 5 (0, ¢ t+z9)tﬁ"z'l L0 + yazméfﬂ
9=0 =1 =0

_ T-Zt:—l(yll_2 d:llé(o,t +3+ 1)— F1L2 (O,t + )@_rmgﬂ) _l//;:__ = I:1L2 (Ot +7 )[e-rlﬂj

520 1-F5(0,t) 1-F5 (0t )

B (1) =0.

Here, the first summand in the first equation refier the case that the policyholder stays in
the initial active state and hence, premiums aceived for each point in time during the
contract duration. The second summand considersabe that the death of the policyholder
occurs before the end of the duration and therefimemiums are paid up to the time of death
and then, the death benefit is paid. As descrit}eBb(t), the book value of the liabilities is
equal to zero after the policyholder's death. OMenaith n(t) being the number of
policyholders alive at timg the total book value resulting from term life ungnces at timé

is given byB"(t) = n (1) (B (9.
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To ensure comparability in the subsequent numesnalysis, the three insurance types are
calibrated to have the same individual contracuna V, which here refers to the present

value of benefit payments. Thus, based on the queviformulas for the book values,

premiums and benefits are computed according tcathearial equivalence principle. The

potential default of the insurance company is rwtsadered in the premium calculation and
external institutions are assumed to fulfill remiagncontractual obligations in the case of
insolvency (see, e.g., Gatzert and Wesker, 2012b).

2.5 Risk measurement

As the relevant risk measure, we first consider ghebability of default PD), which is
defined as the probability that the ass&f§ are not sufficient to cover the liabilitidt)
during the contract duration, i.e.,

inf{tO[0,T]: AY < LD}, ifOtOO, T]: AY < LD,

PD=P(T,<T) with T, = :
T +1, otherwise

In addition, the mean loss is derived, which meastine discounted expected loss in the case
of default,

ML =E[(L(Ty)- A(T))Ce™ 0{ T =< §],

where {4 stands for an indicator function. In addition, #tandard deviation of liabilities at
each timd is calculated, i.e.,

o(L(v) =0 (B 1)+ B°()+ B(Y).
3.NUMERICAL ANALYSIS
In this section, after introducing the mortalityiegtion and the input parameters, numerical

examples regarding the risk situation of an insceanompany offering annuity policies,
disability and term life insurances are presenetliding comprehensive sensitivity analyses.
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3.1 Mortality estimation and projection

The general mortality rates for all regarded groapsnsured are based on the number of
deaths and the exposure-to-risk in the German p@belation from 1956 to 2011 from the
Human Mortality DatabaseWith 100 being the maximum age attainable, the atgaphic
parameters, as defined in Lee and Carter (1992k estimated with the regression model in
Brouhns, Denuit, and Vermunt (2002a) and the resflk, andpx are displayed in Appendix
A.l. Because of its non-stationarity, the firstfelienced series of the estimated mortality
trendx; was modeled with an ARIMA model. Even though theaike information criterion
indicated a more complex model, the Box-Ljung Tasd, using a significance level of 5%,
the autocorrelation function as well as the paraatocorrelation function showed no
significant residual autocorrelation for the apgl®RIMA(2,1,1) model. This ARIMA model
has the following parameters with their respectstandard error in parentheses: an
autoregressive part with paramet¢rs= 0.6915 (0.1400), = 0.2987 (0.1382) and a moving
average part with parametéf = -0.8350 (0.0665). The estimated as well as &std
mortality trendk; is shown in Appendix A.1.

3.2 Input parameters

We consider male policyholders aged 35 purchasisapdity or term life insurance contracts
and male policyholders of age 75 who purchase &anmalicies. For both age groups, the
contract duration is thub = 25 years for contracts closed in the year 2012.

The calibration of the disability insurance modelcdhallenging due to the scarceness of
available information and empirical data. Howevdre empirical analysis of Spanish

disability data in D’Amico, Guillen, and Manca (Z)0suggests that the transition probability
from the active state to the disabled stgt&(9)) is approximately 20% across the ages 35 to
60 years, i.e. within each age group, 20% of thkcylwlders have an actual chance to
become disabled, whereas the remaining 80% ceytdialwithout becoming disabled during

the remaining lifetimé. Therefore, we assume an (average) disability gslup with a

2 See www.mortality.org. For the years 1956 to 199@ available data for East and West Germany are

combined.

In their analysis, D’Amico, Guillen, and Manca0O(®) study Spanish disability insurance policiebere
disability corresponds to a serious dependencd e to a policyholder’s inability to perform dailife
activities without the help of other individuals. &ddition, blindness and dismemberment are coveydte
regarded insurance company. This definition is identical to the one in Germany where the permanent
inability to practice an occupation due to diseapessonal injury or decomposition is covered (goi and
Neuhaus, 2009). However, the disability tableshef German Actuarial Association also consider ltarg:
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transition probability p>(s) =20%, Os, i.e. for all age groups, and additionally study
groups with higher disability risk by increasingettransition probabilityplDz(S) to 40%. For
all risk groups considered, we consider permangsatbdity, where the transition probability
from the disabled state back to the active statetie following probability of recovery,
p?l(s)) is 0%. Moreover, we further examine the impacpofential recoveries within the
group with the highest disability risk by settingetprobability of recovery to 40% and, thus,
we explicitly analyze temporary disability.

The mortality rate for disability insurance poliojtiers is derived from the mortality of the

whole population. While the mortality rates forigetpolicyholders of disability insurance is

assumed to be the same as for the term life insarpalicyholders, Segerer (1993) points out
that the mortality rates for disabled policyholdars higher than the active life mortality and
that this difference is decreasing in age and nattlon of the current disability. Therefore, we

compute the ratio of the probability mass functibmsthe mortality of active and disabled

policyholders based on the actuarial tables of3aeman Actuarial Association (DAYYia

F23(S; S+?9)_ Fzg( S S"z9—1)

tio =
e T (s 5+9) - Fa( s #9-1)

and approximate this ratio by the functionax{a [5°3/’;1}. This function follows the
empirical results in Segerer (1993) by implyingirae non-linear relationship between the
factor on the one hand and the age as well asidnrah the other. The application of the
method of least-squares yields an initial valuef 49.56> which is decreasing b§ = 7.4%
each year of age and hy= 32% each period spent in the current disabilitgestarhe
modeled ratio is never less than 1, implying tlneg inortality of disabled policyholders is
always at least as high as the one for active ylutiiclers. Based on the modeled ratio and the
mortality of active policyholders, the waiting tinggstribution from the disabled state to the
dead state is constructed. As the actuarial tatdasot include the future advances in medical

care as a disability claim and, thus, apply a simdefinition of disability as compared to the Sphn
definition. Due to this comparability, we use enwal results from D’Amico, Guillen, and Manca (2008
combination with the actuarial tables and, thuss rasults from Spanish and German disability dasano
further data was available.
* " In this numerical analysis, the German mortadityl disability tables DAV19971, DAV1997RI, DAV199¥T
and DAV2008T were used, but without the safety iogsl
This implies that for a 35-year old policyholdeino just became disabled, the one-year probalufigeath
is 49.56 higher as compared to the mortality prdivalof a 35-year old active policyholder.

®  The coefficient of determinatioR? is equal to 98.1%.
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sciences during the last two decades, these assmsiphay not fully reflect the current
reality and are thus subject to sensitivity anayse

Following the empirical results in D’Amico, Guillemnd Manca (2009), the waiting time
distribution from the active state to the disakdtate is assumed to be logistically distributed
with a truncation at 0 and, via the method of leagtares, the (discretized) logistic
distribution is fitted to the probability mass faion, which is based on the actuarial tables of
DAV. For a 35-year-old policyholder, the correspmgdmean and standard deviation are
33.69 years and 11.03 years, respectively, andastive policyholders and recovered ones
with the same age show the same disability ratesddition, it can be observed that the
disability rates are increasing in age. Moreoviee, Waiting time distribution for recoveries,
i.e., for transitions from the disabled state backthe active state, is assumed to be a
geometric distribution and is fitted to the DAV oeery tables by applying the method of
least-squares again. The parameter of the resudgogetric distribution, i.e. the inverse of
its expected value, is equal to 9.29% for all pdlmders aged 35 years at the inception of
disability and for each year of age at disabilibceaption, this parameter is reduced by
11.59%' The resulting waiting time distribution reflecteetreality in that recoveries become
less likely with a higher duration of disability caa higher age. The transition probabilities,
the mean of the waiting time distribution to theatiled state as well as the mortality rates are
subject to variation.

Independent of the resulting portfolio composititmensure comparability, the total amount
of contracts sold is set to 10,000 and the indi@idwntract volumé/, defined as the present
value of future benefit payments, is set to 10,6@@nsure the comparability between the
three regarded insurance types (see Gatzert andewez012a) and to isolate potential
hedging effects. In addition, the risk-free inténege is fixed ta = 3%. Based on this risk-
free interest rate and contract volume, the ann(m@/ is equal to 1,139.59 for a single
premium ofV. The resulting annual premium for the term lifstranceyy is equal to
570.58 and the death beneﬁfg is 245,390.60. In case of disability insurances @mnual
premium{; , the annual disability benefi#; as well as the death benef{, = y>, are given

in Table 3 depending on the respective disabilityurance design (with or without death
benefit and for different transition probabilities disability and recovery). For instance, in
order to keep the volume of the contracts equabtO@00, in case a death benefit of 100,000 is
paid, the annual disability benefit must be reduitech 77,337.31 (No. 1) to 50,272.77 (No.
2) when keeping the annual premium unchanged. lgorem disability transition probability,

" The regarded geometric distribution is suppoceedhe set {1,2,3,...}.
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the inclusion of recoveries increases the disgblienefit, e.g., from 38,668.66 (No. 3:
probability of recovery 0%) to 38,981.26 (No. 4olpability of recovery 40%), but the effect
is not substantial.

Table 3: Premiums and benefits for different designs ofdisability insurance contract

No. | Disability Recovery Premium Benefit l//zD Death benefi
‘//1D Vl% = V1233

1 | pX9=20% | Ph(9=0% |572.52 77,337.31 0

2 | pX9=20% | ph(9=0% |572.52 50,272.77 100,000

3 | p(9=40% | p(9=0% |574.47 38,668.66 0

4 | p(9=40% | pO(9=40% |574.08 38,981.26 0

To analyze the risk situation of the insurance camyp a Monte Carlo simulation with
100,000 simulation paths is used and, for each latoa run, 10,000 contracts of each
insurance type are simulated based on the undgriMarkov renewal model. For each
contract sample, the total number of policyholdersach state at any time is determined. The
actual number of each insurance contract in thardagl portfolio is then considered by
multiplying the total number of policyholders inchastate at any time with the share of the
contract in the portfolio. Thus, the sub-stockrefurance contracts is determined by means of
the maximum total stock. The shareholders makendialiinvestment of 10 million at the
beginning and receive a constant fractionrof 25% of the earnings as dividerfdat each
point in time, the book values for each type oftcact are computed with the risk-free rate
(3%). In addition, assets are calculated with amuahexpected rate of returnof= 5% and a
volatility of o, = 8%. The risk measures are then computed baseceatetbrmined liabilities
and assets at each time. The input parametershasermr for illustration purposes and are
subject to robustness tests.

3.3 The impact of disability insurance on a life isurer’s risk situation: The impact of
diversification effects

To examine the initial risk situation of the fiativnsurance company, the parameters used for
the calculation of premiums and benefits are fassumed to coincide with the actually
realized parameters, especially the mortality aaug the transition probability from the active
to the disabled state.

8 Note that from the equityholders’ perspective, dividends (or the insurance contracts) are noipeted to

be fair.
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In general, the total payout resulting from thetfodio of annuities declines over time,
whereas the payout for the term life insurance fplot increases from the insurer’s
perspective. In case of disability insurance, tlashcinflow due to premium payments
gradually declines as active policyholders eitherat become disabled, which is analogous
to term life insurances with annual premiums where portfolio of active policyholder
declines. The benefits comprise disability bengfithich are paid as long as the disabled
policyholder is alive. Once the disabled policylesldlies during the contract term, benefit
payments are stopped and a death benefit may loe Hance, depending on the chosen
disability rates and mortality rates for disablealigyholders, the payment of benefits may
fluctuate over time, which is in contrast to terife linsurance and resembles the payout
structure of an annuity with uncertain startingedanhd uncertain time to maturity. In our
analysis, the number of policyholders who beconsalled exceeds the number of dying
disabled policyholders at any time during the cdesed time horizon and therefore the cash
outflow is steadily increasing. Overall, these eléint payment structures provide
opportunities for counterbalancing the payments @rdthus contribute to reduce the overall
risk resulting from the portfolio.

Figure 3 displays the shortfall risk of an insumm@ompany using the probability of default
depending on the portfolio structure, where thetiea@r line in each plot represents the
maximum portion of disability insurances in the siolered portfolio (e.g. first row, second
figure: for an insurance portfolio with 30% terndeliinsurances, at most 70% disability
insurances can be sold). Figure A.2 in the Appemdiditionally exhibits results when using
the mean loss as the relevant risk measure.
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Figure 3: Probability of default for different portfolio cqmsitions and disability insurances
for different disability insurance designs (No.Tiable 3)
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contracts) are sold.
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Figure 3 shows that portfolios solely consistingaohuity policies exhibit the highest risk in
the considered setting, which also holds for thamless (see Figure A.2 in the Appendix).
The risk can be reduced by either adding termdifaisability insurances to the portfolio,
thus generating diversification effects due to urelated biometric risks. The portion of
disability insurances that minimizes the compardesault risk in the base case (Figure 3a)
lies between 0% (see right graph in Figure 3a) 6@% (see left graph in Figure 3a)
depending on the risk measure and the fractiorewn tlife insurances in the portfolio. In
addition, one can observe that increasing the godf term life insurances lowers the risk-
minimizing proportion of both disability insuran@nd annuity contracts because of their
comparable structure of annual benefit payments #dna paid as long as the disabled
policyholder or the annuitant is alive. Regardlesshe risk measure (see also Figure A.2 in
the Appendix), the portfolios with the least risk the present setting feature a high
percentage of term life insurances and, dependmnie initial portfolio composition and the
risk measure, the overall risk can be reduced ug5% (see right graph in Figure 3a).
Because the differences between the three insutgpes cannot arise from different contract
values (in the sense of the present value of biepafiments at inception of the contracts,
which is calibrated to 10,000 for all contractd)e ttiming of the payouts matters and a
balanced portfolio composition may smooth the dhlsks from the various insurance types.

Figure 3b) displays the probability of default ilaath benefit of 100,000 is paid in case the
policyholder dies during the disability contractnte(e.g. in case of a standalone disability
insurance contract in contrast to a supplementagbdity insurance that is attached to a term
life contract, for instance). The results show ttie risk inherent to disability insurance
contracts is reduced by the inclusion of death tsngcompare to Figure 3a), see case of
highest disability insurance portion) because tbmlined product now includes the less
risky term life insurance component and a redudsdhility benefit payment (see No. 2 in
Table 3). Thus, the risk-minimizing fraction of dislity insurances is slightly increasing.

Figure 3c) shows the case where the transitiongtitity from the active to the disabled state
(plDz(S)) is increased from 20% to 40% (No. 3 in Table Bye to the calibration of the
contracts to ensure the same volume at contraepiimn, the disability benefit is reduced by
about 35% (while annual premiums remain approxitpatechanged), which overall implies

a slight reduction in shortfall risk. Further arsdg also showed that the standard deviation is
considerably reduced in this case due to the laigability benefit.
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In Figure 3d), recovery is included in the modethna transition probability p'zjl(s)) from
the disabled to the active state of 40% (instea@P6f for a disability transition probability of
40% as in Figure 3c), i.e. for the case of the ésghisk group. In this case, the impact of
recoveries is higher, but still negligible, as vdey policyholders actually recover after
becoming disabled during the contract term. Ovgtiadl different effects are rather small and
do not substantially impact the results, includihg risk-minimizing portfolio. Thus, in the
following, we focus on the base case as displayddgure 3a).

Figure 4 displays the development of the standardiation of the liabilities over the
considered time horizon of 25 years for a portfoli@mne single contract type, respectively. In
general, the standard deviation is affected by time distribution of the policyholders within
the state model, the benefit level as well as e tof benefit, and these factors may
potentially counterbalance each other. In particulze bow-shaped curve follows from the
standard deviation being zero at time zero anthetenhd of the time horizon. In addition, a
higher benefit level and a smoother allocation oligyholders across the state model, i.e.,
policyholders are not concentrated in a singleestatply a greater standard deviation.
Moreover, annuities yield a higher standard desrabf liabilities because of the prospective
reserve being greater. The standard deviationeofidilities resulting from annuity products
reaches its maximum in the first half of the timeribon, whereas the variation of the
liabilities arising from disability insurances atetm life insurances have their maximum in
the second half on the time horizon. As shown is figure, disability insurances have the
highest variation followed by annuity policies besa even though the disability
policyholders are more concentrated in the actissompared to the annuity policyholders,
the disability benefit level is much higher thae #nnuity. In contrast, term life insurances
reveal the lowest variation of liabilities becaugdhe relatively highest concentration in the
alive state (the vast majority of policyholder sues the duration of the contract) and due to
the death benefit being a single payment. As altrebe addition of term life insurances to
the insurance portfolio may considerably lower tiverall standard deviation over the time
horizon in the considered setting. Figure 4 alseeats that a disadvantage of disability
insurances as a potential hedging tool may be éhatively high standard deviation of
liabilities.
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Figure 4: Standard deviation of liabilities (in million) ovéime for a single contract type
(10,000 contracts for each case)
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3.4 Natural hedging in a life insurance portfolio vith disability insurance: The impact of
shocks to mortality

As indicated in the analyses in the previous sacttrong diversification benefits may arise
in a portfolio of different life insurance contractlepending on the respective portfolio
composition. In the following, we extend our an&yand study the effectiveness of natural
hedging in the presence of disability insurancest ffocusing on shocks to mortality. To
illustrate central effects, we model simple shacksortality by multiplying the time trend of
mortality x; with a constant factog and assume that these shocks are not taken iobwiratc
by the insurer when calculating benefits and premsiliThis constant shock for a| implies

a non-identical change of the mortality rates axragles because of the age-specific
sensitivity parametds,.

Figure 5 displays the results for different shoksnortalitye corresponding to the setting in
Figure 3a) for the probability of default (see Fg\.2 in the Appendix for the mean loss).
Since the forecasted time trend is negative dufiegime horizon (see Figure A.1), a faator

less than one describes an increase in mortabgy I{ees with symbols ‘square’ and ‘triangle
facing downwards’ in Figure 5) arelgreater than one implies a decrease in mortadige (

lines with symbols ‘triangle facing upwards’ anddss’ in Figure 5).

In the case of annuities, shortfall risk is inceshd mortality rates decrease € 1) because
annuities need to be paid out longer than expedtedhe left graph with 0% term life
insurances and 0% disability insurances (i.e. 1@G%tuities), for example, a decrease in

° See, e.g., Wang et al. (2010), Gatzert and We@t2a). Note that in general, insurers may impmse
premium loading to account for this risk of misasseg mortality risk, which can alter the resufsr a
detailed analysis of premium loadings in the contexterm life and annuities, we refer to Wong, Sise
and Stevens (2013).
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mortality rates ¢ < 1) causes a higher probability of default as carag to the setting
without shock € = 1). This effect is reversed when consideringoafplio that comprises
term life insurances (see, e.g., right graph wiike3erm life, 70% disability insurances, and
0% annuities).

The numerical results further show that disabilinsurances are rather inefficient to
counterbalance shocks to mortality rates in otlodicies, as these shocks have only a minor
influence on the (generally low) mortality risk erent to disability insurance contracts. In
particular, as can be seen in the left graph imféidp, the shortfall risk for various shocks to
mortality converges for an increasing fraction adbility insurances in the portfolio. Hence,
in contrast to the other two insurance types, disalinsurances are considerably less
sensitive to changes in mortality risk becausetshif mortality rates are counterbalanced
among the disability insurance contracts. For ms#a a higher mortality rate implies that
fewer premiums are paid by active policyholderg,dithe same time, fewer benefits have to
be paid to disabled policyholders. Thus, mortatisk plays a minor role for this type of
contract, which is in contrast to annuities andhtéfe insurances.

Figure 5: The impact of shocks to mortality on a life instgeprobability of default
depending on the portfolio composition (see algufa 3a)
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Notes: The vertical line in each plot represents thaximum portion of disability insurances in tlemsidered
portfolio (total number of contracts = 10,000; vate of each contract (present value of benefit payshe=

10,000). Example: first row, second figure from fledt: for an insurance portfolio with 30% term dif
insurances, at most 70% disability insurances carstld. In case of 30% term life insurances (3,60@racts)

and a fraction of 40% disability insurances (4,08htracts), 100%-30%-40% = 30% annuity policiesO(®)

contracts) are sold. A factor e greater (less) tAamplies a decrease (increase) in mortality rates.

Natural hedging effects between annuities and digaimsurances in regard to mortality risk
are also limited because of the similarities in plagrout structure, as analogous to annuity
contracts, an increase in mortality rates generadbults in reduced disability insurance
liabilities. While there is no intersection poirrfthe different shocks to mortaliyin the
case without term life (left graph), including telifie insurance leads to an intersection point,
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where the shortfall risk remains unchanged for\emjishock to mortality and a given risk
measure, thus representing the risk-immunizing fplast in the considered setting. This
intersection point is shifted to the left when e&sing the portion of term life insurance (from
left to right graph in Figure 5). This implies thatore annuities (and less disability
insurances) are needed for immunizing a portfofjairst shocks to mortality, which further
emphasizes the considerably stronger reaction oéites towards shocks to mortality as
opposed to disability insurances.

Although this result may partly depend on the ¢alion, it must be noted nonetheless that
the hedge ratio between disability and term lifeunrance, which immunizes the portfolio

against shocks to morality, is much higher thanaihe between annuity policies and term life
insurances. Thus, annuity policies are consideraitye efficient to hedge mortality risk

inherent in life insurances. Overall, the portfoban be arranged either to minimize the
overall risk inherent in the portfolio or to immaei the portfolio against shocks to mortality.
Hence, there is a trade-off between the risk levadl the immunization, which can be
addressed by including further risk managementunstnts to reduce the risk level and
immunize the portfolio at the same time (see Gataaadl Wesker, 2012b).

In the previous analysis, we have focused on simfthe general mortality. As described
before, the mortality rate of disabled policyhoklean be decomposed into general mortality
and a specific factor that describes the relatigngletween active life mortality and the
mortality of disabled insured. Additional analyss#®ow that a higher mortality of disabled
policyholders (in the sense of different shocks) &gositive effect on the risk situation of the
disability insurance provider, since benefit reeiis die earlier than assumed, and, as a
result, actual liabilities resulting from this coatt are reduced. The opposite holds for a
lower mortality. These specific shocks only apmydisability insurances and thus have no
effect on the risk inherent to annuity contractsl aarm life insurance. Therefore, these
insurance types cannot immunize the portfolio agjaihis shock. However, as only a
minority of policyholders actually becomes disabled, shocksh#o specific mortality of
disabled policyholders have only a minor influenedich is slightly larger in case death
benefits are included in the policy.
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3.5 Natural hedging in a life insurance portfolio vith disability insurance: The impact of
shocks to disability risk

The disability risk is influenced by the transitipnobability p,,(S) from the active to the
disabled state as well as by the waiting tife(s, t), which describes when the transition to
the disabled states occurs. Figure 6 shows resbks varying the transition probability from
the active to the disabled state and its impadherprobability of default (see Figure A.4 in
the Appendix for the mean loss). A decrease inttéwesition probability implies that fewer
policyholders become disabled during the time lari@.g., from 20% to 16%; see lines with
symbols ‘cross’ and ‘triangle facing upwards’ irgéie 6). This is favorable for the insurer
because fewer benefits will be paid than assumethencalculation of the benefit, thus
reducing the shortfall risk. The opposite can hentbwhen considering the upper lines (with
symbols ‘triangle facing downwards’ and ‘squarei)hnhigher transition probabilities of 22%
and 24%, respectively, which exhibit a strong genti of disability insurances and result in
a considerably worsened overall company risk level.

Figure 6: The impact of changes of the transition probabitibom the active to the disabled
state on a life insurer’s probability of defaudipending on the portfolio composition
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Notes: The vertical line in each plot represents thaximum portion of disability insurances in tlomsidered
portfolio (total number of contracts = 10,000; vate of each contract (present value of benefit payshe=

10,000). Example: first row, second figure from fledt: for an insurance portfolio with 30% term dif
insurances, at most 70% disability insurances carstid. In case of 30% term life insurances (3,6@@tracts)
and a fraction of 40% disability insurances (4,08ghtracts), 100%-30%-40% = 30% annuity policies0(®)

contracts) are sold.

Term life and annuities are not affected by thdsanges. In a portfolio only consisting of
disability insurance (0% term life insurance, 10@%ability insurance), a decrease of the
underlying transition probability by 10% (20%) t,(s) =18% (16%) implies a decrease in
the probability of default by 68% (93%), whereasirarease by 10% (20%) tp,,(s) =22%
(24%) results in an increase of the probabilitgefault by 198% (258%).
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The mean loss was found to be even more sensdigeich changes than the probability of
default (see Figure A.4). Therefore, using a singd& measure may lead to a severe
underestimation of the impact of disability risk an insurer’s risk situation. In addition,
estimating and forecasting the transition probgbliased on empirical data appears to be a
critical step in the evaluation of disability inance contracts. However, challenges arise due
to continuously changing working conditions fortarsce, and as future trends of disability
risk are difficult to predict. The exposure to thisk may be reduced by means of increasing
the amount of other insurance types and by bettianbing the insurance portfolio, using e.g.
annuity policies. With 30% term life insurances, iftstance, the sensitivity of the probability
of default is at least slightly reduced, whereas tmpact on the mean loss can be
considerably lowered.

The risk measures are also observed to be highkitse to changes of the expected waiting
time from the active to the disabled state. In galn¢he waiting time distribution describes
when a policyholder transfers to another state.cega lower expected waiting time implies
that policyholders become disabled earlier thamrassl, which has a negative impact on the
insurer’s risk situation because benefits are pmEdier and less premiums are received.
Further analyses showed that a decrease of thectexbwaiting time by 3.3% results in a
258% to 844% higher risk depending on the respectsk measure. An increase by the same
percentage yields a risk reduction up to 84% ire cdthe mean loss, whereas the probability
of default is less sensitive. In comparison witlrodes to the transition probability, shocks to
the expected waiting time from the active to thgatlled state have an even higher impact.
Thus, with the expected waiting time being a repmégtive for the waiting time distribution,
this distribution must also be selected and caidaravith care as well as regularly checked
and possibly updated. Analogous to the risk resmyltirom changes of the underlying
transition probability, the exposure to risk due uwoexpected variations of the expected
waiting time can either be reduced by transfernpagts of it to the capital market via
derivatives or by adding other insurance type$éoptortfolio and thus improving the general
diversification benefits.

4. CONCLUSION

In this paper, an insurance portfolio consistingaphuity contracts as well as disability and
term life insurances is modeled, calibrated andistu Specifically, we consider assets and
liabilities of an insurance company to quantify gfect of mortality and disability risk on the
insurer's overall risk situation and to study riskaimizing as well as risk-immunizing
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portfolios. Within our framework, we aim to examitiee diversification benefits in the
insurance portfolio and potential natural hedgiffgas that may arise in the portfolio with
focus on the role of disability insurances. Divicaition benefits play an important role in the
context of risk management and are of high relesancthe context of Solvency Il when
deriving solvency capital requirements for diffareisks, including mortality and disability
risks.

The analysis of the portfolio composition shows thathe considered setting, especially the
addition of term life insurances can consideraklguce the overall risk and thus potentially
represent a major component for reducing the nidlerient in a portfolio. Our numerical
examples illustrate that disability insurancesrasevery sensitive to shocks in mortality rates
and thus represent a less efficient hedging insrunfor the mortality risk (especially
inherent in term life insurances) as opposed toudyrcontracts. In addition, disability
insurances exhibit the highest standard deviatfdiabilities in the considered case, which is
a disadvantage in regard to the overall risk dibmand the application as a hedging tool.
Furthermore, the numerical analysis emphasizegntterally) strong sensitivity of disability
insurance contracts in regard to disability riskl @nat this risk cannot be easily hedged by
other types of life insurance contracts. Howevddirag disability insurance to a portfolio of
life insurances can still considerably lower thenpany risk due to natural diversification
effects arising from uncorrelated biometric riskshe considered setting.

Thus, an adequate portfolio composition on theilltgbside that systematically exploits
diversification benefits and potential natural hedgeffects does represent an important tool
for insurers to reduce their overall risk situatibtowever, altering the portfolio composition
may also introduce additional expenses and opesdtiosk (see Wang et al., 2010). In
addition, specific risks such as disability risk ynaot always be hedgeable in a similar
manner as mortality risk using annuities and tafendolicies as demonstrated in this paper.
Therefore, instead of or in addition to adjustihg fortfolio composition and besides the
usage of reinsurance, derivatives such as swapdmay interest to balance the exposure to
disability and mortality risk and more efficientljilize existing natural hedging opportunities
(see, e.g., Dowd et al., 2006).

Further studies should examine the influence ofeesks selection, premium loadings and
distinct disability levels on the insurer’'s riskiugition. In addition, the independence of
mortality risk and disability risk on the one haand disability risk and market risk on the
other hand requires further theoretical and engliaoalyses.
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APPENDIX

Figure A.l: Estimated values of ex@) and px over all ages, estimated and predicted
mortality time trend
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Figure A.2: Mean loss for different portfolio compositions s@ting of annuities, term life,
and disability insurance (No.1 in Table 3) correxting to Figure 3a)
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Notes: The vertical line in each plot represents thaximum portion of disability insurances in tlomsidered
portfolio.

Figure A.3: The impact of shocks to mortality on a life ingtseisk situation depending on
the portfolio composition — mean loss (in thousgisde also Figure 5)
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Figure A.4: The impact of changes of the transition probabifiom the active to the
disabled state on a life insurer’s risk situatiomean loss (in thousand) (see also Figure 6)

0% term life 10% term life 20% term life 30% term life
o / o o o
o | o | o | o J
o " o o o
0 / o / 0 0
g / g / g. / g.
J/ /
< | » < | /./_ < | ./_/ < | /./
wexsiogog-7-v-v Y] B oy -3-e=e ] aeisioe=il
OAI T xz 70‘: OAN ‘8§°T°‘: T OA'N.? ?—°:° T O<7'x-_x¥_x—7 T T
0.0 04 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

fraction of disability insurance

p,=16% pr,=18% o p,=20% V- pr=22% = p0=24%




