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THE EFFECTIVENESS OF GAP INSURANCE WITH RESPECT TO BASIS 

RISK IN A SHAREHOLDER VALUE MAXIMIZATION SETTING 

 

Nadine Gatzert, Ralf Kellner∗ 

 

ABSTRACT 

 
The purchase of index-linked alternative risk transfer instruments can lead to basis 
risk, if the insurer’s loss is not fully dependent on the index. One way to reduce ba-
sis risk is to additionally purchase gap insurance, which fills the gap between an in-
surer’s actual loss and the index-linked instrument’s payout. Previous literature de-
tects gains in the effectiveness of this hedging strategy in a mean-variance frame-
work. The aim of this paper is to extend this analysis and to examine the effective-
ness of gap insurance in a shareholder value maximization framework under sol-
vency constraints. Our results show that purchasing gap insurance can generally in-
crease the hedging effectiveness in multiple ways by reducing basis risk, thus in-
creasing shareholder value and, at the same time, lowering shortfall risk.  

 

1. INTRODUCTION 

 

The increasing number and magnitude of catastrophic events in recent years emphasized the 

potential stress on insurance and traditional reinsurance markets’ capacities. To overcome 

these capacity constraints, alternative risk transfer (ART) instruments such as cat bonds, cat 

options or industry loss warranties (ILWs) have been introduced in the past decades. These 

instruments often feature a contract design that links their payoff to the development of an 

index. Thus, they come along with benefits such as higher transparency, lower transaction 

costs than, e.g., traditional reinsurance, and a reduction of moral hazard (see, e.g. Gatzert and 

Schmeiser, 2011). However, at the same time, basis risk can occur, as the insurer’s exposure 

is usually not fully dependent on the index (see, e.g. Harrington and Niehaus, 1999; Zeng, 

2000), thus implying that the index-linked product does not pay off, even though the buying 

insurer has a high loss. A potential strategy to overcome basis risk is to additionally purchase 

so-called gap insurance, thus filling the gap between an insurer’s actual loss and the index-

linked instrument’s payout. In previous work, Doherty and Richter (2002) demonstrate poten-

tial gains in the effectiveness in a mean-variance framework if the index-based hedge is re-

plenished through a fraction of an indemnity-based instrument. The aim of this paper is to 
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Economics, Lange Gasse 20, 90403 Nürnberg, Germany, Tel.: +49 911 5302887, na-
dine.gatzert@wiso.uni-erlangen.de, ralf.kellner@wiso.uni-erlangen.de. 



 2

take this analysis further and to analyze whether gains in the effectiveness from gap insurance 

can also be observed in a comprehensive shareholder value maximization framework under 

solvency constraints. 

 

There has been steady growth in research on index-linked cat instruments. Even though ILWs 

were the first traded index-linked instruments in the 1980s (see SwissRe, 2009), the literature 

only began to focus on these instruments with the implementation of insurance futures based 

on catastrophic loss indices in 1992 by the Chicago Board of Trade. Early articles analyze the 

usage of these instruments (see, e.g. D’Arcy and France, 1992; Harrington, Mann and 

Niehaus, 1995) and discuss possible impediments for their success (see, e.g. Cox and Schwe-

bach, 1992; Hoyt and Williams, 1995). The impact of basis risk is measured in several articles 

by means of the hedging effectiveness. Major (1999), for instance, determines an insurer’s 

loss volatility reduction through a linear hedge in a simulation analysis, comparing attained 

volatilities through hedging strategies using statewide and zip-based indices. Harrington and 

Niehaus (1999) and Cummins, Lalonde and Phillips (2004) empirically analyze basis risk of 

insurance derivatives and find basis risk not to be a significant impediment for hedging strate-

gies that are based on state-specific indices. However, they detect that using state-wide indi-

ces leads to substantial basis risk, especially for insurance companies whose underwriting 

business is not diversified across the country. An extension of existing basis risk definitions is 

introduced by Zeng (2000, 2003, 2005), who compares the hedging effectiveness of index-

linked instruments to traditional reinsurance. Lee and Yu (2002) develop a model to price cat 

bonds, incorporating moral hazard and basis risk, while Gatzert, Schmeiser and Toplek (2011) 

simultaneously examine basis risk and pricing of ILWs based on various measures of basis 

risk and a comparison of different actuarial and financial pricing approaches. An analysis of 

contract features, pricing and central demand factors of ILWs is conducted in Gatzert and 

Schmeiser (2011), and a comparison of existing basis risk definitions and the impact of non-

linear dependencies on basis risk in the context of ILWs are studied in Gatzert and Kellner 

(2011). 

 

Besides the examination of basis risk, interaction effects between traditional reinsurance and 

ART instruments are analyzed in several articles. Doherty and Richter (2002) examine a 

hedging strategy that combines an index-linked instrument and indemnity-based (gap) rein-

surance and find potential gains in the effectiveness in a mean-variance framework, while 

Nell and Richter (2004) analyze interactions between reinsurance and cat bonds in an ex-

pected utility approach, thereby identifying substitution effects between cat bonds and the 

demand for reinsurance for large losses. Lee and Yu (2007) study how the value of a reinsur-
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er’s contract can be increased by means of issuing cat bonds, whereas Song and Cummins 

(2008) observe substitution effects between derivative hedging and traditional reinsurance. 

One example of a transaction that combines a reinsurance structure (i.e. comparable to gap 

insurance) and a parametric cat bond is a transaction sponsored by the Mexican Government, 

which is examined by Härdle and López-Cabrera (2010), who find that the coverage of this 

transaction is received for lower costs and lower exposure at default than a “pure” reinsurance 

transaction. 

 

The impact of risk management on shareholder value maximization has also been considered 

in previous literature. Yow and Sherris (2008), for instance, study an insurer’s optimal capital 

and structure with respect to maximum net shareholder value in the presence of frictional 

costs and policyholders’ risk sensitivity with respect to the insurer’s solvency situation and 

pricing policy. In their analysis, the risk management strategy depends on holding more or 

less economic capital and their results show a tradeoff between costs for economic capital and 

improving the insurance company’s solvency situation. Furthermore, Krvavych and Sherris 

(2006) examine the demand for a change-loss reinsurance contract and risk capital provided 

by shareholders when aiming to maximize shareholder value in the presence of frictional 

costs and under a solvency constraint. They thereby distinguish between the two cases that 

reinsurance can or cannot be used to reduce capital requirements. Their results show that if 

reinsurance is not taken into account to reduce capital requirements, risk management does 

only increase shareholder value in the presence of frictional costs. Otherwise, reinsurance is 

purchased if it can be used to decrease capital requirements, whereby a tradeoff between im-

proving the solvency situation and higher costs of risk management exists. Hence, in both 

works, focus was neither laid on the impact of basis risk associated with index-linked instru-

ments and its impact on shareholder value nor on solutions using gap insurance, which is the 

main focus of the present analysis. 

 

In addition, while the basis risk associated with index-linked contracts has been studied be-

fore, the effectiveness of combined risk management strategies consisting of an index-linked 

instrument and gap insurance (to account for basis risk) has only partly been focused in the 

literature to date. Thus, we extend previous literature in the following way. In contrast to, e.g., 

Doherty and Richter (2002), we focus on a shareholder value maximization setting under sol-

vency constraints and include a reaction of the policyholder’s willingness to pay with respect 

to the insurer’s solvency situation. We then examine whether an optimal risk management 

strategy consisting of gap insurance and an index-linked instrument can increase the net 

shareholder value (and reduce shortfall risk) as compared to a hedging strategy that only in-
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cludes an index-linked instrument without gap insurance. We thereby assess different types of 

gap insurance structures and show how they differ in their effectiveness. The optimization 

problem is solved using differential evolution. Our results show that an optimal use of gap 

insurance improves the effectiveness of the hedging strategy compared to the case of a hedge 

with an index-linked instrument only. In particular, by means of gap insurance, the insurer’s 

solvency situation can be improved and basis risk can be lowered while, at the same time, the 

maximum net shareholder value can be increased. 

 

The remainder of this paper is structured as follows. In Section 2, the model framework is 

presented, including the model of a non-life insurer and the definition of basis risk. Section 3 

contains numerical analyses and Section 4 concludes. 

 

2. MODEL FRAMEWORK OF A NON-LIFE INSURER 

 

Modeling the asset side and the relevant risk management instruments 

 

We consider a given time horizon T  inside a dynamic setting, where at time t = 0, the insurer 

receives premiums TSπ  paid by policyholders for stochastic insured losses TS  at time T, and 

shareholders make an initial contribution 0E . In addition, the insurer can choose to purchase 

among five types of risk management instruments at time t = 0 to hedge against losses at time 

T: A binary industry loss warranty contract (‘ILW’), a proportional reinsurance contract (‘re’), 

an aggregate excess of loss reinsurance contract (‘XL’ ) and two indemnity-based gap insur-

ance instruments (‘gap’, ’gap-XL’) with resulting payoffs i
TX , i = ILW, re, XL, gap, gap-XL at 

time T. Each of the risk management instruments' contract parameters are fixed at time t = 0 

and cannot be adjusted during the contract term (i.e. we consider one period). Furthermore, at 

time T, entrepreneurial activities are closed down and the remaining funds are distributed to 

shareholders. 

 

The payoff of the binary ILW contract ILW
TX  only depends on the development of an industry 

loss index TI  at time T and pays a fraction α (determined by the insurer) of the ILW’s limit 
ILWL  if the index exceeds a certain trigger level Y: 

 

( ) { }1ILW ILW
T TX L I Yα α= ⋅ ⋅ > , 
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where { }1 TI Y>  represents the indicator function, which is equal to 1 if the industry loss TI  

at time T is greater than the trigger Y  and 0 otherwise.1 An insurer purchasing solely an ILW 

for risk management faces basis risk, in that the industry loss index may not be triggered, 

even though the insurer’s losses ST exceed a critical loss level (see, e.g. Zeng, 2000). To re-

duce basis risk, the hedging strategy can be extended such that the ILW is combined with an 

instrument whose payment is independent of the index’s development. In this context, we 

analyze four different indemnity-based instruments that can be combined with the ILW. 

Doherty and Richter (2002) show that purchasing proportional gap insurance (‘gap’), which 

pays a fraction β (determined by the insurer) of the difference between the insurer’s actual 

losses ST and the ILW’s payment2 ILW
TX  

 

( ) ( )( ){ } { }( ){ }max ,0 max 1 ,0gap ILW ILW
T T T T TX S X S L I Yβ β α β α= ⋅ − = ⋅ − ⋅ ⋅ > , 

 

can lead to gains in the effectiveness of the hedging strategy. The payment structure within 

the maximum operator ( )( )( )ILW
T TS Xβ α⋅ −  can be constructed by a swap contract between 

the insurer and a reinsurance company, which exchanges a fraction β  of an ILW’s payment 

with a proportional reinsurance contract, paying TSβ ⋅ . Thus, the swap also induces the pos-

sibility that the insurer has to make a payment to the reinsurer that exceeds the received pay-

ment. As the analysis is intended to examine the impact of exclusively reinsuring the gap be-

tween an insurer’s loss and the index-linked instrument, the payment structure is limited 

through the maximum operator. However, apart from the index-linked instrument’s payment 

part, the structure of proportional gap insurance is similar to a proportional reinsurance con-

tract (‘re’), which pays a fraction λ  of the insurance company’s losses 

 

( )re
T TX Sλ λ= ⋅ . 

 

Thus, the proportional reinsurance contract can be considered as a natural benchmark for the 

proportional gap insurance contract. Nevertheless, the basic idea of gap insurance can be 

adapted to further reinsurance-like contract structures of different risk management instru-

ments. Both, the proportional reinsurance and the proportional gap insurance contract, provide 

coverage over the entire range of losses, which might be a disadvantage for contracts that re-

insure losses above a certain threshold, as coverage for low losses might increase costs for 

                                              
1  Note that other indices, e.g. a parametric index, could be used to structure the ILW. While paramet-

ric indices tend to exhibit a higher degree of standardization to investors, the associated basis risk is 
usually also higher (see SwissRe, 2009). 

2  As an alternative to this illustration, the ILW’s limit can be adjusted to the desired level. 
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risk management, but do little improve the insurer's solvency situation. Thus, we further con-

sider an aggregate excess of loss reinsurance contract (‘XL’), whose payment is given through 

 

( ) ( )( )min max ,0 ,XL XL XL
T TX S A Lω ω= ⋅ − , 

 

where ω  denotes the fraction that is purchased, XLA  the attachment of the company loss and 
XLL  the contract’s layer limit. Similar to the case of proportional reinsurance, the aggregate 

excess of loss reinsurance contract represents a natural benchmark for a corresponding excess 

of loss gap insurance contract (‘gap-XL’), which is structured according to 

 

( ) ( )( ){ }
{ }( )( ){ }

max min max ,0 , ,0

max min max 1 ,0 , ,0 ,

Gap XL gap XL ILW gap XL
T T T

gap XL ILW gap XL
T T

X S A X L

S A L I Y L

ϑ ϑ

ϑ α

− − −

− −

= ⋅ − − =

= ⋅ − − ⋅ ⋅ >
 

 

where ϑ  denotes the fraction that is purchased, gap XLA −  the attachment of the company loss 

and gap XLL −  the contract’s layer limit. Summing up, we consider five possible hedging strate-

gies in the model framework as displayed in Table 1.  

 

Table 1: Analyzed hedging strategies  

No. Hedging strategy Hedge parameters Payoff 
IHS  ILW only 0, 0, 0, 0, 0α β λ ω ϑ≥ = = = =  ( )ILW

TX α  
IIHS  ILW + proportional reinsurance 0, 0, 0, 0, 0α β λ ω ϑ≥ = ≥ = =  ( ) ( )ILW re

T TX Xα λ+  
IIIHS  ILW + proportional gap insurance 0, 0, 0, 0, 0α β λ ω ϑ≥ ≥ = = =  ( ) ( )ILW gap

T TX Xα β+  
IVHS  ILW + excess of loss reinsurance 0, 0, 0, 0, 0α β λ ω ϑ≥ = = ≥ =  ( ) ( )ILW XL

T TX Xα ω+  
VHS  ILW + excess of loss gap insurance 0, 0, 0, 0, 0α β λ ω ϑ≥ = = = ≥  ( ) ( )ILW gap XL

T TX Xα ϑ−+  

 

All hedging instruments are considered to be asset hedges (see Doherty, 2000) with respect to 

financial accounting. The ILW’s design equals a derivative structure, as no indemnity3 trigger 

is involved in the transaction (see SwissRe, 2009), and the gap insurance contracts feature a 

reinsurance-like structure. Accordingly, all five instruments (ILW, proportional reinsurance, 

proportional gap insurance, excess of loss reinsurance and excess of loss gap insurance) are 

accounted for on the asset side. By combining an ILW and an indemnity-based instrument 

( II VHS HS− ), advantages and drawbacks of the individual hedging instruments can be coun-

                                              
3  ILWs can also be structured as double-trigger contracts, such that besides the industry trigger, an 

indemnity-based trigger is included in the contract design (see, e.g. SwissRe, 2006; Gatzert and 
Schmeiser, 2011). 
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terbalanced and offset to some extent. In particular, indemnity-based contracts increase the 

protection seller’s costs to control for moral hazard (see Doherty and Richter, 2002), while the 

index-based ILW exhibits a high degree of standardization achieved through the use of an 

index and implies a less complex underwriting process that is less costly (see Gatzert and 

Schmeiser, 2011), but in turn faces basis risk. 

 

Note that while transactions that combine traditional reinsurance and index-linked instruments 

already exist,4 gap insurance contracts typically depend on the buyer’s individual situation 

and the respective index-linked instrument and may thus require an individual contract de-

sign, which are hardly published. Figure 1 exemplarily illustrates the coverage provided by 

proportional and excess of loss gap insurance for a given level of β  and ϑ , respectively.5 It 

can be seen that the payment of each contract can be represented as a function of the insurer’s 

loss 1S  and the index value 1I . This and the similarity to traditional reinsurance contracts 

shows that reinsurance coverage as given through gap insurance should be available for pur-

chase, especially as the development of alternative risk transfer instruments made reinsurers 

more flexible in providing new coverages and contract designs (see Doherty and Richter, 

2002). 

 

Figure 1: Coverage provided through proportional gap insurance (left side) and excess of loss 

gap insurance (right side) 

  

                                              
4  In 2006, for instance, Mexico’s Fund for Natural Disasters entered into an insurance contract with 

European Finance Reinsurance, covering a total volume of 450 Mio.$ in which 160 Mio.$ were is-
sued in a cat bond transaction based on a parametric index (see Härdle and López-Cabrera, 2010). 

5  Note that changes in β  and ϑ  impact the steepness of the coverage surface, but not it’s piecewise 
linear progression. 
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The premiums for these instruments are paid at time t = 0 and consist of the discounted ex-

pected payment under the risk-neutral pricing measure Q and an additional loading, i.e. 

( ) ( )1fr Ti Q i i
TE e Xπ δ− ⋅= ⋅ ⋅ + , i = ILW, re, XL, gap, gap-XL, where fr  stands for the risk-free 

interest rate. Depending on the concrete hedging strategy and the composition of the hedging 

instruments, the total initial capital thus sums up to  

 

{ }
0 0

, , , ,

TS i

i ILW re gap XL gap XL

A E π π
∈ −

= + − ∑ ,  (1) 

 

where 0E  represents shareholders’ initial contribution, TSπ  are the premiums paid by the pol-

icyholders for insured claims ST, and 0iπ =  if α = 0 (i = ILW), λ = 0 (i = re), ω = 0 (i = XL), 

β = 0 (i = gap) or ϑ  = 0 (i = gap-XL), respectively. A fraction γ  of the initial capital is in-

vested in a risky asset 0, 0highA Aγ= ⋅ , and the remaining part ( )1 γ−  is invested risk-free 

( )0, 01risk freeA Aγ− = − ⋅ . Concerning the fraction invested in the risky asset, the Heston (1993) 

model is used, given by 

 

( ),, , t high

P
t high t high high t AdA A dt V dWµ= + , 

 

where highµ  denotes the drift of the risky assets’ process. The instantaneous variance tV  fol-

lows the square-root process (see Cox, Ingersoll and Ross, 1985) and is described by 

 

( )
t t

P
t t V t VdV V dt V dWκ θ σ= − + , 

 

which reverts to the long-term variance θ  with a speed of mean reversion κ , where 
tVσ  is the 

variance’s volatility and 
,t high

P
AW , 

t

P
VW  are standard P-Brownian motions on a probability space 

( , , )PΩ F  with 
, , ,t high t t high t

P P
A V A VdW dW dtρ= , 

, ,t high tA Vρ  denoting the linear coefficient of correla-

tion, and where P represents the objective real-world measure. Under the risk-neutral pricing 

measure Q, the risky asset process is given through 

 

( ),, , t high

Q
t high t high f t AdA A r dt V dW= + , 

 

( )
t t

Q
t t V t VdV V dt V dWκ θ σ= − +ɶɶ , 

 

and 
t tV Vκ κ λ σ= + ⋅ɶ , /θ κ θ κ= ⋅ɶ ɶ ɶ , 

tVλ  denoting the market price of risk for the volatility pro-

cess, and 
,t high

Q
AW , 

t

Q
VW  standard Q-Brownian motions. The asset portfolio TA  at time T de-

pends on the chosen hedging strategy and is determined by  
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( )
{ }

, ,
, , , ,

1 i
T T high T risk free T

i ILW re gap XL gap XL

A A A Xγ γ −
∈ −

= ⋅ + − ⋅ + ∑ , 

 

with , , , ,i ILW re gap XL gap XL= −  and 0i
TX =  if α = 0 (ILW), λ = 0 (re), β = 0 (gap), ω = 0 

(i = XL) or ϑ  = 0 (i = gap-XL) respectively. The value of the assets 0
VA  at time t = 0 is thus 

given by calculating the expected value under the risk-neutral measure Q and discounting to 

zero, 

 

( ) ( )
{ }

0 0
, , , ,

f fr T r TV Q Q i
T T

i ILW re gap XL gap XL

A E e A A E e X
− ⋅ − ⋅

∈ −
= ⋅ = + ⋅∑ , (2) 

 

which thus depends on the type of premium calculation for the risk management instruments 

(see Equation (1)). 

 

Modeling the liability side 

 

The policyholders’ claims TS  and industry losses TI  are assumed to follow a geometric 

Brownian motion, such that 

 

t

P
t S t S t SdS S dt S dWµ σ= + , 

 

and 

 

t

P
t I t I t IdI I dt I dWµ σ= + , 

 

with drift iµ  , standard deviation iσ , and 
t

P
iW  denoting a standard P-Brownian motion on a 

probability space ( , , )PΩ F  with filtration F , i = S, I. The solutions of these stochastic dif-

ferential equations under the real-world measure P for t = T are given by (see, e.g. Björk, 

2009) 

 

( )20.5

0

P
I I I IT

T W

TI I e
µ σ σ− ⋅ ⋅ + ⋅

= ⋅ , 

 
and 
 

( )20.5

0

P
S S S ST

T W

TS S e
µ σ σ− ⋅ ⋅ + ⋅

= ⋅ , 
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thus implying a lognormal distribution for losses at time T. By changing the probability 

measure to the risk-neutral measure Q, the stochastic processes of the company loss and the 

industry loss at time T are given by 

 

( )20.5

0

P
f I I IT

r T W

TI I e
σ σ− ⋅ ⋅ + ⋅

= ⋅  

 
and 
 

( )20.5

0

P
f S S ST

r T W

TS S e
σ σ− ⋅ ⋅ + ⋅

= ⋅ , 

 

respectively, where 
T

Q
SW  and 

T

Q
IW  are standard Q-Brownian motions.6 The geometric Browni-

an motion is used for two reasons. First, it can be used to describe the development of the loss 

estimate between time t = 0 and T (see, e.g. Braun, 2011; Loubergé, Kellezi and Gilli (1999); 

Cummins and Sommer, 1996; Cummins and Geman, 1994). Second, the resulting lognormal 

distribution of the loss estimate is in line with empirical findings of Burnecki, Kukla and 

Weron (2000) for the PCS index in the United States and further allows an easier analysis in 

an otherwise complex setting (see, e.g. Cummins and Geman, 1994). The type and degree of 

dependence between the index and the insurer’s losses is thereby assumed to be constant over 

time, which allows isolating the impact of different types and degrees of dependence on 

shareholder value and shortfall risk. Alternatively, dynamic dependence models can be taken 

into account (see, e.g. Hafner and Manner, 2012; Patton, 2006), which, however, do not allow 

an isolated assessment of the type and degree of dependence (as in case of, e.g., autoregres-

sive process). 

 

If the value of assets AT at time T is not sufficient to cover the policyholders’ claims, i.e. if 

T TS A> , the insurer becomes insolvent. Due to the shareholders’ limited liability, no addi-

tional equity capital is provided at time T, and, thus, only the remaining funds are distributed 

to the policyholders. Hereby, one has to take into account that market frictions such as agency 

costs, taxation or costs of financial distress (see, e.g. Yow and Sherris, 2008; Krvavych and 

Sherris, 2006) can play an important role for a firm’s financing policy including decisions for 

risk management (see, e.g. Modigliani and Miller, 1958; Mayers and Smith, 1982). In the 

present analysis, we thus incorporate costs of financial distress,7 which can occur due to, e.g. 

                                              
6  Even though the insurer’s losses are non-tradable and frictional costs, which are introduced in this 

section, exist, we assume the market to be arbitrage-free, such that the risk-neutrale Q exists but 
may not be unique (see Yow and Sherris, 2008). 

7  Further analyses regarding taxation and agency costs in a shareholder value maximization setting 
can be found in Yow and Sherris (2008) and Krvavych and Sherris (2006). 
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bankruptcy costs in case of insolvency and are thus defined as a fraction FDτ  of losses in case 

of default at time T, ( )max ,0FD T TS Aτ ⋅ −  (see Yow and Sherris, 2008). 

 

Hence, the value of policyholders’ payoff TV  is determined by (see, e.g. Yow and Sherris, 

2008; Zanjani, 2002) 

 

( )( ) ( ) ( )
( ) ( )

min max ,0 , max ,0 max ,0

1 max ,0 ,

T T FD T T T T T T FD T T

T FD T T

V A S A S S S A S A

S S A

τ τ

τ

= − ⋅ − = − − − ⋅ − =

= − + ⋅ −
 

 

which is composed of the policyholders’ claims less the so-called default put option, which is 

increased through bankruptcy costs and represents the loss in case of insolvency. If the insur-

ance company is solvent, the remaining surplus, i.e., the difference between assets and liabili-

ties, is paid out to the shareholders, and their payoff 
TE  at time T residually given by  

 

( ) ( )max ,0 max ,0T T T T T T TE A S A S S A= − = − + − . 

 

Hence, the net present value of the shareholder’s investment (net shareholder value 0SHV ) 

under the risk-neutral measure Q is given by (see, e.g. Zimmer, Gründl and Schade, 2009)8 

 

( )0 0
fr TQ

TSHV E e E E− ⋅= ⋅ − . (3) 

 

Determination of premiums, loadings, and policyholders’ willingness to pay 

 

To determine the insurer’s premium income, we adapt and adjust a procedure used in Gründl, 

Post and Schulze (2006). We thereby assume that the insurer’s premium income consists of 

the value of payments to policyholders at time t = 0, 0V , where an additional loading TSδ  is 

imposed that takes into account the policyholders’ risk aversion. 0V  is derived using risk-

neutral valuation by calculating the discounted expected value under the risk-neutral measure 

Q  

 

( ) ( ) ( ) ( )( ) ( )0 01 max ,0 1 ,f f fr T r T r TQ Q Q
T T FD T T FDV E e V E e S E e S A S DPOτ τ− ⋅ − ⋅ − ⋅= ⋅ = ⋅ − ⋅ + ⋅ − = − + ⋅

 

where ( )( )max ,0fr TQ
T TDPO E e S A

− ⋅= ⋅ − , which depends on the actual premium payment 

by the policyholders. Furthermore, we assume that besides amortizing costs for moral hazard 

                                              
8  Note that in a financially fair situation without premium loadings and without assumptions on poli-

cyholders’ willingness to pay, SHV0 would be equal to zero. 
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and transaction costs, the insurer additionally aims to increase the loading to enhance its pre-

mium income from insuring losses TS . As the insurance company is not in a monopolistic 

market position, it cannot fix the loading arbitrarily. Instead, we assume that the loading that 

policyholders are willing to pay is endogenous, and, in the presence of policyholders’ risk 

aversion, depends on the insurer’s shortfall probability, which is calculated under the real-

world measure P  (see, e.g. Gründl, Post and Schulze, 2006; Zimmer, Gründl and Schade, 

2009) through 

 

( )T T TSP P A S= < . 

 

This assumption is based on experimental results by Wakker, Thaler and Tversky (1997) and 

Zimmer, Gründl and Schade (2009), who find that people demand premium reductions for 

insurance with default risk, such that the willingness to accept higher loadings on the premi-

um decreases with an increase in the insurer’s shortfall probability (see also Gründl, Post and 

Schulze, 2006; Yow and Sherris, 2008).9 Thus, the loading TSδ  reflects the policyholders’ 

willingness to pay and is modeled by  

 

( ) max,1T TS S
Tq SPδ δ= − ⋅ ⋅ , 

 

where max, TSδ  represents the maximum loading that policyholders would accept in the case of 

an insurer without default risk and q10 stands for the policyholders’ sensitivity towards insol-

vency risk.11 Thus, the insurer’s premium income TSπ  is given by12 

 

( ) ( )( ) ( )0 01 1 1T T TS S S
FDV S DPOπ δ τ δ= ⋅ + = − + ⋅ ⋅ + , 

                                              
9  Furthermore, similar results can be found in an empirical analysis by Epermanis and Harrington 

(2006) who detect that rating downgrades come along with premium declines in the year of the 
downgrade and the following years after the downgrade. 

10  Policyholders' sensitivity towards insolvency risk might change over time. Here, we assume a ho-
mogenous group of policyholders purchasing insurance at the initial time t = 0. Moreover, the im-
pact of different degrees of risk sensitivity is analyzed in more depth in Section 3. 

11  This approach is similar to the one used in Gründl, Post and Schulze (2006), who model the quanti-
ty of policyholders demanding insurance as a decreasing function of the insurer’s shortfall proba-
bility. Note that this assumes that the insurer can fully observe the policyholders’ risk sensitivity 
when determining the premium. If this is not the case (e.g. if it is revealed ex post), the solution to 
the optimization problem might be suboptimal. 

12  Note that the purchased amount of risk management at t = 0 affects the value of the default put 
option and the shortfall probability at t = T, which in turn influences the willingness to pay at t = 0. 
Due to this interaction, the fractions α, β, λ, ω and ϑ  have to be adjusted such that the “promised” 
shortfall probability, used to determine the policyholder’s willingness to pay at t = 0 and influenced 
by the policyholders’ premiums, equals the shortfall probability actually realized at t = T. 
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where V0 can be considered as the “fair basic premium”, which is increased by a loading that 

is determined under the real-world measure P. Hence, actions taken by the insurer to improve 

its solvency situation generally have two positive effects on its premium income: A reduction 

in the shortfall probability decreases the default put option value, which increases 0V  and, in 

addition, raises policyholders’ willingness to pay by means of TSδ . 

 

Premiums for the risk management instruments consist of their discounted payment’s ex-

pected value under the risk-neutral measure Q and loadings iδ  ( )0≥ , i = ILW, re, XL, gap, 

gap-XL, representing costs usually associated with these instruments. In general, the loading 

for indemnity-based contracts can be assumed to be higher than the ILW’s loading, since the 

binary ILW exhibits a high degree of standardization and is not exposed to moral hazard. 

Contrariwise, indemnity-based transactions demand higher expenses to monitor an insurer’s 

business operations and to control for moral hazard. We thus take into account that the load-

ing for the indemnity-based risk management contracts (i = re, XL, gap, gap-XL) should re-

flect the costs associated with moral hazard, which tend to increase for higher rates of (re-) 

insurance (i.e. the higher the portion of the insurer’s loss that is reinsured, see Doherty and 

Richter, 2002) and is determined by 

 

( )
( )

minmax , , , , , , 0,1, ,

k
i
Ti l

T

E X
v i re XL gap gap XL l v k

E S
δ δ

   
 = ⋅ = − = ∈     

ℝ .  (4) 

 

Here, the rate of reinsurance is given by the proportion of the expected payment from the re-

spective risk management instrument to the expected loss of the insurer (both under the objec-

tive measure P). While the shape of the cost function iδ  can be controlled through k, the 

steepness can be adapted through v and l, where minδ  represents a minimum loading, which 

we assume to be higher or equal to the loading of the industry loss warranty contract. Thus, 

the corresponding prices iπ  of the risk management instruments i = re, XL, gap, gap-XL re-

sult from 

 

( ) ( )1fr Ti Q i i
TE e Xπ δ− ⋅= ⋅ ⋅ + , (5) 

 

where a constant loading for the ILW contract minILWδ δ≤  is assumed. 
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Optimization problem 

 

The insurer’s objective in risk management is to create value through entrepreneurial activi-

ties.13 In the present setting, we consider the net shareholder value as the relevant value as 

illustrated in Equation (3), which can be reformulated by replacing the values for assets 0
VA  

(see Equation (2)), policyholders' claims 0S  and the default put option DPO, as follows: 

 

( )
( )( )

( )
{ }

( )( ) ( )

{ }
( )

{ }

0 0

0

0 0 0

(2)

0 0 0
, ,

(1)

0 0

, , , , , , , ,

max ,0

1 1

f

f

f

T

f

r TQ
T

r T Q
T T T T

V

r TQ i
T

i ILW gap re

S
FD

r Ti Q i
T

i ILW re gap XL gap XL i ILW re gap XL gap XL

SHV E e E E

e E A S S A E

A S DPO E

A E e X S DPO E

E S DPO

E e X

τ δ

π

− ⋅

− ⋅

− ⋅

∈

− ⋅

∈ − ∈ −

= ⋅ −

= ⋅ − + − −

= − + −

 
= + ⋅ − + −  
 

= + − + ⋅ ⋅ +

− + ⋅ −

∑

∑ ∑

( ) ( ) ( )( )
{ }

0 0

(5)

0
, , , ,

1 fT T
r TS S i Q i

FD T
i ILW re gap XL gap XL

S DPO E

S DPO DPO E e Xδ τ δ δ − ⋅

∈ −

+ −

= − ⋅ − ⋅ ⋅ + − ⋅ ⋅∑

 (6) 

 

Hence, in order to increase the net shareholder value, the tradeoff between increasing the safe-

ty level (to reduce the DPO and thus the impact for costs of financial distress, and to increase 

the policyholders’ willingness to pay reflected in the loading) by purchasing risk management 

instruments and the premium payments for risk management (which reduce the SHV0) must 

be addressed. 

 

The derivation of the optimal hedging strategy is highly endogenous due to the interrelation 

between the insurer’s premium income at time t = 0 and the shortfall probability at time T. 

Purchased fractions α, β, λ, ω , and ϑ  of the risk management instruments at time t = 0 in-

fluence assets and liabilities at time T and thus also the shortfall probability differs, which has 

an impact on the premium income at time  t = 0. The premium income in turn at the same 

time determines the available capital for risk management and the investment opportunities at 

time  t = 0. In our analysis, this problem is solved by a root-searching algorithm. In a real-

world setting, the procedure can be interpreted that an insurer “chooses” a shortfall probabil-

ity and given a certain amount of risk management activities, the shortfall probability is then 

                                              
13  For a detailed discussion on an insurer’s rationale for hedging, see, e.g. Cummins and Song (2008). 
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communicated to policyholders through a rating agency (see also Gründl, Post and Schulze, 

2006 for a similar argumentation).14 

 

Hence, the higher the insurer’s rating and thus safety level is, the higher are the product prices 

that are accepted by policyholders. Accordingly, the insurer’s objective in this setting is to 

maximize the net shareholder value as displayed in Equation (6) through purchasing optimal 

fractions α, β, λ, ω , and ϑ  of risk management instruments (see Table 1 for the hedging 

strategies under consideration) 

 

( ) ( ) ( )( )
{ }

max
0 0

, , , ,
, , , ,

,

max 1 fT T

XL gap XL

r TS S i Q i
FD T

i ILW re gap XL gap XL
A A

SHV S DPO DPO E e X
α β λ ω ϑ

δ τ δ δ
−

− ⋅

∈ −

  = − ⋅ − ⋅ ⋅ + − ⋅ ⋅ 
  

∑  (7) 

 

subject to the constraint15 c  that the insurer’s shortfall probability is not allowed to exceed a 

predefined level TSP , that the fractions α, β, λ, ω , and ϑ  are in the range between zero and 

one, and that the premium payment is consistent with the shortfall probability implied by the 

risk management strategy, 

 

( ) ( )
0 1 , , , , ,

1 T

T T

S
t

SP SP

c i i

S DPO

α β λ ω ϑ
δ

 ≤
 

= ≤ ≤ = 
 
 − ⋅ + 

.16 

 

Note that different types of risk measures could be included in regard to the policyholders’ 

demand sensitivity and in the constaints of the optimization problem, which impacts the opti-

mal risk management strategies. In this context, it is crucial which part of the insurer’s surplus 

distribution is taken into account by the risk measure. The shortfall probability solely consid-

ers whether the surplus is below or above zero, while in case of the expected loss, for in-

stance, the extent of the shortfall is also taken into account. When using the latter risk meas-

ure, the optimal attachment points would be lower in case of the excess of loss reinsurance 

                                              
14  In an empirical analysis for U.S. property-liability insurers, Cummins, Lin and Phillips (2006) de-

tect an inverse relationship between insurance prices and insolvency risk, measured through A. M. 
Best’s financial ratings. 

15  The number of constraints, which are involved in the optimization, can be optionally expanded. In 
general, the constraints can, e.g. constitute regulatory requirements an insurer might need to fulfill, 
such as a certain level of solvency or mandatory restrictions set by law. 

16  See Krvavych (2007) for further possibilities to formulate the shareholder value maximization 
problem. Krvavych (2007) shows that maximizing shareholder value under solvency constraints 
can be equivalent to maximize shareholder value using an isoelastic utility function. 
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and excess of loss gap insurance contracts, whereas fractions of proportional reinsurance and 

proportional gap insurance would be higher. 

 

For the optimization problem displayed in Equation (7), differential evolution (DE) is applied. 

DE is a parallel stochastic direct search method, which belongs to the family of evolutionary 

algorithms introduced by Storn and Price (1997). To optimize an objective function, DE starts 

with a number NP of D-dimensional vectors, called the population, which are randomly cho-

sen on a uniformly distributed probability space. After the initialization of the first generation 

g, DE creates trial vectors, representing the intermediary populations, through mutating and 

crossing over the initial vectors. To create the next generation, initial vectors are replaced 

through trial vectors if a trial vector leads to an equal or better result than an initial vector (see 

Storn and Price, 1997). After this selection, the procedure is repeated until a stopping condi-

tion, e.g. a maximum number of generations is reached or if the best value of the objective 

function could not be improved for a specified number of generations. DE offers advantages 

compared to traditional optimization methods (see Price, Storn and Lampinen, 2006) as, for 

instance, the simultaneous search for an optimal solution with multiple starting points reduces 

the probability to identify a false peak. Furthermore, DE does not rely on additional infor-

mation such as derivatives to find the optimum. By virtue of these attributes, DE is capable to 

optimize non-smooth or non-linear functions.17 

 

Basis risk 

 

The crucial parameter for the effectiveness of hedging strategies including an index-linked 

instrument is basis risk. In the following analysis, basis risk is measured using the counter 

value of the hedging efficiency as employed by Zeng (2003), which is calculated based on the 

proportionate risk reduction of a predefined risk measure attainable through an index-based 

hedging strategy as compared to a benchmark for the index-hedge. In the following analysis, 

the shortfall probability is chosen as the relevant risk measure, which accounts for assets and 

liabilities. As a benchmark, an index-based hedge, assuming perfect dependence between the 

insurer’s loss and the index, is defined so that the proportionate risk reduction iRR  for the 

hedging strategy i = I, II, III, IV, V, perfect (see Table 1) and the respective strategies under 

perfect dependence between index and insurer’s loss (perfect), can be determined through 

 

                                              
17  In the numerical analysis, DE is implemented using the “DEoptim” package of the statistical soft-

ware R (http://www.r-project.org). An explanation of the package is provided by Mullen et al. 
(2011). 
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1
i

i T
without

T

SP
RR

SP
= − , 

 

where i
TSP  denotes shortfall probabilities under the corresponding hedging strategy and 

without
TSP  the shortfall probability if no hedging instrument is purchased. With these defini-

tions, the counter value of the hedging efficiency iCHE  for the hedging strategies i = I, II, III, 

IV, V is given by (see Cummins, Lalonde and Phillips, 2004) 

 

1
i

i
perfect

RR
CHE

RR
= − . 

 

3. NUMERICAL ANALYSIS 

 

This section investigates the effectiveness of gap insurance to maximize net shareholder value 

under solvency constraints in the presence of basis risk, given that policyholders are sensitive 

with respect to an insurer’s default. To quantify the impact of gap insurance, we compare re-

sults of net shareholder value, shortfall probability and basis risk for a hedging strategy con-

sisting exclusively of an ILW (“ILW-hedge”, HSI), one combining an ILW and a proportional 

reinsurance contract (“ILW-reinsurance-hedge”, HSII), one with an ILW and a proportional 

gap insurance contract (“ILW-gap-hedge”, HSIII ), one with an ILW and an excess of loss rein-

surance contract (“ILW-XL-hedge”, HSVI), and a hedging strategy consisting of an ILW and 

an excess of loss gap insurance contract (“ILW-gap-XL-hedge”, HSV) (see Table 1). The aim 

of this analysis is to study whether gap insurance can increase the maximum net shareholder 

value and/or improve an insurer’s solvency situation. We thereby also investigate to what 

extent basis risk can be reduced through the usage of gap insurance. Sensitivity analyses are 

conducted concerning the degree and type of dependence between the insurer’s loss and the 

index, different degrees of the insurer’s loss volatility, the policyholder’s risk sensitivity and 

the type of cost function with respect to the loading of indemnity-based risk management in-

struments (impacted by moral hazard) in order to identify key drivers for the effectiveness of 

gap insurance. 

 

Input parameters 

 

The input data for our reference contract are summarized in Table 2, where the expected value 

under the real-world probability measure P, the drift as well as the volatility of the company’s 

loss are based on empirical data of a non-life insurer as presented in Eling, Gatzert and 

Schmeiser (2009). The corresponding values of the industry index are adopted from Gatzert, 
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Schmeiser and Toplek (2011), referring to Hilti, Saunders and Lloyd-Hughes (2004). Moreo-

ver, the drift and the parameters for the volatility process of high-risk assets are based on data 

from the S&P 500. All other input parameters are chosen for illustration purposes and were 

subject to robustness tests to ensure the stability of our general findings. 

 

Table 2: Input parameters for the reference contract 

Available equity capital at time 0 Et $58 million 

Expected value of the company loss ( )TE S  $117 million 

Expected value of the industry index ( )TE I  $1450 million 

Drift and volatility of the company loss 
1Sµ ,

1Sσ  0.025, 0.53 

Drift and volatility of the industry index 
1I

µ ,
1I

σ  0.025, 1.39 

Drift of high-risk assets 
1,highAµ  0.0729 

Long term variance of high-risk assets θ  0.0482 

Mean-reversion of high-risk assets κ  2.50 

Variance’s volatility of high-risk assets Vσ  0.3131 

Market price of risk for the volatility process Vλ  0.00 

Correlation among high-risk assets processes 
, ,t high tA Vρ  -0.4235 

Risk-free interest rate fr   2% 

Investment in high-risk investment γ  25% 

Policyholder’s risk sensitivity q  5 

Kendall’s tau for company and index losses ( )1 1,S Iτρ  0.70 

Premium loading for an insurer without default risk 1max,Sδ  40% 

Premium loading ILW ILWδ  5% 

Premium minimum loading for indemnity-based contracts minδ  5% 

Parameters for the cost function of indemnity- based risk 

management instruments iibδ  

, ,k l v  1,1,0.50 

Maximum shortfall probability TSP  5% 

Layer limit for ILW ILWL  $200 million 

Industry loss trigger  Y  $2,000 million 

Number of generations within differential evolution g  200 

Population size per generation within differential evolu-

tion 

NP  150 
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Numerical results are based on Monte Carlo simulation with 250,000 sample paths. To further 

improve the simulation’s stability, latin hypercube sampling and control variates as a variance 

reduction techniques are applied (see Glasserman, 2010).18 Recent literature illustrates the 

relevance of an adequate treatment of dependence structures between processes when model-

ing insurance risks (see, e.g. Eling and Toplek, 2009; Gatzert and Kellner, 2011). We assume 

assets to be independent from liabilities in order to specifically focus on the dependence struc-

ture between the industry loss index and the insurance company’s losses and as these depend-

encies are the main drivers in regard to the effectiveness of index-linked hedging strategies. 

To obtain a holistic picture of the impact of the dependence structure, we first vary the degree 

of dependence using Kendall’s rank correlation τρ , since this is invariant against (non-linear) 

transformations (see, e.g. McNeil, Frey and Embrechts, 2005), and additionally examine the 

impact of the type of dependence using the Clayton (lower tail dependencies), the Gauss (lin-

ear dependencies), and the Gumbel copula (upper tail dependencies), using the Gauss copula 

as the reference case. 

 

The effectiveness of gap insurance under different degrees of dependence 

 

Table 3 exhibits results for the five hedging strategies under consideration (see Table 1) for 

different degrees of dependence between the insurer’s loss and the index. For all strategies, 

the optimal hedging shares ( ), , , ,α β λ ω ϑ   are derived by means of differential evolution and 

are displayed in Table 3 along with the implied shortfall probability i
TSP , the value of pay-

ments to policyholders at time 0 0V , the corresponding loading 1Sδ , the total premium TSπ  

that results from 0V  multiplied with the loading based on the policyholders’ sensitivity to-

wards shortfall risk. Furthermore, the loading for the indemnity-based instruments ,iδ  

, , , ,i re XL gap gap XL= −  basis risk iCHE  and the maximum net shareholder value max
0SHV  

are presented. 

 

Table 3 shows that a fraction of the indemnity-based hedging instrument is always purchased 

in combination with the index-linked ILW contract in the present setting. The results further 

indicate that the inclusion of indemnity-based hedging instruments leads to a considerable 

reduction in the shortfall probability, while, at the same time, the maximum net shareholder 

value increases despite the higher costs for risk management. This behavior may be ascribed 

                                              
18  Due to the application of differential evolution, the number of sample paths appeared to be crucial 

for the simulation’s stability. Thus, we chose a sufficiently high number of sample paths and fur-
ther implemented variance reduction techniques to achieve low sample standard deviations (e.g., 
for the reference contract, the sample standard deviation of the net shareholder value amounts to 
0.0829) and ensured that the results remain stable for different sets of random numbers. 
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to the reduction of costs for financial distress and an increased total premium income for the 

insurer that comes along with a reduction in the shortfall probability, which leads to a higher 

value of 0V  and, in addition, to a higher policyholder’s willingness to pay. When comparing 

the indemnity-based hedging strategies ( )II VHE HE− , it can be seen that the contracts with 

an excess of loss structure (XL and gap-XL) dominate the contracts with a proportional struc-

ture (re and gap) in that they generally yield a higher maximum net shareholder value, lower 

values of basis risk and a lower shortfall probability in the examples considered. This obser-

vation is mainly due to the fact that in contrast to XL-types of contracts, proportional contracts 

provide insurance coverage for the full range of losses, which on the one hand increases the 

expected payoff for these contracts, but on the other hand raises their price. Contrariwise, ex-

cess of loss contracts focus on the critical range of high losses and are thus better suited to 

insure critical loss levels at a lower price. This explanation is supported by the relatively high 

optimal attachment points ( ),XL gap XLA A − , which are located between the 75% and the 85% 

quantile of the insurer’s losses. Furthermore, this leads to lower loadings for the contracts 

exhibiting an excess of loss structures, since the rate of insurance is lower as compared to 

proportional contract structures, which in turn reduces the need to control for moral hazard 

(see Equation (4)).19 

 

On the basis of this advantage, the fractions for the excess of loss contracts are higher than for 

the proportional contracts, while the fractions for the ILW are lower in case of the ILW-XL-

hedge (HSVI) and the ILW-gap-XL-hedge (HSV). Moreover, a comparison of the ILW-

reinsurance-hedge (HSII) with the ILW-gap-hedge (HSIII ) and the ILW-XL-hedge (HSVI) with 

the ILW-gap-XL-hedge (HSV) shows that the contracts with the gap insurance structure (gap 

and gap-XL) appear more effective than the traditional reinsurance contracts (re and XL) with 

respect to increasing the maximum net shareholder value and reducing shortfall probability 

and basis risk. The gap insurance contracts are advantageous as their payment structure direct-

ly takes into account a non-payment of the index-linked instrument. It thus provides more 

coverage in case of a non-payment from the index-linked instrument and less coverage when 

it is less needed (i.e. if the index-linked instrument provides a payment). 

                                              
19  Increasing the minimum loading of the excess of loss-type contracts above 5% to, e.g. 7.5%, leads 

to higher (lower) fractions of the index-linked (indemnity-based) instrument, but does otherwise 
not change the general results. 
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Table 3: Maximization of shareholder value in the case of all hedging strategies illustrated in Table 1 (I VHS HS− ) for different degrees of dependence 

 

optimal 
α  

optimal 
, , ,β λ ω ϑ  

loading 
indemnity 

iδ  

optimal 
,XL gap XLA A −  

Shortfall 
probability 

i
TSP  

0V  loading 
TSδ  

premium 
TSπ  

basis risk 
iCHE  

Shareholder 
Value 

max
0SHV  (Mio. $) 

(((( ))))1 1, 0.65S Iττττρρρρ ====            

ILW 66.74% 0.00%    4.39% 114.33 31.41% 150.25 15.71% 33.97 

ILW and re 59.96% 20.98% 10.49% 1.84% 115.66 36.48% 157.85 5.69% 38.23 

ILW and gap 82.06% 24.60% 9.41% 1.51% 115.83 37.18% 158.90 4.83% 39.29 

ILW and XL 47.57% 95.56% 5.55% 149.26 0.18% 116.28 39.84% 162.61 0.08% 44.10 

ILW and gap-XL 35.52% 99.79% 5.00% 169.00 0.18% 116.28 39.84% 162.60 0.07% 44.57 

 

(((( ))))1 1, 0.70S Iττττρρρρ ====            

ILW 69.52% 0.00%    3.42% 114.79 33.36% 153.09 11.22% 36.31 

ILW and re 68.05% 19.03% 9.51% 1.49% 115.81 37.17% 158.85 4.51% 39.39 

ILW and gap 89.39% 22.88% 8.54% 1.22% 115.94 37.71% 159.66 3.70% 40.18 

ILW and XL 29.57% 98.38% 5.00% 172.11 0.24% 116.24 39.71% 162.40 0.16% 44.33 

ILW and gap-XL 38.98% 97.14% 5.00% 173.54 0.19% 116.28 39.80% 162.56 0.14% 44.52 

 

(((( ))))1 1, 0.75S Iττττρρρρ ====            

ILW 75.84% 0.00%    2.62% 115.19 34.97% 155.47 8.08% 38.22 

ILW and re 73.13% 15.26% 7.63% 1.29% 115.85 37.58% 159.39 3.42% 40.48 

ILW and gap 87.73% 20.37% 7.60% 1.01% 115.97 38.16% 160.23 2.42% 41.04 

ILW and XL 45.35% 92.05% 5.00% 157.81 0.21% 116.26 39.75% 162.47 0.17% 44.15 

ILW and gap-XL 38.56% 99.41% 5.00% 173.98 0.18% 116.29 39.79% 162.55 0.13% 44.53 
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To study the impact of different degrees of dependence between the insurer’s losses and the 

index ( )1 1,S Iτρ  in more depth, Figure 1 illustrates the results for the proportional gap insur-

ance (left graph) and the excess of loss gap insurance contract (right graph). It can be seen 

that the amount of proportional gap insurance (β) decreases for an increasing degree of de-

pendence, since the ILW itself becomes more effective in enhancing the net shareholder value 

and in reducing the shortfall probability such that less proportional gap insurance is needed to 

hedge against basis risk. The results in Table 3 indicate that the same holds true for propor-

tional reinsurance contracts.  

 

 Figure 2: ( ) ( )max
0 , % , %SHV α β  and ( )%ϑ  for an increasing degree of dependence20 
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In case of an excess of loss gap insurance contract, in contrast, the optimal fraction ( )ϑ  re-

mains relatively stable due to the lower fraction α of the ILW contract, which implies that the 

optimal hedging strategies are less sensitive with respect to changes in the degree of depend-

ence between the insurer’s loss and the industry index (as the indemnity-based contract domi-

nates the hedging strategy). In summary, the results for the five hedging strategies under dif-

ferent degrees of dependence between the insurer’s loss and the industry index show that sole-

ly purchasing an index-linked instrument for hedging purposes might not be sufficient from a 

shareholder’s as well as a risk management’s point of view. Combining an index-linked and 

an indemnity-based instrument generally allows higher net shareholder values and increases 

the hedging effectiveness, which depends on the respective gap insurance structure. 

                                              
20  Note that fluctuations in optimal risk management fractions (apart from the simulation) can be ex-

plained by the strong interrelations between expenses for risk management and an improvement in 
the solvency situation, which comes along with an increase in premium income and maximum net 
shareholder value. 
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The impact of the different types of dependence  

 

Besides the degree of dependence, also the type of dependence can play a considerable role 

for the effectiveness of index-linked hedging strategies. In particular, even if the degree of 

dependence remains unchanged (in our reference case ( )1 1, 0.70τρ =S I ), the hedging effec-

tiveness can differ when varying the type of dependence. This is laid out in Table 4, which 

displays results for all hedging strategies using lower (Clayton copula) and upper (Gumbel 

copula) tail dependencies between the insurance company’s losses and the industry loss in-

dex. When comparing these results with the reference case in Table 3, it can be seen that for 

all hedging strategies, the highest values for the maximum net shareholder value and the low-

est values for basis risk and shortfall probability are achieved in the case of upper tail depend-

ence. This observation can be attributed to the increase in the effectiveness of the ILW under 

upper tail dependencies as basis risk is reduced. In case of each hedging strategy except the 

ILW-gap-hedge ( IIIHE ), this leads to an increase in the fraction invested in the ILW when 

upper tail dependence is given. At the same time, the fractions for indemnity-based instru-

ments decrease in case of the ILW-reinsurance hedge ( IIHE ) and the ILW-gap-hedge 

( IIIHE ), as the need for these hedging instruments is reduced by virtue of the more effective 

ILW. Moreover, the general results from our reference case remain the same in that the hedg-

ing strategies including gap insurance like contract structures are most effective. 

 

The impact of policyholders’ risk sensitivity 

 

Table 4 illustrates the impact of the policyholder’s willingness to pay, which in the present 

setting depends on the insurer’s risk situation and is based on empirical results in, e.g., Wak-

ker, Thaler and Tversky (1997), who find that policyholders demand premium reductions for 

an insurer exhibiting default risk. As there is a lack of empirical data regarding reasonable 

assumptions about the policyholder’s risk aversion parameter q, we examine its impact by 

means of a sensitivity analysis. For an increasing policyholders’ risk sensitivity, fractions of 

risk management instruments in tendency increase, while the maximum net shareholder value 

generally decreases for all hedging strategies. At the same time, the difference between the 
max

0SHV  of the traditional indemnity-based (ILW-reinsurance-hedge and ILW-XL-hedge) and 

the gap insurance hedging strategies (ILW-gap-hedge and ILW-gap-XL-hedge) increases. The 

same holds true for the hedging strategies exhibiting a proportional contract design (ILW-

reinsurance-hedge and the ILW-gap-hedge) and the hedging strategies exhibiting an excess of 

loss design (ILW-XL-hedge and the ILW-gap-XL-hedge). 
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Table 4: Maximization of shareholder value in the case of hedging strategies illustrated in Table 1 ( −I VHS HS ) for different types of dependence between the 
insurance company’s losses and the industry loss index and different degrees of policyholders’ risk sensitivity 

 

optimal 
α  

optimal 
, , ,β λ ω ϑ  

loading in-
demnity iδ  

optimal 
,XL gap XLA A −  

Shortfall 
probability 

i
TSP  

0V  loading 
TSδ  

premium 
TSπ  

basis risk 
iCHE  

Shareholder 
Value 

max
0SHV  (Mio. $) 

Clayton copula           

ILW* 

ILW and re 37.76% 26.66% 13.33% 3.43% 114.53 33.33% 152.71 11.06% 33.04 

ILW and gap 75.80% 35.38% 13.87% 2.44% 115.19 35.29% 155.84 9.63% 34.79 

ILW and XL 1.48% 96.42% 5.00% 166.57 0.54% 115.84 39.05% 161.05 0.67% 43.57 

ILW and gap-XL 20.48% 86.18% 5.00% 167.39 0.49% 115.93 39.16% 161.34 0.44% 43.77 

Gumbel copula           

ILW 76.47% 0.00% 2.27% 115.51 35.65% 156.69 6.32% 39.11 

ILW and re 71.46% 13.65% 6.83% 1.24% 116.02 37.60% 159.65 2.74% 40.81 

ILW and gap 78.07% 16.85% 6.46% 1.10% 116.05 37.87% 160.00 1.89% 41.14 

ILW and XL 49.64% 91.28% 5.00% 163.77 0.17% 116.48 39.83% 162.87 0.02% 44.35 

ILW and gap-XL 45.04% 94.67% 5.00% 143.88 0.16% 116.48 39.86% 162.91 0.01% 44.54 

3q ====            

ILW 73.17% 0.00%   3.06% 114.98 36.45% 156.89 10.17% 39.85 

ILW and re 64.34% 14.23% 7.11% 1.75% 115.62 38.00% 159.56 4.82% 41.11 

ILW and gap 80.78% 20.22% 7.73% 1.33% 115.85 38.48% 160.42 3.60% 41.38 

ILW and XL 16.98% 94.34% 5.00% 165.97 0.33% 116.15 39.70% 162.26 0.09% 44.40 

ILW and gap-XL 43.94% 94.90% 5.00% 156.19 0.18% 116.29 39.89% 162.67 0.11% 44.54 

7q ====            

ILW 68.05% 0.00%   4.05% 114.55 28.92% 147.68 13.75% 31.23 

ILW and re 58.87% 20.94% 10.47% 1.49% 115.76 36.10% 157.56 3.73% 37.87 

ILW and gap 88.84% 26.37% 9.86% 1.07% 116.01 37.21% 159.17 3.03% 39.15 

ILW and XL 49.24% 94.76% 5.29% 151.55 0.18% 116.29 39.78% 162.55 0.10% 44.07 

ILW and gap-XL 48.57% 96.12% 5.00% 166.10 0.15% 116.31 39.84% 162.65 0.07% 44.48 
*In case of the ILW hedge only ( IHS ) the shortfall probability condition T TSP SP≤  cannot be satisfied under lower tail dependencies. 
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This indicates that more effective hedging strategies such as the excess of loss and/or gap in-

surance contract design allow higher expenses for risk management, since the enhancement in 

maximum net shareholder value (arising through the reduction of shortfall probability by pur-

chasing additional fractions of risk management instruments and the associated higher will-

ingness to pay by policyholders) outweighs the reduction in the net shareholder value due to 

higher expenses for risk management and a lower default put option value. Contrariwise, 

hedging strategies that are comparatively less effective (proportional and/or traditional con-

tract design) do not allow higher expenses for risk management instruments as the shortfall 

probability cannot be reduced by an amount that would result in a sufficient increase in total 

premium income to increase the maximum net shareholder value. 

 

The impact of premium loadings and moral hazard  

 

In contrast to the industry loss warranty contract, each of the remaining hedging instruments 

is indemnity-based and thus includes the insurer’s loss in its payoff structure. This leads to 

moral hazard and, thus, to higher costs as compared to the index-linked risk transfer instru-

ment (see Equation (4)). Table 5 illustrates results for all hedging strategies under different 

cost functions for the indemnity-based instruments. In the reference case, k is assumed to be 

1.00, which leads to a linear cost function. To analyze the impact of a concave or a convex 

cost function, k is additionally set to 0.50 and 2.00. Table 5 shows that while the general re-

sults remain the same, it can be seen that the shape of the cost function has a great impact on 

the purchased amount of risk management. A convex cost function ( )2.00k =  reduces the 

costs as compared to the linear or the concave cost function, especially for lower fractions of 

( ) ( )i
T TE X E S . This allows purchasing more proportional reinsurance and proportional gap 

insurance, as these contracts are generally purchased at lower fractions of β  and λ  (which 

become much less expensive as in the case of a linear or concave cost function). A similar 

behavior can be observed in case of the excess of loss and the excess of loss gap insurance 

contract, but to a lesser extent. Table 5 also illustrates that even under the concave cost func-

tion, fractions of indemnity-based instruments are still purchased, as the associated higher 

expenses are outweighed by an increase in the premium income (through the improvement in 

the solvency situation) and a decrease of costs of financial distress. The lower costs (going 

from a concave to a linear and a convex cost function) also generally imply a higher share-

holder value and a lower shortfall risk. 
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Table 5: Maximization of shareholder value in the case of hedging strategies illustrated in Table 1 ( −I VHS HS ) for different types of loading 
cost functions (k) reflecting moral hazard in case of the indemnity-based risk management instruments 

 

optimal 
α  

optimal 
, , ,β λ ω ϑ  

loading in-
demnity iδ  

optimal 
,XL gap XLA A −  

Shortfall 
probability 

i
TSP  

0V  loading 
TSδ  

premium TSπ  basis risk 
iCHE  

Shareholder 
Value 

max
0SHV  (Mio. $) 

.0 50k ==== (concave)           

ILW 69.52% 0.00% -   3.42% 114.79 33.36% 153.09 11.22% 36.31 

ILW and re 67.48% 9.89% 15.73% 2.38% 115.37 35.44% 156.25 7.42% 37.36 

ILW and gap 89.18% 16.42% 17.51% 1.79% 115.72 36.59% 158.06 6.16% 37.94 

ILW and XL 18.54% 81.52% 12.55% 174.07 0.46% 116.06 39.28% 161.64 0.21% 43.40 

ILW and gap-XL 51.51% 94.55% 8.24% 164.71 0.15% 116.31 39.79% 162.59 0.07% 44.30 

.1 00k ==== (linear)           

ILW 69.52% 0.00% -   3.42% 114.79 33.36% 153.09 11.22% 36.31 

ILW and re 68.05% 19.03% 9.51% 1.49% 115.81 37.17% 158.85 4.51% 39.39 

ILW and gap 89.39% 22.88% 8.54% 1.22% 115.94 37.71% 159.66 3.70% 40.18 

ILW and XL 29.57% 98.38% 5.00% 172.11 0.24% 116.24 39.71% 162.40 0.16% 44.33 

ILW and gap-XL 38.98% 97.14% 5.00% 173.54 0.19% 116.28 39.80% 162.56 0.14% 44.52 

.2 00k ==== (convex)           

ILW 69.52% 0.00% -   3.42% 114.79 33.36% 153.09 11.22% 36.31 

ILW and re 66.65% 33.22% 5.52% 0.63% 116.20 38.91% 161.41 1.72% 41.80 

ILW and gap 69.74% 37.89% 5.00% 0.62% 116.15 38.94% 161.38 0.67% 42.09 

ILW and XL 28.79% 98.55% 5.00% 176.24 0.24% 116.24 39.71% 162.39 0.20% 44.35 

ILW and gap-XL 39.30% 97.10% 5.00% 173.72 0.19% 116.28 39.80% 162.56 0.14% 44.52 
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The impact of the loss volatility 

 

Besides the choice of purchased risk management instruments, the insurer can try to reduce its 

risk through diversifying the insurance portfolio and thus lowering the loss volatility. Thus, in 

Figure 3 we further study the maximum net shareholder value (left graph) and the shortfall 

probability (right graph) under different degrees of loss volatility for each hedging strategy. It 

can be seen that in general, a well-diversified underwriting portfolio with a low degree of loss 

volatility reduces the insolvency risk and increases the maximum net shareholder value under 

an optimal hedging strategy. We further find that – consistent with the previous analyses – the 

“ILW-gap-XL” strategy implies the highest shareholder value and the lowest shortfall risk. 

However, one can also observe that the hedging strategies with excess of loss and/or gap in-

surance contract design are most effective in the considered examples when the underwritten 

risks (i.e. the insurance portfolio) exhibit a higher loss volatility. This is reflected in the in-

creasing discrepancy between shareholder value and shortfall probability among the hedging 

strategies including proportional and excess of loss contract structures as well as among tradi-

tional reinsurance and gap insurance alike contracts. 

 

Figure 3: max
0SHV  and TSP  for varying loss volatilities ( )TSσ  under the optimal hedging 

strategies 
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Summing up, our results reveal that the combination of index-linked and indemnity-based 

instruments can increase the effectiveness of risk management strategies. Furthermore, gap 

insurance-like contract structures are advantageous in comparison to traditional reinsurance 

contracts as their contract design directly takes into account if a payment from the index-lined 

instruments takes place. Our results are in line with those of Yow and Sherris (2006) and 
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Krvavych and Sherris (2006) in that in general, a tradeoff between reducing financial distress 

costs and higher expenses for risk management exists. Moreover, besides frictional costs, pol-

icyholders’ reaction to the insurer’s solvency situation play an important role for the purchase 

of risk management and thus for the insurance company’s shareholder value. In addition, the 

findings found in this setting confirm the results of Doherty and Richter (2002) in a mean-

variance framework, in that it is advisable to supplement the purchase of an index-linked in-

strument by gap insurance. Further analyses showed that when replacing the constraint of a 

maximum shortfall probability by minimum solvency capital requirements (calculated in line 

with the planned European risk-based regulatory framework Solvency II, using the Value at 

Risk as the relevant risk measure), the general results in Table 3 remain robust, even though 

the absolute values differ. Thus, our results show that gap insurance-like structures can be 

optimal for risk management in the presence of regulatory restrictions and distress if these 

instruments are accepted as a risk transfer instrument.21 

 

4. CONCLUSION 

 

This paper examined the effectiveness of index-based hedging strategies when gap insurance 

is purchased, which specifically reinsures the gap in a hedging strategy’s payoff structure aris-

ing due to basis risk. Toward this end, we compared five hedging strategies, one that solely 

consists of an index-linked instrument (an industry loss warranty contract ILW), one that 

combines an index-linked instrument and proportional gap insurance, and one that combines 

an index-linked contract and proportional reinsurance, one that consists of an ILW and an 

excess of loss reinsurance contract, and a hedging strategy consisting of an ILW and an ex-

cess of loss gap insurance contract. The strategies were then analyzed with respect to their 

effectiveness for maximizing the net shareholder value in the presence of policyholders’ risk 

aversion towards insolvency risk and reducing basis risk, which has not been done so far. Op-

timal hedging strategies that maximized the net shareholder value were numerically derived 

by means of differential evolution; basis risk was measured by means of the hedging efficien-

cy with respect to lowering the shortfall probability, thus taking into account assets and liabil-

ities. 

 

One main result was that gap insurance can increase the effectiveness of index-based hedging 

strategies in multiple ways. The purchase of gap insurance in addition to the index-linked in-

strument led to a higher value of the net shareholder value and, at the same time, to a lower 

                                              
21  In general, alternative risk transfer instruments with a contract design that is similar to reinsurance 

contracts are accepted as risk transfer instruments (see SwissRe, 2009). 
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shortfall probability and a reduction of basis risk, where particularly excess of loss-type struc-

tures proved to be most effective in the considered setting. To analyze the impact of basis risk 

on the purchase of gap insurance in more depth, we conducted a sensitivity analysis for dif-

ferent degrees of dependence between the insurer’s loss and the industry index and found that 

higher fractions of gap insurance are purchased for lower degrees of dependence to compen-

sate for the higher basis risk associated with the index-linked contract. In that case, results 

regarding the net shareholder value and the shortfall probability could be considerably im-

proved by purchasing gap insurance.  

 

We further examined if the results persist if the more complex gap insurance transaction is 

substituted through a traditional reinsurance contracts (proportional or excess of loss), which 

cannot specifically reinsure the gap in the hedging strategy’s payoff emerging by virtue of 

basis risk, but that can lower the probability for a non-payment of a hedging strategy. Even 

though this hedging strategy did not lead to the same increase in the hedging effectiveness as 

the corresponding gap insurance, the net shareholder value could be substantially increased 

and shortfall probability could be reduced compared to the hedging strategy solely containing 

the index-linked instrument. The same holds true in regard to basis risk. 

 

To analyze if further parameters besides basis risk determine the effectiveness of index-based 

hedging strategies, we conducted sensitivity analyses concerning the price difference between 

the index-linked instrument and gap insurance (resulting from moral hazard) as well as rein-

surance and the degree of policyholders’ risk aversion. Our findings showed that the price at 

which each hedging instrument is available plays an important role. Furthermore, the optimal 

amount of gap insurance (in addition to the index-linked contract) increased for higher poli-

cyholders’ risk aversion. This implied higher costs for risk management but also a higher 

premium income due to the reduction in shortfall risk. Overall, this tradeoff led to a lower net 

shareholder value for higher policyholder risk aversion, but also to a reduction in basis risk. 

 

In summary, our findings demonstrate that a hedging strategy that is based on an index-linked 

instrument should be replenished through an indemnity-based instrument to counterbalance 

the negative impact of basis risk. An optimal use of gap insurance or even traditional reinsur-

ance in addition to an index-linked contract can in fact considerably improve the effectiveness 

of the hedging strategy compared to the case of a hedge with an index-linked instrument only. 

In particular, by means of additional gap insurance, the maximum net shareholder value can 

be increased while, at the same time, the insurer’s shortfall risk and basis risk can be reduced.  
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