FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

RECHTS- UND WIRTSCHAFTS-
WISSENSCHAFTLICHE FAKULTAT

The Effectiveness of Gap Insurance with Respect to BasisRisk in
a Shareholder Value Maximization Setting

Nadine Gatzert, Ralf Kellner

Working Paper

Chair for Insurance Economics
Friedrich-Alexander-University of Erlangen-Nirnberg

Version: October 2012



THE EFFECTIVENESS OF GAP INSURANCE WITH RESPECT TO BASIS

RISK IN A SHAREHOLDER VALUE MAXIMIZATION SETTING

Nadine Gatzert, Ralf Kellner

ABSTRACT

The purchase of index-linked alternative risk tfangnstruments can lead to basis
risk, if the insurer’s loss is not fully dependentthe index. One way to reduce ba-
sis risk is to additionally purchase gap insuramdgch fills the gap between an in-
surer’s actual loss and the index-linked instrurnsepayout. Previous literature de-
tects gains in the effectiveness of this hedgingtagy in a mean-variance frame-
work. The aim of this paper is to extend this asalyand to examine the effective-
ness of gap insurance in a shareholder value maxiion framework under sol-
vency constraints. Our results show that purchagapginsurance can generally in-
crease the hedging effectiveness in multiple wayseucing basis risk, thus in-
creasing shareholder value and, at the same timvering shortfall risk.

1. INTRODUCTION

The increasing number and magnitude of catastrogents in recent years emphasized the
potential stress on insurance and traditional tearsce markets’ capacities. To overcome
these capacity constraints, alternative risk t@m@RT) instruments such as cat bonds, cat
options or industry loss warranties (ILWs) haverbedroduced in the past decades. These
instruments often feature a contract design timdslitheir payoff to the development of an
index. Thus, they come along with benefits suchhigber transparency, lower transaction
costs than, e.qg., traditional reinsurance, andlaateon of moral hazard (see, e.g. Gatzert and
Schmeiser, 2011). However, at the same time, besgican occur, as the insurer’'s exposure
is usually not fully dependent on the index (seg, Elarrington and Niehaus, 1999; Zeng,
2000), thus implying that the index-linked proddoes not pay off, even though the buying
insurer has a high loss. A potential strategy tercome basis risk is to additionally purchase
so-called gap insurance, thus filling the gap betwan insurer’s actual loss and the index-
linked instrument’s payout. In previous work, Dalyeaind Richter (2002) demonstrate poten-
tial gains in the effectiveness in a mean-variaginamework if the index-based hedge is re-
plenished through a fraction of an indemnity-basetrument. The aim of this paper is to
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take this analysis further and to analyze whetlagrgjin the effectiveness from gap insurance
can also be observed in a comprehensive sharehadtlex maximization framework under
solvency constraints.

There has been steady growth in research on indked cat instruments. Even though ILWs
were the first traded index-linked instrumentshia 1980s (see SwissRe, 2009), the literature
only began to focus on these instruments with ing@l@ementation of insurance futures based
on catastrophic loss indices in 1992 by the Chidagard of Trade. Early articles analyze the
usage of these instruments (see, e.g. D’Arcy arahde, 1992; Harrington, Mann and
Niehaus, 1995) and discuss possible impedimenthé&r success (see, e.g. Cox and Schwe-
bach, 1992; Hoyt and Williams, 1995). The impacbasis risk is measured in several articles
by means of the hedging effectiveness. Major (1988)instance, determines an insurer’s
loss volatility reduction through a linear hedgeairsimulation analysis, comparing attained
volatilities through hedging strategies using stede and zip-based indices. Harrington and
Niehaus (1999) and Cummins, Lalonde and Philli@42 empirically analyze basis risk of
insurance derivatives and find basis risk not t@lsggnificant impediment for hedging strate-
gies that are based on state-specific indices. Meméhey detect that using state-wide indi-
ces leads to substantial basis risk, especiallyifseurance companies whose underwriting
business is not diversified across the countryefiension of existing basis risk definitions is
introduced by Zeng (2000, 2003, 2005), who comp#reshedging effectiveness of index-
linked instruments to traditional reinsurance. bee Yu (2002) develop a model to price cat
bonds, incorporating moral hazard and basis risklewcatzert, Schmeiser and Toplek (2011)
simultaneously examine basis risk and pricing alVd_based on various measures of basis
risk and a comparison of different actuarial amdhficial pricing approaches. An analysis of
contract features, pricing and central demand factd ILWs is conducted in Gatzert and
Schmeiser (2011), and a comparison of existingshask definitions and the impact of non-
linear dependencies on basis risk in the conteXxt\ofs are studied in Gatzert and Kellner
(2011).

Besides the examination of basis risk, interacétiacts between traditional reinsurance and
ART instruments are analyzed in several articleshddty and Richter (2002) examine a
hedging strategy that combines an index-linkedrumsént and indemnity-based (gap) rein-
surance and find potential gains in the effectigsnm a mean-variance framework, while
Nell and Richter (2004) analyze interactions betwesinsurance and cat bonds in an ex-
pected utility approach, thereby identifying sutogton effects between cat bonds and the
demand for reinsurance for large losses. Lee an(R¥07) study how the value of a reinsur-



er's contract can be increased by means of isstabdonds, whereas Song and Cummins
(2008) observe substitution effects between dewgaiedging and traditional reinsurance.
One example of a transaction that combines a manse structure (i.e. comparable to gap
insurance) and a parametric cat bond is a tramsasponsored by the Mexican Government,
which is examined by Hardle and Lépez-Cabrera (20480 find that the coverage of this
transaction is received for lower costs and lowgrosure at default than a “pure” reinsurance
transaction.

The impact of risk management on shareholder vaaeimization has also been considered
in previous literature. Yow and Sherris (2008), iftstance, study an insurer’s optimal capital
and structure with respect to maximum net sharehmnoldlue in the presence of frictional

costs and policyholders’ risk sensitivity with respto the insurer’s solvency situation and
pricing policy. In their analysis, the risk managgrnstrategy depends on holding more or
less economic capital and their results show aetfidbetween costs for economic capital and
improving the insurance company’s solvency situatiburthermore, Krvavych and Sherris

(2006) examine the demand for a change-loss reinsarcontract and risk capital provided
by shareholders when aiming to maximize shareholdéue in the presence of frictional

costs and under a solvency constraint. They thedittinguish between the two cases that
reinsurance can or cannot be used to reduce capgairements. Their results show that if
reinsurance is not taken into account to reducé&atagquirements, risk management does
only increase shareholder value in the presendaatibnal costs. Otherwise, reinsurance is
purchased if it can be used to decrease capitaireggents, whereby a tradeoff between im-
proving the solvency situation and higher costsisi management exists. Hence, in both
works, focus was neither laid on the impact of aisk associated with index-linked instru-
ments and its impact on shareholder value nor artigns using gap insurance, which is the
main focus of the present analysis.

In addition, while the basis risk associated witdax-linked contracts has been studied be-
fore, the effectiveness of combined risk managemgategies consisting of an index-linked
instrument and gap insurance (to account for sk has only partly been focused in the
literature to date. Thus, we extend previous literain the following way. In contrast to, e.g.,
Doherty and Richter (2002), we focus on a sharedtoldlue maximization setting under sol-
vency constraints and include a reaction of thécplblder’s willingness to pay with respect
to the insurer’s solvency situation. We then examihether an optimal risk management
strategy consisting of gap insurance and an inoeed instrument can increase the net
shareholder value (and reduce shortfall risk) aspared to a hedging strategy that only in-



cludes an index-linked instrument without gap iaswwe. We thereby assess different types of
gap insurance structures and show how they diffaheir effectiveness. The optimization
problem is solved using differential evolution. Qesults show that an optimal use of gap
insurance improves the effectiveness of the hedsfirajegy compared to the case of a hedge
with an index-linked instrument only. In particylény means of gap insurance, the insurer’s
solvency situation can be improved and basis skl lowered while, at the same time, the
maximum net shareholder value can be increased.

The remainder of this paper is structured as fdlolm Section 2, the model framework is
presented, including the model of a non-life ins@ed the definition of basis risk. Section 3
contains numerical analyses and Section 4 concludes

2. MODEL FRAMEWORK OF A NON-L IFE INSURER
Modeling the asset side and the relevant risk mansmt instruments

We consider a given time horizdn inside a dynamic setting, where at time 0, the insurer
receives premiumsr™ paid by policyholders for stochastic insured lgsSg at timeT, and
shareholders make an initial contributi&j. In addition, the insurer can choose to purchase
among five types of risk management instrumentsret = O to hedge against losses at time
T: A binary industry loss warranty contradd ('), a proportional reinsurance contraae(),

an aggregate excess of loss reinsurance contkct) @and two indemnity-based gap insur-
ance instrumentsdag, 'gap-XL") with resulting payoffsX; , i = ILW, re, XL, gap, gap-Xlat
time T. Each of the risk management instruments' conpadameters are fixed at tinhes O
and cannot be adjusted during the contract teen\ie consider one period). Furthermore, at
time T, entrepreneurial activities are closed down amdrémaining funds are distributed to
shareholders.

The payoff of the binary ILW contrack;"" only depends on the development of an industry
loss index|; at timeT and pays a fractioor (determined by the insurer) of the ILW’s limit

L™ if the index exceeds a certain trigger leYel

Xt (a) =™ ofI; >V},



where 1{ I >Y} represents the indicator function, which is eduaal if the industry losd,

at timeT is greater than the triggdt and 0 otherwisé An insurer purchasing solely an ILW
for risk management faces basis risk, in that titrustry loss index may not be triggered,
even though the insurer’'s lossgsexceed a critical loss level (see, e.g. Zeng, R0DO re-
duce basis risk, the hedging strategy can be eatbadch that the ILW is combined with an
instrument whose payment is independent of thexisdgevelopment. In this context, we
analyze four different indemnity-based instrumethtat can be combined with the ILW.
Doherty and Richter (2002) show that purchasing@riional gap insurancegap), which
pays a fractions (determined by the insurer) of the difference lestw the insurer’s actual
lossesSr and the ILW’s paymeftX.™"

X?ap(,é’):max{,é’[ﬁsr— X (a)) (} = ma{ﬂ[ﬁ S-aOlO{ 1> Y¥) })

can lead to gains in the effectiveness of the heggtrategy. The payment structure within
the maximum operato(rﬁ’[ﬁsr - X" (a))) can be constructed by a swap contract between
the insurer and a reinsurance company, which exgsaa fractions of an ILW’s payment
with a proportional reinsurance contract, payjigs; . Thus, the swap also induces the pos-
sibility that the insurer has to make a paymerthtoreinsurer that exceeds the received pay-
ment. As the analysis is intended to examine th@aohof exclusively reinsuring the gap be-
tween an insurer’s loss and the index-linked imsgnt, the payment structure is limited
through the maximum operator. However, apart fromihdex-linked instrument’s payment
part, the structure of proportional gap insurarsiimilar to a proportional reinsurance con-
tract (‘'re’), which pays a fractiom of the insurance company’s losses

X (A)=115;.

Thus, the proportional reinsurance contract candmsidered as a natural benchmark for the
proportional gap insurance contract. Nevertheldss,basic idea of gap insurance can be
adapted to further reinsurance-like contract stmeést of different risk management instru-

ments. Both, the proportional reinsurance and tbpgrtional gap insurance contract, provide
coverage over the entire range of losses, whiclnihiog a disadvantage for contracts that re-
insure losses above a certain threshold, as covdoagow losses might increase costs for

Note that other indices, e.g. a parametric index|d be used to structure the ILW. While paramet-
ric indices tend to exhibit a higher degree of deadization to investors, the associated basissisk
usually also higher (see SwissRe, 2009).

2 As an alternative to this illustration, the ILWimiit can be adjusted to the desired level.



risk management, but do little improve the inssredlvency situation. Thus, we further con-
sider an aggregate excess of loss reinsuranceaco(L’), whose payment is given through

XTXL(a)):a)l]nin(max(Sr— R C) ,IZ(L),

where w denotes the fraction that is purchaséd:. the attachment of the company loss and
L*- the contract’s layer limit. Similar to the casepwbportional reinsurance, the aggregate
excess of loss reinsurance contract representaieahaenchmark for a corresponding excess
of loss gap insurance contraajdjp-XL), which is structured according to

X (9) = max{z9 Dnin( ma>(Sr . GRS G () L9 XL) ,})=
ax{z9 Dnin( ma>(Sr - AP —g OO | > Y 9) Lo XL) })

where & denotes the fraction that is purchas@d?” ** the attachment of the company loss
and L¥** the contract’s layer limit. Summing up, we consitiee possible hedging strate-
gies in the model framework as displayed in Table 1

Table 1: Analyzed hedging strategies

No. Hedging strategy Hedge parameters Payoff

HS' | ILW only a@20,4=0,1=0w=08= C | X;"(a)

HS" | ILW + proportional reinsurance | @20,8=0,A2 0w= 09= ( | X" (a)+ X7(4)

HS" | ILW + proportional gap insurance| a=0,8=0,A=0w= 0g= ( | X" (a)+ X&*(B)

(a)

(a)
HS"Y | ILW + excess of loss reinsurance| a=0,3=0,A=0w= 0= ( | X" (a)+ X" (w)
HS' | ILW + excess of loss gap insuran¢ex 20, 8=0,A= 0w= 092 ( | X" (a)+ XF* *(I)

All hedging instruments are considered to be assdges (see Doherty, 2000) with respect to
financial accounting. The ILW’s design equals a\dgive structure, as no indemnityrigger

is involved in the transaction (see SwissRe, 208089, the gap insurance contracts feature a
reinsurance-like structure. Accordingly, all fivestruments (ILW, proportional reinsurance,
proportional gap insurance, excess of loss reimggrand excess of loss gap insurance) are
accounted for on the asset side. By combining & BHnd an indemnity-based instrument
(HS" - HS), advantages and drawbacks of the individual heggistruments can be coun-

® ILWs can also be structured as double-triggettraots, such that besides the industry trigger, an
indemnity-based trigger is included in the contrdesign (see, e.g. SwissRe, 2006; Gatzert and
Schmeiser, 2011).




terbalanced and offset to some extent. In particutalemnity-based contracts increase the
protection seller’s costs to control for moral hazgsee Doherty and Richter, 2002), while the
index-based ILW exhibits a high degree of stanaatthn achieved through the use of an
index and implies a less complex underwriting psscthat is less costly (see Gatzert and
Schmeiser, 2011), but in turn faces basis risk.

Note that while transactions that combine tradaimeinsurance and index-linked instruments
already exist, gap insurance contracts typically depend on theets individual situation
and the respective index-linked instrument and mhag require an individual contract de-
sign, which are hardly published. Figure 1 exenilylaitustrates the coverage provided by
proportional and excess of loss gap insurance fpven level of 8 and 9, respectively It
can be seen that the payment of each contractecagpbesented as a function of the insurer’s
loss S and the index valud,. This and the similarity to traditional reinsurancontracts
shows that reinsurance coverage as given throughngarance should be available for pur-
chase, especially as the development of alternatketransfer instruments made reinsurers
more flexible in providing new coverages and cariti@designs (see Doherty and Richter,
2002).

Figure 1: Coverage provided through proportional gap insceleft side) and excess of loss
gap insurance (right side)

Gep GapXL
X @ Xy

B)

4 In 2006, for instance, Mexico’s Fund for Natubasasters entered into an insurance contract with
European Finance Reinsurance, covering a totahwelof 450 Mio.$ in which 160 Mio.$ were is-
sued in a cat bond transaction based on a paranretex (see Hardle and Lopez-Cabrera, 2010).
Note that changes i and# impact the steepness of the coverage surfacedbut's piecewise
linear progression.
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The premiums for these instruments are paid at tim® and consist of the discounted ex-
pected payment under the risk-neutral pricing mea€u and an additional loading, i.e.
7T =E° (e’”EII D)(})[Q1+5), i =ILW, re, XL, gap, gap-XL, wherer, stands for the risk-free
interest rate. Depending on the concrete hedgnagesty and the composition of the hedging
instruments, the total initial capital thus sumsap

A=E+n- Y 7, (1)

iq{ILW ,re,gap, XL, gap- X}

where E, represents shareholders’ initial contributiar®, are the premiums paid by the pol-
icyholders for insured claimS;, and 77 =0 if a=0 ( =ILW),A=0 ( =re), w= 0 { = XL),
L=0(=gap or g =0 ({ =gap-Xb), respectively. A fractiory of the initial capital is in-
vested in a risky assef,,, =y[#A,, and the remaining pav(ﬂ— y) is invested risk-free
A)'risk_free=(1— y)D%. Concerning the fraction invested in the riskyeasthe Heston (1993)
model is used, given by

dA hign = A,high(luhighdt+ \/vt d\/\g}h\gh) '

where £, denotes the drift of the risky assets’ proces® ifistantaneous variandg fol-
lows the square-root process (see Cox, IngersdlRoss, 1985) and is described by

dV, =« (6-V) di+ g, [\ dW

which reverts to the long-term varianfewith a speed of mean reversian whereo,, is the
variance’s volatility andN,; o V\(,f are standar@-Brownian motions on a probability space
(Q,#,P) with dW:mgh dw/ =P b Pa,, denoting the linear coefficient of correla-
tion, and wherd represents the objective real-world measure. Utiterisk-neutral pricing
measurd), the risky asset process is given through

dA pign = A,high( redt+ /v, d\/\ghigh ),
dv, =R (6- V) dt+ o,V aW,
andk=k+A, W, , 6=kB/ &, A, denoting the market price of risk for the volagilpro-

cess, ande\?mgh, V\(,? standardQ-Brownian motions. The asset portfolid, at timeT de-
pends on the chosen hedging strategy and is detednby



Af = yDO‘T,high + (1_ y) DAT risk- free+ z xiT’

iq{ILW ,re,gap, XL, gap- X}

with i =ILW,re, gap, XL, gap- Xland X} =0 if =0 (LW), A =0 (e), =0 @ap, w=0
(i =XL) or & =0 { = gap-XL) respectively. The value of the ass#$ at timet = 0 is thus
given by calculating the expected value under islemeutral measur® and discounting to
zero,

A =E°(e"T0A)= A+ D e( e ox), )

iq{ILW re,gap, XL, gap- X}

which thus depends on the type of premium calcdator the risk management instruments
(see Equation (1)).

Modeling the liability side

The policyholders’ claimsS; and industry losses,; are assumed to follow a geometric
Brownian motion, such that

d§ = § dttos S d\@'
and
dl, =1 dt+o 1, dw’,

with drift 4 , standard deviatiow, , andV\/i‘P denoting a standar@-Brownian motion on a
probability spacqQ,.#,P) with filtration /7, i =S |. The solutions of these stochastic dif-
ferential equations under the real-world meadlif®r t =T are given by (see, e.g. Bjork,
2009)

_ (ﬂl —0-53|2)DT+U| N\/ﬁ
I+ =1, ,

and

[ps-oso8)r+0 0

S =80
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thus implying a lognormal distribution for lossesteme T. By changing the probability
measure to the risk-neutral measQethe stochastic processes of the company losshend
industry loss at tim& are given by

r —0.9072 | +0; WP
|T=|0@(f o
and

rs -0.50% |T+0 wrF
Sl- — %Déf S) S St ’

respectively, WheréNS? andV\/lf are standar@-Brownian motion$. The geometric Browni-

an motion is used for two reasons. First, it camdexd to describe the development of the loss
estimate between tinte= 0 andT (see, e.g. Braun, 2011; Loubergé, Kellezi and @iB99);
Cummins and Sommer, 1996; Cummins and Geman, 18@4pnd, the resulting lognormal
distribution of the loss estimate is in line witmgrical findings of Burnecki, Kukla and
Weron (2000) for the PCS index in the United Stated further allows an easier analysis in
an otherwise complex setting (see, e.g. CumminsGerdan, 1994). The type and degree of
dependence between the index and the insurer'edasghereby assumed to be constant over
time, which allows isolating the impact of diffetetypes and degrees of dependence on
shareholder value and shortfall risk. Alternativelynamic dependence models can be taken
into account (see, e.g. Hafner and Manner, 20120®,&2006), which, however, do not allow
an isolated assessment of the type and degreegpehdence (as in case of, e.g., autoregres-
sive process).

If the value of asset8r at timeT is not sufficient to cover the policyholders’ cte, i.e. if

S, > A, the insurer becomes insolvent. Due to the shiders limited liability, no addi-
tional equity capital is provided at tinTe and, thus, only the remaining funds are distedut
to the policyholders. Hereby, one has to take atmount that market frictions such as agency
costs, taxation or costs of financial distress,(geg@ Yow and Sherris, 2008; Krvavych and
Sherris, 2006) can play an important role for m% financing policy including decisions for
risk management (see, e.g. Modigliani and Mille358; Mayers and Smith, 1982). In the
present analysis, we thus incorporate costs oféiia distres$,which can occur due to, e.g.

® Even though the insurer’s losses are non-tradaffiefrictional costs, which are introduced in this

section, exist, we assume the market to be arleithiag, such that the risk-neutr&deexists but
may not be unique (see Yow and Sherris, 2008).

" Further analyses regarding taxation and agensisdn a shareholder value maximization setting
can be found in Yow and Sherris (2008) and Krvawgetl Sherris (2006).
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bankruptcy costs in case of insolvency and are defised as a fractiom., of losses in case
of default at timeT, 7, nax(S; — A ,0 (see Yow and Sherris, 2008).

Hence, the value of policyholders’ payoff is determined by (see, e.g. Yow and Sherris,
2008; Zanjani, 2002)

VT:min(Af_TFDDmaX(Sr_ A,C) 1$): $_ ma)( $‘ A@‘TFDD maé( 1S' TA’)O:
=S ~(I+ 7 )tmax(§ - 4.9,

which is composed of the policyholders’ claims l&#es so-called default put option, which is
increased through bankruptcy costs and represeat®ss in case of insolvency. If the insur-
ance company is solvent, the remaining surplus,the difference between assets and liabili-
ties, is paid out to the shareholders, and thegjoffag, at timeT residually given by

E =max(A -S.,0= A- §+ maf $- A0

Hence, the net present value of the shareholdevastment (net shareholder val&\j)
under the risk-neutral measu@ds given by (see, e.g. Zimmer, Griindl and Scha@eoy

SHy = E( &7 OF)- E. (3)
Determination of premiums, loadings, and policyleotd willingness to pay

To determine the insurer’s premium income, we adaptadjust a procedure used in Grundl,
Post and Schulze (2006). We thereby assume thahsheer's premium income consists of
the value of payments to policyholders at titme 0, V,, where an additional loading™ is
imposed that takes into account the policyholdesK aversion.V, is derived using risk-
neutral valuation by calculating the discountedested value under the risk-neutral measure

Q
Vo=E°(e" Dy )= B &7 0§)- B &7 fa+r,)mmax S ,AQ)= ,S(¥7,)0 DP

where DPO = EQ(e_”EII Dmax( S- AO)) which depends on the actual premium payment
by the policyholders. Furthermore, we assume thaides amortizing costs for moral hazard

& Note that in a financially fair situation withoptemium loadings and without assumptions on poli-
cyholders’ willingness to paygH\ would be equal to zero.
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and transaction costs, the insurer additionallysaioincrease the loading to enhance its pre-
mium income from insuring losseS; . As the insurance company is not in a monopolistic
market position, it cannot fix the loading arbitiarinstead, we assume that the loading that
policyholders are willing to pay is endogenous, ,andthe presence of policyholders’ risk
aversion, depends on the insurer’s shortfall proibygbwhich is calculated under the real-
world measureP (see, e.g. Grundl, Post and Schulze, 2006; Zim@dindl and Schade,
2009) through

SR=F A< S).

This assumption is based on experimental resuli@/akker, Thaler and Tversky (1997) and
Zimmer, Grundl and Schade (2009), who find thatptea@lemand premium reductions for
insurance with default risk, such that the williega to accept higher loadings on the premi-
um decreases with an increase in the insurer’'sfshgrobability (see also Grindl, Post and
Schulze, 2006; Yow and Sherris, 2088)hus, the loadingd™ reflects the policyholders’
willingness to pay and is modeled by

0% =(1-qBR) ™9,
where 0™ represents the maximum loading that policyholdessld accept in the case of
an insurer without default risk ami® stands for the policyholders’ sensitivity towaidsol-

vency risk'* Thus, the insurer’s premium incong" is given by?

% =V, [f1+3%) =(§ ~(1+ 7,5 ) DDPO {1+ 5% ),

® Furthermore, similar results can be found in empieical analysis by Epermanis and Harrington

(2006) who detect that rating downgrades come aleitiy premium declines in the year of the
downgrade and the following years after the dowdgra

Policyholders' sensitivity towards insolvencykrinight change over time. Here, we assume a ho-
mogenous group of policyholders purchasing inswatidhe initial time = 0. Moreover, the im-
pact of different degrees of risk sensitivity isBed in more depth in Section 3.

This approach is similar to the one used in Gkildst and Schulze (2006), who model the quanti-
ty of policyholders demanding insurance as a deanggunction of the insurer’s shortfall proba-
bility. Note that this assumes that the insurer ftdly observe the policyholders’ risk sensitivity
when determining the premium. If this is not theecée.qg. if it is revealed ex post), the solution t
the optimization problem might be suboptimal.

Note that the purchased amount of risk managemetnt 0 affects the value of the default put
option and the shortfall probability &t T, which in turn influences the willingness to pay a 0.
Due to this interaction, the fractionsg, A, wand# have to be adjusted such that the “promised”
shortfall probability, used to determine the pdtioider’s willingness to pay at= 0 and influenced
by the policyholders’ premiums, equals the shdrfedbability actually realized at=T.

10

11

12
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whereV, can be considered as the “fair basic premium”ctvhs increased by a loading that
is determined under the real-world mead@rélence, actions taken by the insurer to improve
its solvency situation generally have two posigfects on its premium income: A reduction
in the shortfall probability decreases the default option value, which increas®§ and, in
addition, raises policyholders’ willingness to gaymeans o™ .

Premiums for the risk management instruments cb$isheir discounted payment’'s ex-
pected value under the risk-neutral measpirend loadingsd' (=0), i = ILW, re, XL, gap,
gap-XL, representing costs usually associated with tivegeuments. In general, the loading
for indemnity-based contracts can be assumed togber than the ILW’s loading, since the
binary ILW exhibits a high degree of standardizatemd is not exposed to moral hazard.
Contrariwise, indemnity-based transactions demaghdehn expenses to monitor an insurer’'s
business operations and to control for moral ha2afel thus take into account that the load-
ing for the indemnity-based risk management cotgr@c= re, XL, gap, gap-XLshould re-
flect the costs associated with moral hazard, wkeetd to increase for higher rates of (re-)
insurance (i.e. the higher the portion of the iessrloss that is reinsured, see Doherty and
Richter, 2002) and is determined by

| E(X;) |
J =maxiV £(3) O™ i=re ,XL,gap,gap- XL, E 0,1, v,KIR. (4)

Here, the rate of reinsurance is given by the prtago of the expected payment from the re-
spective risk management instrument to the expdotedof the insurer (both under the objec-
tive measureP). While the shape of the cost functi@gh can be controlled througk the
steepness can be adapted througind|, where 8™ represents a minimum loading, which
we assume to be higher or equal to the loadindgp@findustry loss warranty contract. Thus,
the corresponding priceg of the risk management instruments re, XL, gap, gap-Xlre-
sult from

ﬁ=EQ(e‘fmex;)EQ1+a*), (5)

where a constant loading for the ILW contraéét’ < ™" is assumed.
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Optimization problem

The insurer’s objective in risk management is teate value through entrepreneurial activi-
ties®® In the present setting, we consider the net sbédeh value as the relevant value as
illustrated in Equation (3), which can be reforntethby replacing the values for assé{s
(see Equation (2)), policyholders' clairg and the default put optioBPO, as follows:

sHy, = B¥(e""0E)- &
=e""E°(A-s+max( $- AQ)- E

~A/-§+ DPO- E
(i)(Ab+ D EQ(e_”mDX‘r)J— S+ DPO- E (6)
i{ILW ,gap, r¢

(2E0+($)—(1+TFD)DDPQEQl+JSF)
. D 7+ 3 E°(e"" % )-5,+ DPO -

i{ILW re,gap, XL, gap- X} i ILW re gap XL gap XL

(i)(so—DPo)mﬁ—rFDDDPOJQHJS)— O“Eé e’ DX)

ij{ILW re,gap, ><L. gap- X}

Hence, in order to increase the net shareholdeeyé#he tradeoff between increasing the safe-
ty level (to reduce th®PO and thus the impact for costs of financial digtresd to increase
the policyholders’ willingness to pay reflectedtie loading) by purchasing risk management
instruments and the premium payments for risk mamegt (which reduce th&H\p) must

be addressed.

The derivation of the optimal hedging strategy ighly endogenous due to the interrelation
between the insurer's premium income at time 0 and the shortfall probability at tinTe
Purchased fractions, S, A, w, and J of the risk management instruments at tinve0 in-
fluence assets and liabilities at tifie@nd thus also the shortfall probability differdiieh has

an impact on the premium income at tinte= 0. The premium income in turn at the same
time determines the available capital for risk nggament and the investment opportunities at
time t = 0. In our analysis, this problem is solved broat-searching algorithm. In a real-
world setting, the procedure can be interpretetlahansurer “chooses” a shortfall probabil-
ity and given a certain amount of risk managemenvidies, the shortfall probability is then

13 For a detailed discussion on an insurer’s ratefa hedging, see, e.g. Cummins and Song (2008).
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communicated to policyholders through a rating agegsee also Grundl, Post and Schulze,
2006 for a similar argumentatiot).

Hence, the higher the insurer’s rating and thustgdével is, the higher are the product prices
that are accepted by policyholders. Accordingly thsurer’'s objective in this setting is to
maximize the net shareholder value as displaydgiumation (6) through purchasing optimal
fractions a, B, A, w,and & of risk management instruments (see Table 1 ferhidging
strategies under consideration)

SHY™ = max {( $- DPQB -1, 0 DPQ1+5% ) -
AS(L:AQ(;)&XL

s g o ;9)} (7)

if{ILW re,gap, XL, gap- X}

subject to the constraiitc that the insurer’s shortfall probability is notcaved to exceed a
predefined IevelS_FT’, that the fractionsr, 8, A, w, andJ are in the range between zero and
one, and that the premium payment is consisterfit thi¢ shortfall probability implied by the
risk management strategy,

SR< SP
c= O<i<1

(s - DPOf1+5™)

Jiza,fAwS 1

Note that different types of risk measures couldrimtuded in regard to the policyholders’
demand sensitivity and in the constaints of thenopation problem, which impacts the opti-
mal risk management strategies. In this conteid,atucial which part of the insurer’s surplus
distribution is taken into account by the risk meas The shortfall probability solely consid-
ers whether the surplus is below or above zerolewhi case of the expected loss, for in-
stance, the extent of the shortfall is also takéo account. When using the latter risk meas-
ure, the optimal attachment points would be lowecase of the excess of loss reinsurance

' In an empirical analysis for U.S. property-liayilinsurers, Cummins, Lin and Phillips (2006) de-
tect an inverse relationship between insuranceeprand insolvency risk, measured through A. M.
Best’s financial ratings.

5 The number of constraints, which are involvedhi@ optimization, can be optionally expanded. In

general, the constraints can, e.g. constitute agtgyl requirements an insurer might need to fulfill

such as a certain level of solvency or mandatasiyriotions set by law.

See Krvavych (2007) for further possibilities fmrmulate the shareholder value maximization

problem. Krvavych (2007) shows that maximizing siatder value under solvency constraints

can be equivalent to maximize shareholder valuegusih isoelastic utility function.

16
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and excess of loss gap insurance contracts, whiee®ns of proportional reinsurance and
proportional gap insurance would be higher.

For the optimization problem displayed in Equatid)) differential evolution (DE) is applied.
DE is a parallel stochastic direct search methdudchvbelongs to the family of evolutionary
algorithms introduced by Storn and Price (1997)optmize an objective function, DE starts
with a numbemNP of D-dimensional vectors, called the populatiohjak are randomly cho-
sen on a uniformly distributed probability spacé&eAthe initialization of the first generation
g, DE creates trial vectors, representing the inggliary populations, through mutating and
crossing over the initial vectors. To create th&trgeneration, initial vectors are replaced
through trial vectors if a trial vector leads toequal or better result than an initial vector (see
Storn and Price, 1997). After this selection, thecpdure is repeated until a stopping condi-
tion, e.g. a maximum number of generations is redatr if the best value of the objective
function could not be improved for a specified nembf generations. DE offers advantages
compared to traditional optimization methods (sgeeR Storn and Lampinen, 2006) as, for
instance, the simultaneous search for an optimatisn with multiple starting points reduces
the probability to identify a false peak. FurthermoDE does not rely on additional infor-
mation such as derivatives to find the optimumvBiue of these attributes, DE is capable to
optimize non-smooth or non-linear functiois.

Basis risk

The crucial parameter for the effectiveness of imeglgtrategies including an index-linked
instrument is basis risk. In the following analydissis risk is measured using the counter
value of the hedging efficiency as employed by ZE&@93), which is calculated based on the
proportionate risk reduction of a predefined riskasure attainable through an index-based
hedging strategy as compared to a benchmark fointtex-hedge. In the following analysis,
the shortfall probability is chosen as the relevask measure, which accounts for assets and
liabilities. As a benchmark, an index-based hedgesuming perfect dependence between the
insurer’s loss and the index, is defined so thatptoportionate risk reductioRR for the
hedging strategy= I, Il, lll, 1V, V, perfect(see Table 1) and the respective strategies under
perfect dependence between index and insurer'pestec), can be determined through

" In the numerical analysis, DE is implemented gishe “DEoptim” package of the statistical soft-
ware R (http://www.r-project.org). An explanatiof the package is provided by Mullen et al.
(2011).
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RR :1_S§v—liol,lt ,

>
where SP denotes shortfall probabilities under the correslioy hedging strategy and
SP"™ the shortfall probability if no hedging instrumestpurchased. With these defini-
tions, the counter value of the hedging efficie@iE for the hedging strategiés |, 11, 1l
IV, Vis given by (see Cummins, Lalonde and Phillips,400

RR

CHEI =1- RRperfect )

3. NUMERICAL ANALYSIS

This section investigates the effectiveness ofigaprance to maximize net shareholder value
under solvency constraints in the presence of wasisgiven that policyholders are sensitive
with respect to an insurer’s default. To quanttg impact of gap insurance, we compare re-
sults of net shareholder value, shortfall probap#ind basis risk for a hedging strategy con-
sisting exclusively of an ILW (“ILW-hedgeHS), one combining an ILW and a proportional
reinsurance contract (“ILW-reinsurance-hedgd3'), one with an ILW and a proportional
gap insurance contract (“ILW-gap-hedgefS"), one with an ILW and an excess of loss rein-
surance contract (“ILW-XL-hedgeHS”), and a hedging strategy consisting of an ILW and
an excess of loss gap insurance contract (“ILW-¥agredge”, HS') (see Table 1). The aim
of this analysis is to study whether gap insuratare increase the maximum net shareholder
value and/or improve an insurer's solvency situatid/e thereby also investigate to what
extent basis risk can be reduced through the ushgap insurance. Sensitivity analyses are
conducted concerning the degree and type of depeadgetween the insurer’s loss and the
index, different degrees of the insurer’s loss tilitig the policyholder’s risk sensitivity and
the type of cost function with respect to the logdof indemnity-based risk management in-
struments (impacted by moral hazard) in order émiidly key drivers for the effectiveness of
gap insurance.

Input parameters

The input data for our reference contract are sunzethin Table 2, where the expected value
under the real-world probability measurethe drift as well as the volatility of the coméan

loss are based on empirical data of a non-life rersas presented in Eling, Gatzert and
Schmeiser (2009). The corresponding values ofridastry index are adopted from Gatzert,
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Schmeiser and Toplek (2011), referring to HiltiuBders and Lloyd-Hughes (2004). Moreo-
ver, the drift and the parameters for the volagtiitocess of high-risk assets are based on data
from the S&P 500. All other input parameters aresanm for illustration purposes and were

subject to robustness tests to ensure the stabiliyr general findings.

Table 2: Input parameters for the reference contract

Available equity capital at time O E $58 million
Expected value of the company loss E(S) $117 million
Expected value of the industry index E(I;) $1450 million
Drift and volatility of the company loss Us O 0.025, 0.53
Drift and volatility of the industry index 0, 0.025, 1.39
Drift of high-risk assets 17 0.0729
Long term variance of high-risk assets g 0.0482
Mean-reversion of high-risk assets K 2.50
Variance’s volatility of high-risk assets g, 0.3131
Market price of risk for the volatility process A 0.00
Correlation among high-risk assets processes Pa e -0.4235
Risk-free interest rate I 2%
Investment in high-risk investment 1% 25%
Policyholder’s risk sensitivity q 5
Kendall's tau for company and index losses P, (Sl, Il) 0.70
Premium loading for an insurer without default risk o2 40%
Premium loading ILW o 5%
Premium minimum loading for indemnity-based consac om 5%
Parameters for the cost function of indemnity- blagsk k,l,v 1,1,0.50
management instrumenty,

Maximum shortfall probability S_FT’ 5%
Layer limit for ILW L $200 million
Industry loss trigger Y $2,000 million
Number of generations within differential evolution g 200
Population size per generation within differengablu- NP 150

tion
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Numerical results are based on Monte Carlo simaratith 250,000 sample paths. To further
improve the simulation’s stability, latin hypercus@mpling and control variates as a variance
reduction techniques are applied (see Glassern@()? Recent literature illustrates the
relevance of an adequate treatment of dependenm#uses between processes when model-
ing insurance risks (see, e.g. Eling and TopleR92@atzert and Kellner, 2011). We assume
assets to be independent from liabilities in otdespecifically focus on the dependence struc-
ture between the industry loss index and the imag&ompany’s losses and as these depend-
encies are the main drivers in regard to the effecéss of index-linked hedging strategies.
To obtain a holistic picture of the impact of trepdndence structure, we first vary the degree
of dependence using Kendall’s rank correlat@n since this is invariant against (non-linear)
transformations (see, e.g. McNeil, Frey and Emhsg@005), and additionally examine the
impact of the type of dependence using the Clafftomer tail dependencies), the Gauss (lin-
ear dependencies), and the Gumbel copula (uppeateaendencies), using the Gauss copula
as the reference case.

The effectiveness of gap insurance under diffetegtees of dependence

Table 3 exhibits results for the five hedging stgi¢s under consideration (see Table 1) for
different degrees of dependence between the insuoms and the index. For all strategies,
the optimal hedging share{a,ﬁ,A,w,ﬂ) are derived by means of differential evolution and
are displayed in Table 3 along with the impliedréfadi probability SP, the value of pay-
ments to policyholders at time\g, the corresponding loading®, the total premiunvz™

that results fromV, multiplied with the loading based on the policydais’ sensitivity to-
wards shortfall risk. Furthermore, the loading fve indemnity-based instruments,

i =re, XL, gap, gap- XL basis riskCHE' and the maximum net shareholder valsie\["™

are presented.

Table 3 shows that a fraction of the indemnity-ldasedging instrument is always purchased
in combination with the index-linked ILW contract the present setting. The results further
indicate that the inclusion of indemnity-based hedgnstruments leads to a considerable
reduction in the shortfall probability, while, dtet same time, the maximum net shareholder
value increases despite the higher costs for rigkagement. This behavior may be ascribed

18 Due to the application of differential evolutidghe number of sample paths appeared to be crucial
for the simulation’s stability. Thus, we chose #isiently high number of sample paths and fur-
ther implemented variance reduction techniquesctoeae low sample standard deviations (e.g.,
for the reference contract, the sample standarihti@v of the net shareholder value amounts to
0.0829) and ensured that the results remain stabtifferent sets of random numbers.
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to the reduction of costs for financial distresd am increased total premium income for the
insurer that comes along with a reduction in thertsall probability, which leads to a higher
value ofV, and, in addition, to a higher policyholder’s wiliness to pay. When comparing
the indemnity-based hedging strateg((HE“ - HE ) it can be seen that the contracts with
an excess of loss structup¢l(andgap-XL) dominate the contracts with a proportional struc-
ture fe andgap) in that they generally yield a higher maximum sleareholder value, lower
values of basis risk and a lower shortfall proligbih the examples considered. This obser-
vation is mainly due to the fact that in contrasKL-types of contracts, proportional contracts
provide insurance coverage for the full range skés, which on the one hand increases the
expected payoff for these contracts, but on therdtland raises their price. Contrariwise, ex-
cess of loss contracts focus on the critical ranfgkigh losses and are thus better suited to
insure critical loss levels at a lower price. Téiglanation is supported by the relatively high
optimal attachment point@AXL, AS XL), which are located between ti&% and the85%
quantile of the insurer’s losses. Furthermore, tb&ls to lower loadings for the contracts
exhibiting an excess of loss structures, sincer#éite of insurance is lower as compared to
proportional contract structures, which in turnueeks the need to control for moral hazard
(see Equatioi@)).*

On the basis of this advantage, the fractionsHeretxcess of loss contracts are higher than for
the proportional contracts, while the fractions tloe ILW are lower in case of the ILW-XL-
hedge HS’) and the ILW-gap-XL-hedgdHS'). Moreover, a comparison of the ILW-
reinsurance-hedg@dS') with the ILW-gap-hedgeHS") and the ILW-XL-hedgeHS") with

the ILW-gap-XL-hedggHS’) shows that the contracts with the gap insuraticetsire gap
andgap-XL) appear more effective than the traditional reiasue contracts€¢ andXL) with
respect to increasing the maximum net shareholderevand reducing shortfall probability
and basis risk. The gap insurance contracts araageous as their payment structure direct-
ly takes into account a non-payment of the indekdd instrument. It thus provides more
coverage in case of a non-payment from the indgketl instrument and less coverage when
it is less needed (i.e. if the index-linked instemhprovides a payment).

% Increasing the minimum loading of the exceseéitype contracts above 5% to, e.g. 7.5%, leads
to higher (lower) fractions of the index-linked damnity-based) instrument, but does otherwise
not change the general results.



Table 3: Maximization of shareholder value in the case bhaflging strategies illustrated in TableHY - HS') for different degrees of dependence

optimal optimal loading optimal Shortfall V, loading premium basis risk Shareholder
a B A,wd  indemnity AX- as-Xt | probability o f/ad CHE' Value
5 sp SH\™ (Mio. $)

P, (S..1,) =065
ILW 66.74% 0.00% 4.39% 114.33 31.41% 150.25 15.71% 33.97
ILW and e 59.96% 20.98% 10.49% 1.84% 115.66 36.48% 157.85 5.69% 38.23
ILW andgap 82.06% 24.60% 9.41% 1.51% 115.83 37.18% 158.90 4.83% 39.29
ILW andXL 47.57% 95.56% 5.55% 149.26 0.18% 116.28 39.84% 162.61 0.08% 44.10
ILW and gapXL 35.52% 99.79% 5.00% 169.00 0.18% 116.28 39.84% 162.60 0.07% 4457
P, (S..1,)=0.70
ILW 69.52% 0.00% 3.42% 114.79 33.36% 153.09 11.22% 36.31
ILWand e 68.05% 19.03% 9.51% 1.49% 115.81 37.17% 158.85 4.51% 39.39
ILW andgap 89.39% 22.88% 8.54% 1.22% 115.94 37.71% 159.66 3.70% 40.18
ILW andXL 29.57% 98.38% 5.00% 172.11 0.24% 116.24 39.71% 162.40 0.16% 44.33
ILW and gapXL 38.98% 97.14% 5.00% 173.54 0.19% 116.28 39.80% 162.56 0.14% 4452
P, (S..1,)=0.75
ILW 75.84% 0.00% 2.62% 115.19 34.97% 155.47 8.08% 38.22
ILW and e 73.13% 15.26% 7.63% 1.29% 115.85 37.58% 159.39 3.42% 40.48
ILW andgap 87.73% 20.37% 7.60% 1.01% 115.97 38.16% 160.23 2.42% 41.04
ILW andXL 45.35% 92.05% 5.00% 157.81 0.21% 116.26 39.75% 162.47 0.17% 44.15
ILW and gapXL 38.56% 99.41% 5.00% 173.98 0.18% 116.29 39.79% 162.55 0.13% 44.53
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To study the impact of different degrees of depandéetween the insurer’s losses and the
index pr(Sl, Il) in more depth, Figure 1 illustrates the resultstifi@ proportional gap insur-
ance (left graph) and the excess of loss gap insaraontract (right graph). It can be seen
that the amount of proportional gap insuranBedecreases for an increasing degree of de-
pendence, since the ILW itself becomes more effeéti enhancing the net shareholder value
and in reducing the shortfall probability such tleessts proportional gap insurance is needed to
hedge against basis risk. The results in TabledRate that the same holds true for propor-
tional reinsurance contracts.

Figure2: SHV™,a(%),B8(%) and#(%) for an increasing degree of dependéhce
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In case of an excess of loss gap insurance contnacbntrast, the optimal fractiob?) re-
mains relatively stable due to the lower fractmof the ILW contract, which implies that the
optimal hedging strategies are less sensitive meidpect to changes in the degree of depend-
ence between the insurer’s loss and the industigxirfas the indemnity-based contract domi-
nates the hedging strategy). In summary, the e$nitthe five hedging strategies under dif-
ferent degrees of dependence between the inslwes®nd the industry index show that sole-
ly purchasing an index-linked instrument for hedgpurposes might not be sufficient from a
shareholder’s as well as a risk management’s mdimtew. Combining an index-linked and
an indemnity-based instrument generally allows @ighet shareholder values and increases
the hedging effectiveness, which depends on theeotise gap insurance structure.

%0 Note that fluctuations in optimal risk managemieattions (apart from the simulation) can be ex-
plained by the strong interrelations between exgehsr risk management and an improvement in
the solvency situation, which comes along withragréase in premium income and maximum net
shareholder value.
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The impact of the different types of dependence

Besides the degree of dependence, also the tydepeindence can play a considerable role
for the effectiveness of index-linked hedging sigi¢s. In particular, even if the degree of
dependence remains unchanged (in our reference,az;e(@, Il) =0.70), the hedging effec-
tiveness can differ when varying the type of depsicé. This is laid out in Table 4, which
displays results for all hedging strategies usmgelr (Clayton copula) and upper (Gumbel
copula) tail dependencies between the insurancegaonys losses and the industry loss in-
dex. When comparing these results with the refere@ase in Table 3, it can be seen that for
all hedging strategies, the highest values fomtgimum net shareholder value and the low-
est values for basis risk and shortfall probabditg achieved in the case of upper tail depend-
ence. This observation can be attributed to theease in the effectiveness of the ILW under
upper tail dependencies as basis risk is reducedasde of each hedging strategy except the
ILW-gap-hedge HE" ), this leads to an increase in the fraction inegsh the ILW when
upper tail dependence is given. At the same titme,ftactions for indemnity-based instru-
ments decrease in case of the ILW-reinsurance héd#tfg') and the ILW-gap-hedge
(HE"), as the need for these hedging instruments iscestiby virtue of the more effective
ILW. Moreover, the general results from our refeegase remain the same in that the hedg-
ing strategies including gap insurance like corttstirtictures are most effective.

The impact of policyholders’ risk sensitivity

Table 4 illustrates the impact of the policyholdewillingness to pay, which in the present
setting depends on the insurer’s risk situation iarfithsed on empirical results in, e.g., Wak-
ker, Thaler and Tversky (1997), who find that pgticlders demand premium reductions for
an insurer exhibiting default risk. As there isaal of empirical data regarding reasonable
assumptions about the policyholder’s risk averganameterg, we examine its impact by
means of a sensitivity analysis. For an increapiolgcyholders’ risk sensitivity, fractions of
risk management instruments in tendency increakie Whe maximum net shareholder value
generally decreases for all hedging strategiegh@tsame time, the difference between the
SH\™ of the traditional indemnity-based (ILW-reinsurartedge and ILW-XL-hedge) and
the gap insurance hedging strategies (ILW-gap-hadddLW-gap-XL-hedge) increases. The
same holds true for the hedging strategies exhdpiéi proportional contract design (ILW-
reinsurance-hedge and the ILW-gap-hedge) and ttgitg strategies exhibiting an excess of
loss design (ILW-XL-hedge and the ILW-gap-XL-hedge)
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Table 4: Maximization of shareholder value in the case afdileg strategies illustrated in Table H$' — HS') for different types of dependence between the
insurance company’s losses and the industry lalesxiand different degrees of policyholders’ riskstvity

optimal optimal loading in- optimal Shortfall A loading premium | basis risk Shareholder
a L. A,wS demnity &' AX- A Xt | probability o Ve CHE Value
SP SHV™ (Mio. $)

Clayton copula
ILW*
ILWand e 37.76% 26.66% 13.33% 3.43% 114.53 33.33% 152.71 | 11.06% 33.04
ILW andgap 75.80% 35.38% 13.87% 2.44% 115.19 35.29% 155.84 | 9.63% 34.79
ILW andXL 1.48% 96.42% 5.00% 166.57 0.54% 115.84 39.05% 161.05 | 0.67% 43.57
ILW and gapXL 20.48% 86.18% 5.00% 167.39 0.49% 115.93 39.16% 161.34 | 0.44% 43.77
Gumbel copula
ILW 76.47% 0.00% 2.27% 115.51 35.65% 156.69 | 6.32% 39.11
ILWand e 71.46% 13.65% 6.83% 1.24% 116.02 37.60% 159.65 | 2.74% 40.81
ILW andgap 78.07% 16.85% 6.46% 1.10% 116.05 37.87% 160.00 | 1.89% 41.14
ILW andXL 49.64% 91.28% 5.00% 163.77 0.17% 116.48 39.83% 162.87 | 0.02% 44.35
ILW and gapXL 45.04% 94.67% 5.00% 143.88 0.16% 116.48 39.86% 16291 | 0.01% 44.54
q=3
ILW 73.17% 0.00% 3.06% 114.98 36.45% 156.89 | 10.17% 39.85
ILWand e 64.34% 14.23% 7.11% 1.75% 115.62 38.00% 159.56 | 4.82% 41.11
ILW andgap 80.78% 20.22% 7.73% 1.33% 115.85 38.48% 160.42 | 3.60% 41.38
ILW andXL 16.98% 94.34% 5.00% 165.97 0.33% 116.15 39.70% 162.26 | 0.09% 44.40
ILW and gapXL 43.94% 94.90% 5.00% 156.19 0.18% 116.29 39.89% 162.67 | 0.11% 44.54
q=7
ILW 68.05% 0.00% 4.05% 114.55 28.92% 147.68 | 13.75% 31.23
ILWand e 58.87% 20.94% 10.47% 1.49% 115.76 36.10% 157.56 | 3.73% 37.87
ILW andgap 88.84% 26.37% 9.86% 1.07% 116.01 37.21% 159.17 | 3.03% 39.15
ILW andXL 49.24% 94.76% 5.29% 151.55 0.18% 116.29 39.78% 162.55 | 0.10% 44.07
ILW and gapXL 48.57% 96.12% 5.00% 166.10 0.15% 116.31 39.84% 162.65 | 0.07% 44.48

*In case of the ILW hedge onlyHS') the shortfall probability conditiolsP < SP cannot be satisfied under lower tail dependencies.
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This indicates that more effective hedging strasguch as the excess of loss and/or gap in-
surance contract design allow higher expensesdbmanagement, since the enhancement in
maximum net shareholder value (arising throughrdlagleiction of shortfall probability by pur-
chasing additional fractions of risk managementrimsents and the associated higher will-
ingness to pay by policyholders) outweighs the céda in the net shareholder value due to
higher expenses for risk management and a lowerutteput option value. Contrariwise,
hedging strategies that are comparatively lessctfe (proportional and/or traditional con-
tract design) do not allow higher expenses for neknagement instruments as the shortfall
probability cannot be reduced by an amount thatlavoesult in a sufficient increase in total
premium income to increase the maximum net shadehelue.

The impact of premium loadings and moral hazard

In contrast to the industry loss warranty contraeich of the remaining hedging instruments
is indemnity-based and thus includes the insuless in its payoff structure. This leads to
moral hazard and, thus, to higher costs as compgarétke index-linked risk transfer instru-
ment (see Equation (4)). Table 5 illustrates residt all hedging strategies under different
cost functions for the indemnity-based instrumeMitghe reference cask,s assumed to be
1.00, which leads to a linear cost function. Tolgm®the impact of a concave or a convex
cost functionk is additionally set to 0.50 and 2.00. Table 5 shoat while the general re-
sults remain the same, it can be seen that theesbfape cost function has a great impact on
the purchased amount of risk management. A conesk function(k :2.00) reduces the
costs as compared to the linear or the concavefuostion, especially for lower fractions of
E(X} )/ E( S). This allows purchasing more proportional reineageaand proportional gap
insurance, as these contracts are generally pwdhatslower fractions off and A (which
become much less expensive as in the case of & lareconcave cost function). A similar
behavior can be observed in case of the excessssfdnd the excess of loss gap insurance
contract, but to a lesser extent. Table 5 alsagtiiéies that even under the concave cost func-
tion, fractions of indemnity-based instruments sii# purchased, as the associated higher
expenses are outweighed by an increase in the pneimicome (through the improvement in
the solvency situation) and a decrease of cosfsancial distress. The lower costs (going
from a concave to a linear and a convex cost fangtalso generally imply a higher share-
holder value and a lower shortfall risk.



Table 5: Maximization of shareholder value in the case edding strategies illustrated in Table HS
cost functionsk) reflecting moral hazard in case of the indembigged risk management instruments
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- HS") for different types of loading

optimal optimal loading in- optimal Shortfall vV, loading premium 7> | basis risk|  Shareholder
a LA, w3 demnity &' AX- ase-X- | probability o CHFE' Value
SP SHV™ (Mio. $)

k = 0.50 (concave)
ILw 69.52% 0.00% - 3.42% 114.79 33.36% 153.09 | 11.22% 36.31
ILWand e 67.48% 9.89% 15.73% 2.38% 115.37 35.44% 156.25 7.42% 37.36
ILW andgap 89.18% 16.42% 17.51% 1.79% 115.72 36.59% 158.06 6.16% 37.94
ILW andXL 18.54% 81.52% 12.55% 174.07 0.46% 116.06 39.28% 161.64 | 0.21% 43.40
ILW and gapXL 51.51% 94.55% 8.24% 164.71 0.15% 116.31 39.79% 162.59 | 0.07% 44.30
k =1.00(linear)
ILW 69.52% 0.00% - 3.42% 114.79 33.36% 153.09 | 11.22% 36.31
ILWand e 68.05% 19.03% 9.51% 1.49% 115.81 37.17% 158.85 | 4.51% 39.39
ILW andgap 89.39% 22.88% 8.54% 1.22% 115.94 37.71% 159.66 | 3.70% 40.18
ILW andXL 29.57% 98.38% 5.00% 172.11 0.24% 116.24 39.71% 162.40 | 0.16% 44.33
ILW and gapXL 38.98% 97.14% 5.00% 173.54 0.19% 116.28 39.80% 162.56 | 0.14% 4452
k =2.00 (convex)
ILw 69.52% 0.00% - 3.42% 114.79 33.36% 153.09 | 11.22% 36.31
ILWand e 66.65% 33.22% 5.52% 0.63% 116.20 38.91% 161.41 1.72% 41.80
ILW andgap 69.74% 37.89% 5.00% 0.62% 116.15 38.94% 161.38 | 0.67% 42.09
ILW andXL 28.79% 98.55% 5.00% 176.24 0.24% 116.24 39.71% 162.39 | 0.20% 44.35
ILW and gapXL 39.30% 97.10% 5.00% 173.72 0.19% 116.28 39.80% 162.56 | 0.14% 44,52
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The impact of the loss volatility

Besides the choice of purchased risk managemenaments, the insurer can try to reduce its
risk through diversifying the insurance portfoliedathus lowering the loss volatility. Thus, in
Figure 3 we further study the maximum net sharedrol@lue (left graph) and the shortfall
probability (right graph) under different degreddass volatility for each hedging strategy. It
can be seen that in general, a well-diversifiedemwdting portfolio with a low degree of loss
volatility reduces the insolvency risk and incresafee maximum net shareholder value under
an optimal hedging strategy. We further find thabnsistent with the previous analyses — the
“ILW-gap-XL” strategy implies the highest shareheldvalue and the lowest shortfall risk.
However, one can also observe that the hedgintggtes with excess of loss and/or gap in-
surance contract design are most effective in tdmsidered examples when the underwritten
risks (i.e. the insurance portfolio) exhibit a hegHoss volatility. This is reflected in the in-
creasing discrepancy between shareholder valuestaodfall probability among the hedging
strategies including proportional and excess o mmtract structures as well as among tradi-
tional reinsurance and gap insurance alike corgtract

Figure 3: SH\™ and SR for varying loss voIatiIitiesa(Sr) under the optimal hedging

strategles
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Summing up, our results reveal that the combinatibimdex-linked and indemnity-based
instruments can increase the effectiveness of makagement strategies. Furthermore, gap
insurance-like contract structures are advantageoasmparison to traditional reinsurance
contracts as their contract design directly takés account if a payment from the index-lined
instruments takes place. Our results are in lind whose of Yow and Sherris (2006) and
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Krvavych and Sherris (2006) in that in generakaalé¢off between reducing financial distress
costs and higher expenses for risk managemensekstreover, besides frictional costs, pol-
icyholders’ reaction to the insurer’s solvency attan play an important role for the purchase
of risk management and thus for the insurance cagipahareholder value. In addition, the

findings found in this setting confirm the resutsDoherty and Richter (2002) in a mean-

variance framework, in that it is advisable to deppent the purchase of an index-linked in-
strument by gap insurance. Further analyses showegdvhen replacing the constraint of a
maximum shortfall probability by minimum solvencgstal requirements (calculated in line

with the planned European risk-based regulatomnénasiork Solvency Il, using the Value at

Risk as the relevant risk measure), the generaltsem Table 3 remain robust, even though
the absolute values differ. Thus, our results stioat gap insurance-like structures can be
optimal for risk management in the presence of leggry restrictions and distress if these
instruments are accepted as a risk transfer ingtntfth

4. CONCLUSION

This paper examined the effectiveness of index<basgelging strategies when gap insurance
is purchased, which specifically reinsures theigaphedging strategy’s payoff structure aris-
ing due to basis risk. Toward this end, we compdinexl hedging strategies, one that solely
consists of an index-linked instrument (an indusays warranty contract ILW), one that
combines an index-linked instrument and proporii@gag insurance, and one that combines
an index-linked contract and proportional reinsaegrone that consists of an ILW and an
excess of loss reinsurance contract, and a hedgiategy consisting of an ILW and an ex-
cess of loss gap insurance contract. The strategges then analyzed with respect to their
effectiveness for maximizing the net shareholdduevan the presence of policyholders’ risk
aversion towards insolvency risk and reducing basks which has not been done so far. Op-
timal hedging strategies that maximized the netedi@der value were numerically derived
by means of differential evolution; basis risk wasasured by means of the hedging efficien-
cy with respect to lowering the shortfall probatyilithus taking into account assets and liabil-
ities.

One main result was that gap insurance can inctbaseffectiveness of index-based hedging
strategies in multiple ways. The purchase of gapriznce in addition to the index-linked in-
strument led to a higher value of the net sharehroldlue and, at the same time, to a lower

2L |n general, alternative risk transfer instrumenith a contract design that is similar to reinsioe
contracts are accepted as risk transfer instrunfesatsSwissRe, 2009).
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shortfall probability and a reduction of basis rigkere particularly excess of loss-type struc-
tures proved to be most effective in the consideetting. To analyze the impact of basis risk
on the purchase of gap insurance in more depthgomducted a sensitivity analysis for dif-
ferent degrees of dependence between the inslwessand the industry index and found that
higher fractions of gap insurance are purchasedbfeer degrees of dependence to compen-
sate for the higher basis risk associated withirldex-linked contract. In that case, results
regarding the net shareholder value and the sHoptfabability could be considerably im-
proved by purchasing gap insurance.

We further examined if the results persist if therencomplex gap insurance transaction is
substituted through a traditional reinsurance @mtsr (proportional or excess of loss), which
cannot specifically reinsure the gap in the hedgtrgtegy’s payoff emerging by virtue of
basis risk, but that can lower the probability onon-payment of a hedging strategy. Even
though this hedging strategy did not lead to theesancrease in the hedging effectiveness as
the corresponding gap insurance, the net sharaheédee could be substantially increased
and shortfall probability could be reduced compdrethe hedging strategy solely containing
the index-linked instrument. The same holds truegard to basis risk.

To analyze if further parameters besides basisdet&rmine the effectiveness of index-based
hedging strategies, we conducted sensitivity aealg®ncerning the price difference between
the index-linked instrument and gap insurance (ti@egufrom moral hazard) as well as rein-

surance and the degree of policyholders’ risk awerOur findings showed that the price at
which each hedging instrument is available playshgrortant role. Furthermore, the optimal

amount of gap insurance (in addition to the indakdd contract) increased for higher poli-

cyholders’ risk aversion. This implied higher cofts risk management but also a higher
premium income due to the reduction in shortfalkriOverall, this tradeoff led to a lower net

shareholder value for higher policyholder risk awam, but also to a reduction in basis risk.

In summary, our findings demonstrate that a hedgtragegy that is based on an index-linked
instrument should be replenished through an indgni@sed instrument to counterbalance
the negative impact of basis risk. An optimal ubgap insurance or even traditional reinsur-
ance in addition to an index-linked contract cafact considerably improve the effectiveness
of the hedging strategy compared to the case eflgdwith an index-linked instrument only.

In particular, by means of additional gap insuraribe maximum net shareholder value can
be increased while, at the same time, the insuséstfall risk and basis risk can be reduced.
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