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ABSTRACT

Index-linked catastrophic loss instruments haveobmecincreasingly attractive for
investors and play an important role in risk mamaget. Their payout is tied to the
development of an underlying industry loss indeflécting losses from natural
catastrophes) and may additionally depend on th#ingecompany’s loss.
Depending on the instrument, pricing is currentby entirely transparent and does
not assume a liquid market. We show how arbitrage-and market-consistent
prices for such instruments can be derived by @rencg the crucial point of
tradability of the underlying processes. We devedofiable approximation and
replication techniques and — based on these — gwoskplicit pricing formulas
using cat bond prices. Finally, we use empiricabregles to illustrate the
suggested approximations.
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1. INTRODUCTION

Alternative risk transfer (ART) has become increghbi relevant in recent years for insurers
and investors$,especially due to a considerably growing risk xtf@me losses from natural
catastrophes caused by value concentration anditelichange, as well as the limited (and
volatile) capacity of traditional reinsurance maska the past (Cummins, Doherty and Lo,
2002). In this context, ART intends to provide dudial (re)insurance coverage by
transferring insurance risks to the capital marRéiis offers considerably higher capacities
and can thus help satisfy the high demand as weakduce the market power of reinsurance
companies (Froot, 2001). Moreover, ART could fie froblem of “nondiversification traps”
in the catastrophe insurance markets by offering ngk transfer opportunities besides the
pooling of risks in the reinsurance market as deedrin Ibragimov, Jaffee and Walden
(2009). Among the most commonly used ART instrurseme index-linked catastrophic loss
instruments such as index-based cat boodéndustry loss warranties (ILWs), for instance,
whose defining feature is their dependence on dnsiny loss index and which may also
depend on the company-specific loss resulting f@matural catastroptieHowever, the
current degree of liquidity of the various indemkiéed instruments considerably differs. While
the market for cat bonds is fairly well developedhwan increasingly relevant secondary
market (Albertini, 2009), for instance, the market ILWs is less liquid and limited
(Elementum Advisors, 2010).

In this paper, we focus on how these products eaprized in a consistent way and discuss
under which assumptions (e.g., regarding a liquideulying market) risk-neutral valuation
can be used. This procedure can considerably $ympticing and enhance transparency,
making the market as a whole more efficient. Initald risk-neutral valuation is of great
relevance for the inclusion of such instrumentgnterprise risk management strategies as it
provides a mark-to-market valuation approach, ahgwfor (partial) hedging, versus the
traditional mark-to-model approaches with the asged model risk (which is very hard to
quantify). We develop new pricing approaches by mseaf approximations and replication
technigues and apply them to industry loss wareanfiLWs) as a representative of index-
linked catastrophic loss instruments under the rpsion of a liquid cat bond and stock
market, while carefully addressing the necessaeyeguisites and limitations, and we also
illustrate the approaches by consistently pricinffedent cat bonds. We study binary

! The volume of outstanding cat bonds, for instameached $17.5bn in 2013 (see AON (2013)). Invssto

include, e.g., specialized funds, institutionalastors, mutual funds, and hedge funds (see AON3)201
There are various versions of cat bonds withedififit types of triggers, including indemnity-based non-
indemnity based triggers with parametric, modelless, and industry loss triggers, for instance ,(seg.,
Hagedorn et al. (2009)),

®  See, e.g., Cummins and Weiss (2009) and BarridwAtbertini (2009) for an overview of the ART matk



contracts in detail, whose payout depends on tthesiny index only, and discuss indemnity-
based contracts, where the payout depends on hetlndustry index and the individual

company losses, thus representing a double-triggetuct. The approaches derived in this
paper can also be transferred to the consistecingrof other index-linked catastrophic loss
instruments.

In the literature, several papers examine the deluand financial pricing of index-linked
catastrophic loss instruments such as ILWs, fotam=, (e.g., Ishag (2005), Gatzert and
Schmeiser (2012), Braun (2011)) and discuss thenyidg assumption briefly (see Braun
(2011). However, the tradability of the underlyipgpcesses as well as direct replication and
consistent pricing has not been discussed in dstaflar in this context. However, several
papers have dealt with risk-neutral valuation ia tlontext of cat bonds (see, e.g., Nowak and
Romaniuk (2013), Haslip and Kaishev (2010)) and mat@ explicit pricing formulas, while
other authors focused on the consistent pricindoafble-trigger contracts (e.g., Lane, 2004)
or empirical aspects using econometric pricing agpnes (e.g., Jaeger, Miller and Scherling
(2010), Galeotti, Guertler and Winkelvos (2012)an (2014)).

In general, the main assumption when using riskratwaluation is the tradability of an

underlying process. Since the underlying process usaally not be traded directly like a
stock, one has to assume a liquid market for (cgrtderivatives. We derive a general
approach for dealing with this issue, describe uhéerlying assumptions and apply this
approach to binary ILWs as well as cat bonds. Ehdone by means of direct or approximate
replication with traded derivatives using availalokt bonds, which leads to explicit and
consistent pricedln particular, using ILWs as an example, we asstineeexistence of a

liquid cat bond market to handle the tradability tbé industry loss index and to apply
arbitrage-free valuation. Since there is a growssgondary market for cat bonds, this
assumption appears to be at least appropriateeirfaieseeable future (see, e.g., Albertini
(2009) for a description of the secondary mark&fpreover, we show that liquidity

assumptions are not needed to the same extentaassical option pricing theory because
continuous trading is not necessary to replicaté/sLwhen using cat bonds, i.e., a static
hedging approach is sufficient, which also reduiressaction costs and possible tracking
errors. Therefore, the liquidity requirement isueed to the availability of suitable cat bonds
at the time of replication. We derive prices fondaly / non-indemnity-basddWs, where the

payout only depends on the industry loss index ediog a contractually defined trigger level

* The prices of available index-linked catastrophiss instruments such as ILWs should generally be

consistent with the prices of other derivativeslé@ on an already liquid market such as in the chsat
bonds. To ensure this consistency, the prices @¥dlLshould equal the prices of replicating portfelio
consisting of tradable derivatives (cat bonds)sTisialso generally in line with the findings iredar, Miller
and Scherling (2010).



during the contract term. If a suitable cat bondas available for deriving ILW prices, we
provide proper approximations under some additi@saumptions. To illustrate and test the
proposed approximations in case of index-linkedrimsents, we derive the price of an ILW
using secondary market cat bond prices and contpareesulting price with the available
real-world ILW prices, finding a high degree of swtency, which supports our suggested
approximations for replicating portfolios. Moreoyas a further application, we approximate
prices of cat bonds using empirical data and coemffem with real secondary market data in
order to examine whether the market prices congigte

In the case of instruments that are only indexdahKi.e.,non-indemnity-basgdone major
advantage is that no assumptions concerning thiebdion of the underlying industry loss
index are necessary. In the case inflemnity-basedindex-linked catastrophic loss
instruments, whose payout in addition to the indudbss index also depends on the
company-specific loss caused by a catastrophe,nmajer problem is the behavior of the
company loss, which should be tradable in some wssakse when using risk-neutral
valuation. Therefore, we further suggest and lyidikscuss three potential approaches for
solving this issue. Furthermore, we examine thejaaey of our assumptions and indicate in
which cases they can be used.

The presented approaches for pricing index-linkatstrophic loss instruments are of high
relevance today and especially for the future (bfith practical as well as academic

endeavors), when index-linked catastrophic losgimgdinstruments will become even more
widespread than today and when some markets foratiees like the cat bond market are
truly liquid. One main contribution of our work i® overcome the crucial point of the

tradability of the loss index through suitable apg@mations and to provide explicit pricing

formulas using replication techniques. While theu® of the paper is primarily theoretical,

we use empirical examples to illustrate the suggkapproaches by comparing ILW and cat
bond prices with the ones derived based on thécetjgn and approximation techniques.

The remainder of the paper is structured as folld®ection 2 gives an overview of related

literature with a focus on the underlying theoryl @ssumptions. Section 3 introduces index-
linked catastrophic loss instruments and ILWs aseasentatives of index-linked catastrophic
loss hedging instruments, their basic propertias the underlying industry loss indices. In

Section 4 we present the pricing approaches andnasxample apply the approaches to
consistently price ILWs and cat bonds in SectioBé&ction 6 gives an outlook on the pricing
of indemnity-based products, and Section 7 conslude



2. FURTHER RELATED LITERATURE

There are several papers which deal with the miah index-linked catastrophic loss
instruments such as ILWs or strongly related prégluéctuarial pricing principles are
applied to ILWs in Gatzert and Schmeiser (2012),ristance, while Grindl and Schmeiser
(2002) compare actuarial pricing approaches wighddpital asset pricing model to calculate
prices for double-trigger reinsurance contractsictvtare similar to indemnity-based ILWs.
Furthermore, there are papers that combine finhani actuarial pricing approaches such as
Mgller (2002, 2003), who discusses the valuatiod hadging of insurance products that
depend on both the financial market and insurariaems. Regarding the arbitrage-free
pricing of ART instruments related to index-linkedtastrophic loss instruments, there is a
wide literature, which is outlined in the following

First, Cummins and Geman (1995) develop a modgdritwe cat futures and call spreads
written on the aggregated claims process using raiirage approach based on a jump
diffusion model. In contrast, Bakshi and Madan @0price options written on the average
level of a Markov process using a mean-revertirac@ss and derive closed-form solutions
for cat option prices. Haslip and Kaishev (2010emreinsurance contracts with specific
focus on catastrophe losses. They assume a ligardainof indemnity-based cat bonds and
that the aggregated loss process of a companyM®léocompound Poisson process, and then
calculate arbitrage-free prices for the excessosk Ireinsurance contracts using Fourier
transformations. In contrast to their setting, wedyaassume a liquid cat bond market with
comparable index-based cat bonds and weaken thebdimnal assumptions. Prices for
catastrophe equity puts, which are double-triggartracts that can only be exercised if the
insured loss rises above a certain level, are dérim Jaimungal and Wang (2006), who
extend the work of Cox, Fairchild and Pedersen 4209 allowing non-constant interest rates
and non-constant losses for every occurring cafalsé. The authors derive an explicit
formula and the Greeks for the price of the optismg standard arbitrage-free option pricing
theory and based on the Merton (1976) approachs @assumes the insured loss follows a
compound Poisson process, the stock price procdissvé a geometric Brownian motion
between the jumps of the compound Poisson proeessthat the influence of the insured
loss on the stock price process is relative, the ,absolute loss of the stock price depends on
its value before a jump happens.

Integral to one of our pricing approaches for ILVgsthe valuation of cat bonds. In this

context, Bantwal and Kunreuther (2000) observe that spreads of cat bonds do not
necessarily align with standard investor prefersraned draw on behavioral economics as one
explanation for this observation. Furthermore, tu@mps induced by natural catastrophes,



the market of cat bonds is generally incompleted&al with incompleteness, one approach is
offered by Merton (1976), who argues that the akjumps can be completely neutralized by
diversification, as jumps are of an idiosyncratiature. Under this “risk-neutralized”
assumption, one can employ arbitrage-free pricilgCox and Pedersen (2000) and Cox,
Fairchild and Pedersen (2004), the pricing of ¢edpbe bonds has also been discussed,
where the latter deal with the dynamics and intewas of losses and share value. In Poncet
and Vaugirard (2002), a pricing approach is intaatuthat uses stochastic interest rates and a
diffusion process for the industry loss index withgump risk from catastrophes, while in
Vaugirard (2003a) jumps are accounted for by mezfna jump diffusion processThe
consistent pricing of double-trigger cat bonds dame single trigger bonds is studied in Lane
(2004), who points out that in the absence of eabé, the sum of the prices of two single
trigger cat bonds should generally equal the suth@fprices of two fitting double-trigger cat
bonds (one junior and one senior tranche). In 8edi, we further develop this idea when
applying our approaches to the consistent pricihgigle trigger cat bonds and without
assuming perfectly fitting cat bonds. An empirieedlample for a potential security-class
arbitrage opportunity is discussed in Jaeger, Migdled Scherling (2010, p. 27f), who show
that the same risk may be priced differently depsmadn the type of security using ILWs and
cat bonds as an examplelowever, the authors also emphasize the diffeventract terms as
one potential main reason for observed differencgsrices. Based on their empirical data
they further critically evaluate other types ofidyge, stating that there may be rather small
program replication arbitrage opportunities (maialysing from other risks or transaction
costs), and regarding trigger type arbitrage fincemidence in their historical data.

Apart from that, Galeotti, Guertler and Winkelvag0{2) empirically compare different
pricing models for cat bonds using primary markatadand find that the Wang (2000)
transform (using the student-t-distribution) aslvasllinear models provide the most accurate
fit if the financial crisis is not taken into acedun the dataset. If the latter is included in the
analysis, all models provide similar results. Atesed on primary market data, Braun (2014)

> See, e.g., Lee and Yu (2002) for an applicatibrthis approach to pricing cat bonds using risktrsdu

valuation under default risk, basis risk, and mdrakard. Alternatively, an equilibrium model can be
employed (see, e.g. Zhu (2011), and Cox and Ped€26€0) for a brief discussion on the relationhaf two
frameworks).

Other pricing approaches are based on equilibrumdels (see Dieckmann (2010)) or employ the pgicin
techniques of credit risk by means of probabilifydefault and loss-given-default, which translate t
probability-of-catastrophe and loss-given-catasteogsee Jarrow (2010)). Moreover, Dieckmann (2010)
shows that the term structure of cat bonds is #jigipwards sloping, which can partly be explaitgdthe
equilibrium assumption.

The example (referring to March 2007) suggestggry the (three-year) Mystic Re cat bond on Naatte
U.S. wind with an industry loss trigger of $30 #0$billion and linear payout with a spread of LIB@R 00
bps and buying a (twelve months) binary ILW on Negst U.S. wind with a $30 billion trigger level 15
bps (p. 27).



proposes an econometric pricing model for cat bamtsshows that the expected loss is the
most relevant determinant of the cat bond spreadssatance, while territory, sponsor,
reinsurance cycle, and spreads on comparably catgebrate bonds also have a considerable
impact. Indemnity-triggers, in contrast, do not lyna higher spread for investors despite the
risk of moral hazard, which the author explainshvah increasing rate of acceptance among
investors as well as incentive provisions, whemnspr and investor proportionally share the
risk above a certain threshold. Guertler, Hibbeld ®inkelvos (2014) use secondary market
data to study the impact of natural catastrophestlaa financial crisis on cat bond prices and
to identify factors that influence premiums, shogvithat especially ratings play a role, in
contrast to indemnity-triggers, which is similarBcaun (2014).

3. MODELING INDEX-LINKED CATASTROPHIC L OSSINSTRUMENTS

One main property of index-linked instruments sashILWs is that they depend on an
industry loss index, which generally does not inttaeously reflect the exact insured
damage. Instead, if a catastrophe occurs, the Vatte of the index is a preliminary
estimation (see, e.g., Kerney (2013a)), which igistdd if necessary or at predetermined
points in time (see PCS (2013) and PERILS (20113))take this development into account,
we follow the approach of Vaugirard (2003a, 2008byl assume the actual (contractually
defined) maturityT' of the index-linked catastrophic loss instrumetitsexceed theisk
exposure periodl, during which the catastrophe must occur in ordetrigger a payoff
Newly occurring catastrophes between the end ofistkeexposure periodl and the maturity
T' are not taken into account, but adjustments ofdbe estimates from the catastrophes that
occurred during the risk exposure period (betwéme O andT) are taken into account and
are reflected in the index. Hence, while the tim&enval from O toT represents theisk
exposure periodthe time interval froml to T' is referred to as thdevelopment period.
Thus, an industry loss index incorporates data fiesared losses arising from an occurring
catastrophe and each qualifying event is reflertede index.

In the following, we consider an aggregated indusébiss indexI™ for the risk exposure
period until timeT by aggregating estimated losses from all catas&a®e.g., of the same
and contractually defined type) that occurred durthe risk exposure periotdHence,
following, e.g., Biagini, Bregman and Meyer-Brand08), the aggregated industry loss
index I" for the risk exposure period unfil, taking into account the development of the
estimations until time& <T', is given by

8 This loss information is provided by specializedustry loss index providers. Note that this alepends on

the type of index-linked catastrophic loss instratee E.g., if dealing with occurrence ILWs (seealgh
(2005)), whose payoff does not depend on the suimsafed damage but only on the loss caused bfjrttte
event), one needs a different approach, but otintgues are applicable as well.
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=2 X,
i=1

where N (with t 0T = min( t,'lj) is the number of catastrophes that occurred uprmet
within the risk exposure period unfiland X; denotes the time-dependent estimation of the
insured loss arising due to théh catastrophe at tinte In the following, we focus on index-
linked catastrophic loss instruments, whose paydépend on the industry loss index at
maturity T' and which can be defined by

P =h(17),

whereh is a non-negative measurable function. There la@irdemnity-basedndex-linked
catastrophic loss instruments, which additionaltpehd on the company loss. The payoff at
time T' of such indemnity-basethdex-linked catastrophic loss instrument is analmsly
given by

RT=h(17,L.), 1)

where L' denotes (analogously td ) the estimated aggregated company loss for the ris
exposure period until. In Figure 1, we depict the development of an ingulstss index for a
single catastrophe. After the catastrophe occuitteslloss estimations are adjusted several
times, and additionally occurring catastrophes muthe risk exposure period would cause
additional jumps. The solid dot on the right sideresponds to the value of the industry loss
index at maturity and hence the payoff is giverapplying the functiorn to this value. Note
that while downward adjustments of the estimatianossible in principle, they are unlikely
and adjustments are typically upward.

Figure 1: Exemplary development of an industry loss indexhi& case of one catastrophe
and adjustments of loss estimations over time

: ¢ .
I' —_— :
; —bO
*-—) ;
risk-expogilre period it development period T

°  See, e.g., McDonnell (2002) for the developmédrthe Property Claim Service estimations of the teS.

natural catastrophes with the highest insured damag



We assume that" is given by an industry loss index provider sush eg., the Property
Claim Service (PCS) index for the U.S. or the PERIihdex for Europe. It represents an
estimation of the total insured loss caused bytast@phe. PCS provides insured property
loss and defines a catastrophe as an event thaésat least $25 million in direct insured
property losses and affects a significant numbegratityholders and insurers. The PCS index
covers perils including earthquake, fire, hail, rieeme, terrorism, utility service disruption
and winter storm. The loss data is updated apprateiy every 60 days, if the event caused
more than $250 million in insured property losseastil PCS believes the estimated loss
reflects the insured loss for the industry (see REZMEL3) and Kerney (2013a)). PERILS
defines a catastrophe as an event exceeding aldetabf €200 million and estimates only
property windstorm losses in Europe and propedypdllosses in the U.K. It publishes the
first index value report six weeks after the evanthe latest and updates after three, six and
twelve months. More updates are provided if necgdsat the reporting is final in any case
after 36 months (see PERILS (2013)). It is impdrtarkeep in mind that these indices do not
incorporate information instantaneously but withcartain delay; however under the
assumption of sufficient liquidity in the derivadis market, we can assume that information is
incorporated almost instantaneously (similar to @2S market for credit defaults) into the
derivatives prices (e.g., cat bonds that play aiatuole here).

One main problem related to the use of an indekelincatastrophic loss instrument in the
context of hedging is basis risk, which ariseshé tlependence between the index and the
company’s losses (that are to be hedged) is néitismitly high. In particular, the company
loss could be high, but the industry loss indexiddne too low to trigger a payoff. There are
several definitions of basis risk and we refer tortinins, Lalonde and Phillips (2004) for a
discussion of basis risk associated with indexdohkatastrophic loss instruments.

4. PRICING INDEX-LINKED CATASTROPHIC L OSSINSTRUMENTS
4.1 Pricing by replication under the no-arbitrage assumption

In general, actuarial valuation methods for insaeacontracts are based on the expected loss
plus a specific loading, which depends, e.g., aittsurers’ risk aversion and its already
existing portfolio (see Gatzert and Schmeiser, 20ERancial pricing approaches generally
allow the derivation of market-consistent pricesr Rrbitrage-free valuation, one has to
calculate the expected value under a certain reskral measur€ given the existence of a
liquid market and independent of the existing midf If there is a unique risk-neutral
measure (i.e., the market is complete) the arkatfage price is unique and the price
corresponds to the initial value of a self-finamciportfolio replicating the cash flow
(Harrison and Kreps, 1979).
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In the present setting, we focus on the two stdah@socesses of importance: the industry
loss indexI™ and the company loss . These processes need to be tradable in a moeeajjen
sense, as there is no possibility to tradleor L' directly like a stock and it is unrealistic to
assume that there is a possibility to buy or dai tndex; however, we assume there is a
liquid market for certain derivatives on the indystoss indexI™.'° To avoid arbitrage
opportunities, the prices of these derivatives ghawincide with the expectation of the
discounted cash flow under a risk-neutral measum&(ie or not, depending on the market’s
completeness), and the prices of other index-link&astrophic loss instruments should be
consistent with the prices of the derivatives aye@raded on a liquid market (given a
sufficient degree of comparability in regard tongaction costs, for instance). To ensure this
consistency, the prices of these other instrumshtaild equal the expectations under the
same risk-neutral measure, or, equivalently, shegidal the prices of replicating portfolios
consisting of tradable derivatives, for instancecase the market is incomplete, i.e., there are
not sufficient traded derivatives available (noax&plicating portfolio; only partial hedging
is possible), other approaches can be used, sudulassuper-hedging (e.g., Bertsimas,
Kogan and Lo, 2001), by choosing a self-financiogtiplio based on maximizing expected
utility (e.g., Henderson, 2002), or by selectingisk-neutral measure according to certain
criteria (e.g., jump risk is not priced, see Mer{tf76), Delbaen and Schachermayer (1996)).

We thus assume that the liquid market for certadex-linked catastrophic loss instruments
(e.g., cat bonds) is at least large enough to allog derivation of an exact replicating
portfolio or at least a close approximation. Fostamce, in case suitable cat bonds are
available for perfectly replicating the respectimstrument’s cash flows (e.g., an ILW or
another cat bond), a unique arbitrage-free price i derived? Alternatively, in case the
required cat bonds are not available (e.g., mishmagctrigger level or time to maturity), we
derive suitable approximations for the replicatpaytfolio. Using direct replication also has
the significant advantage that a risk-neutral mesasloes not have to be specified and that
model risk is significantly reduced for the hedger.

19 These derivatives also represent index-linkedasteaphic loss instruments. Note, however, that the

assumption of liquidity only holds for certain typef derivatives, as standard call and put optimmsan
industry loss index are not traded on a liquid reariCall and put options were introduced 1995 byOTB
but due to limited trading these options were diedisn 2000 (see, e.g., Cummins and Weiss (206f@0ce,
the derivatives we focus on in the following ar¢ lbands, which exhibit a considerable market volwmith

a relevant secondary market. In case that theadigid derivatives market in the sense that cafid puts
on the underlying industry loss index are tradedllagtrikes, the Litzenberg formula could be apglio for
static replication.

The instruments we focus on are not path-deperatgh there could be various measures resultinfen
same prices for instruments with a payoff dependinly on ITT, . Since there is no difference for the prices
of the instruments we consider, it is not relewahich of these measures we take.

11
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In case ofindemnity-basedhdex-linked catastrophic loss instruments, oneiatypoint and
major problem in addition to the treatment of thdustry loss index is the tradability of the
company lossL' . As potential remedies we discuss three prelinyirgpproaches with
varying degrees of assumptions in Section 6.

4.2 Industry Loss Warranties

We apply the proposed approaches to price binaWyslLwhose payoff depends on whether
the industry loss index exceeds the trigger lé¢eak the end of the development peribd
(see McDonnell (2002)). The payoff at matury of a binary ILW (denoted b”) with
trigger levelY and risk exposure period uniil is given by

Riwr =Dy e

whereD represents the possible payout am)Y} denotes the indicator function, which is
equal to 1 ifl]. >Y , i.e., if the industry loss index at maturity exceeds the trigger lev¥l
(due to catastrophes that occurred during theesiglosure timd), and 0 otherwis&

To illustrate our approach more specifically, weuase that there is a liquid cat bond market
consisting of cat bonds (with comparable maturiéied strikes etc.) that can be used to derive
consistent ILW prices by means of replicating th&s' cash flows® This extends the
approach of Haslip and Kaishev (2010), who alsarassa liquid cat bond market but — in
contrast to our analysis — focus on indemnity-bassdbonds, and then evaluate excess of
loss reinsurance contracts under additional assangptoncerning the risk-neutral measure
Q. The assumption of a liquid cat bond market carcdiesidered reasonably realistic given
the high volume of cat bonds (more than $17 billidrrapital outstanding in 2013 (see AON
(2013)) and a growing secondary market with a awmrable volume of cat bond transactions
(see Moody (2013)). Furthermore, sponsors are biegpmore and more familiar with this
kind of risk transfer and service providers invalvie structuring and marketing exhibit an
increasing experience. In addition, frictional sosf cat bond transactions are decreasing

12 Note that an alternative but less common reptatien of an ILW would be that the payoff is triggd if the
index exceeds the trigger limit during the conttectn (knock-in barrier option). The following apsils can

be extended to this case as well.

In general, in case the market is incompletelakids cannot be fully replicated, under suitableussptions

it can still be possible to at least approximatelynamically) replicate the ILWs (see, e.g., Benss, Kogan
and Lo (2001), Xu (2006), where arbitrage-free @rieindows are derived by means of sub- and super-
hedges). With the derivation of sub- and super-aBedgne obtains a price interval in which any salgi-
free price of the ILW has to be contained. Withire tinterval, the chosen price will depend on the ri
preference of the investor and might still be sabje inefficiencies.

13
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(less than 20 basis points, see Kerney (2013h))eTo market and frictional costs are further
improved by the use of different securitizatiorustures involving a Special Purpose Insurer
(SPI) instead of a Special Purpose Vehicle (SPWjclvcan be set up in less than three to
four weeks overall (see Garrod (2014)), thus aisproving the degree of liquidity in the cat
bond market. In addition, Braun (2014) points obatt sponsors recently started to
increasingly use shelf-offerings (e.g. Swiss RecBssor Series), where additional classes of
notes can be issued repeatedly out of the same @Rih eases access to capacity and
considerably reduces transaction costs. These aj@wents also contribute to reducing
differences in transaction costs and transactiomesi between cat bonds and ILWSs, as the
latter are generally more easily available and tessly’* However, we show that liquidity is
not needed to the same extent as in classicalropticing as continuous replication is not
necessary to replicate ILWs when using cat bones,a static hedging approach is sufficient.
Moreover, the Bermuda Stock Exchange, among ofifsees Artemis (2013)), has started to
list cat bonds, which is a first step to tradingrth on the exchange, indicating that the
secondary market is growing, the transaction timehe primary market and the frictional
costs are decreasing and even if the market iyetoénough liquid, it appears reasonable to
assume that it will become liquid in the foreseealfliture in view of the current
developments.

The approach using available cat bonds in orddjatdeast approximately) replicate cash

flows can also be used for pricing other index-didlcatastrophic loss instruments covering a
wide variety of instruments. Hence, once the reping portfolio is known, prices can easily

be calculated as they can directly be observeldamtarket. In addition, this approach can be
used to test the degree of liquidity in the mark&bnsistent prices would encourage the
assumption of a liquid market, while inconsistentgs would contradict this assumption and
lead to an arbitrage opportunity or indicate thestexce of an external risk that might not

have been incorporated into market prices.

4.3 Pricing binary ILWs by replication using cat bonds

In the following, we present different ways of riepting cash flows of binary ILWs. In case
of a liquid cat bond market, the whole market gresented by the filtered probability space
(2.F.(F).,.P). where(F)_, is a filration satisfying the usual assumptionsd &,
represents all information up to tinkeFollowing the fundamental theorem of asset pgcin
(see, e.g., Delbaen and Schachermayer (1994)prite of every contingent claim is given
by the expectation of the discounted payoff unaeeg@uivalent martingale measupe

4 Note that in case the approaches presented heapplied to consistently price cat bonds, traisacosts
would be even more comparable.
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The discounted payoff (at time 0) of an index-basatibond with binary payoff (denoted
“b"),* trigger levelY, risk exposure period unfll, coupon payment and maturing at time
T' and without loss of generality an assumed nonohalis generally given by

Pck;%\,(r'T:ZC[ér@]Ilisv} * éﬂ][l%sv} ®)

j=1

wherer is the constant risk-free interest rate (this agsion can be weakened) ands the
number of coupon payments (coupon time intervadits}he following, we first assume that
there is a perfectly fitting cat bond, i.e., a zeonpon ¢ = 0) cat bond with the same trigger
level Y, the same risk exposure period urtiand maturing at the same tirie, and then
extend our formula to imperfectly fitting cat bonasder certain additional assumptions.

Matching maturity and trigger level
First, if there are binary zero coupon cat bond whe same maturity and the same trigger
level as the ILW, we can proceed as follows. Acocardo Equation (3), the risk-neutral price

at timet of a zero coupon (denoted “0”) cat bond with binpayoff, trigger levelyY, risk
exposure period until, maturing at timeT’ is (see Haslip and Kaishev (2010))

Voo (t) = EQ( SR T IEJ =" - I'—_Q( ¢ IF) (4)
Hence, together with (2) (ari2l= 1), Equation (4) turns into
Ve ()= - viE ()

whereV,y 1. is the price of a binary ILW with risk exposureripe until T, trigger levelY
and maturing at tim&'.° Thus, in the presence of a zero coupon cat botid thé same
trigger levelY and same maturity, the price is given by

V()= €T 1 )= € - () ®

> Even though proportional payouts are generallyenmpmmon in practice, the Mexican cat bond issued
2009, for instance, featured a binary trigger Sammins, 2008).

16 A related observation is made by Vaugirard (200&ho observes that the buyer of a catastrophd holds
a short position on a binary option on the index.
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wheree (™™

is the price of the related zero coupon bond witheatastrophe (or any other
default) risk under the assumption of a constaetr@st rate. In case of a hon-constant interest
rate this could be replaced with the price of azmupon bond maturing at tinTé without
default risk. For the remainder of the paper, wauage without loss of generality that O.
Note that since direct replication is used, indejggice between the risk-free rate and the
industry loss index is not necessary in this c&spiation (5) thus also yields a replicating
portfolio for a binary ILW. In particular, the caslow of a binary ILW with risk exposure
period untilT, trigger levelY maturing at timel’ can be perfectly replicated by buying a zero
coupon bond without default risk and selling a bjnaero coupon cat bond with risk

exposure period until, trigger levelyY and maturing at tim&" .

One has to take into account that the chance diniina perfectly fitting cat bond in the
market might be low, such that an approximatiorspite of a maturity mismatch might be
easier. Therefore, we further provide approximatibrihere are only cat bonds with different
maturity, different trigger level, non-zero or nbmary coupons available.

Matching trigger level buiismatching maturity

We next assume that there is a liquid market foatyi zero coupon cat bonds with the same
trigger levelY but different maturitieand different risk exposure periods, thus implyarg
incomplete market setting. In this case, sub- amgkishedging can be applied, where the
arbitrage-free price of an ILW with maturidy lies between the prices of ILWs with shorter
and longer time to maturity, both given by Equat{dj which results in an upper and lower
bound for the ILW price. The obtained range camabeer large, which is why we choose the
zero coupon cat bond with the maturity and risk exposure period unfil that is closest to
the parameters of the ILW we intend to price (etheng else equal, i.e., trigger level and
index). The aim is thus to approximate the binay Iprice V., 1 with the price of this cat
bond, which can be observed in the market. Fitst, firice of a binary ILW with risk
exposure period until , trigger levelY and maturing at tim@" is given through Equation

(5) by
RICE S R R C) ©

which can then be used to price the ILW with digfer maturity and different risk exposure
period by
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—e T T\ T (0)+ DFT;' —arm é"T( e _ ~,Y“,T(O))_i_ EPT; (7)

where

D =e” EQ(%W} ']['Tf*}j

is the residual difference in (7) arising from thpproximation error due to using an
observable traded cat bond with mismatching matdlosest to the one of the ILW). To
calculateDTT TT additional assumptions regarding the distributbhare needed. However, if
the maturities are close, the approximation diﬁeaeDTTy’fT,' is small and would only

marginally depend on the underlying distributioswasaptions.

To exemplarily calculateDTT"TT,' for a realistic scenario, let the risk exposureqeebe equal to
the maturity (T =T',T=T') and assume that the industry loss index refl¢iots real
catastrophe losses instantaneously. Furthermdré] ®llow a compound Poisson process
underQ, which is not too restrictive if" follows a compound Poisson process under the real
world measureP. Delbaen and Haezendonck (1989) showed under s@asonable
assumptions, which should be fulfilled in most did@-insurance cases, that remains a
compound Poisson process under any equivalenhaskal measure. For a further treatment,
we refer to Mirmann (2008) and Aase (1992). Thesaraptions lead to

0N
7= X, (8)

whereN; andX' are independenly; denotes the claims arrival process (i.e., a Pnigsocess
with intensity 1) andX' the i.i.d. claims (see, e.g, Levi and Partrat ()R9Furthermore, we
assume that the industry loss index incorporatesatiiual catastrophe losses instantaneously
and if two or more catastrophes occur, the indukisg index almost surely exceeds the
trigger level.

Using these assumptions and a resultilaé”; as shown in the Appendix, we can
approximate the ILW price through
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VEXT(0)=e T+ e—rT(_ &7 éA(T—T)%( g \9)~,Y~,T(O)_ —éw)j )

cat,T

Note that combining market data (available cat borce) and model assumptions regarding
the difference ternD in (7) will generally reduce potential model riskolved in pricing
index-linked catastrophic instruments, which wolbédconsiderably higher when applying the
distributional assumptions to price the ILW withasing any market data.

Matching maturity but mismatching trigger level

If the maturity of the cat bond and the ILW is S@me, but the trigger lev¥ldiffers, bounds
for prices can be obtained by analogously applyimegapproach in the last section (Equation
(7)). We similarly obtain

Vi (0) =€ EQ(][.;.W}J =e” EQ(”[M} +(Jm>v} "ty D (10)

=Viwr (0)+0)=e -\ (0)+ B

for the price of a binary ILW with trigger lev¥] risk exposure period unfll and maturing at
time T' with an approximation error (residual difference)

o7 =€ E (1) i )

Using the same assumptions as in the previous stidrs@nd following Burnecki, Kukla and
Weron (2000) and Katz (2002), who showed that dlgenlormal distribution provides the best
fit to the PCS index among typical claim size disttions”’, we assume that the i.i.d. claims
X' follow a log-normal distribution with parametgrandd®. In this case we can derive an
approximation forQ( 1], >Y) using the assumptions from the last subsectioa Aggendix
A), i.e.,

Q(If>V)=1-e"" AT X< Y
In(\?)—,u} (11)

=1-e""-e""ATo [
o

7 Note that the distribution under the risk-neutnaasureQ can be different, but when using the Wang
transform (see Wang (2000)), for instance, oneiobta log-normal distribution undep, too, but with
adjusted parameter
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where® is the standard normal distribution function. Bipra(11) then leads to

0 =& (1. Yy

which can be used to solve Equation (10) undesouplifying assumptions.

Non-zero coupon cat bonds

If there is no market for zero coupon cat bondsqasirrently the case), non-zero coupon cat
bonds need to be used for approximating ILW pridée decomposition follows the standard
bond stripping approach, where each coupon itsalihderstood as a zero coupon bond with
adjusted nominal, interest rate and maturity. Tloutate the price of an ILW involving only

the non-zero coupon cat bond prw‘@ﬂ, we use Equation (6RRecall Equation (3) for the
payoff of such a cat bond and Equation (7) for siiljigg a mismatching maturity to obtain

by T — C Ql & =T
Vcat,T (0) ;CEE (e ]{|1Tjsv}j+ EQ( € ]fll'sv})
:;cce "EQ(l—]IItTj>Y}j+é E?(l—Jm)Y})
=Y cE™ - o} VT (0)+ 67 - Vi (o)
j=1 j=1

=Y cre™ - (€T (0)+Drk | +e -V (0
j=1 j=1

Solving this equation fov,;; 7. (0) leads to the price of a binary ILW with triggevédY,
risk exposure period unfll and maturityT', i.e.

j=1

-1
v (o):[e- TR0+ B - 63 ﬁsj[ & ‘ef“"“hlj 12)
j=1 j=1
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Cat bonds with non-binary payoff
We now assume a zero coupon cat bond with nonyopeyoff, risk exposure period unti
trigger levelY , limit M, and maturing at tim&' to have nominal 1 and that the payment at

time T' depends on the extent (capturediBy to which the industry loss index exceeds the
triggerY at timeT'. The price of this cat bond is given by

min((17. =), M)

VO,Y,M,T(o): EQ e— T 1_

cat,T'

M
—rT 1 1Ty ITY+M
=e m-(q..(o)—q, (9)) (13)
— T 1 ITY.Y+M
=e V Cr (O) )

where Cl'r,T’Y (O) is the price of a call option on the industry ldsdex | ™ with strike price
Y maturing at timer’ and C'r,T'Y Y (0) is the price of the associated call spread. Wethise
midpoint rectangle rule to approxima@. """ (0) by

Cl.""M(0) = EQ(e‘rT mir(( - \o+ I\/I))

e‘rT'Q( I > x) dx= j Pt (0) dx

Y

I
—.3
<
<

M
=M Ee‘”'Q( > Y+Mj = MOy 2" (0)
2 | (14)
and use Equations (13) and (14) to obtain
b'“% T —rT’ b0 *Y*Mz T T’ YMT
VlLW,T’ (0) =€ _\/cat,'r’ (0) =e - \}gatT ' (0) (15)

for the price of a binary ILW with trigger levék % M, risk exposure period until and
maturing at timeT’. The approximation generally works well for smklyers. Figure 2
illustrates the relative pricing error assuming ponmnd Poisson losses with parameters from
Katz (2002), which were estimated for individualrifioAtlantic tropical cyclones (primarily
hurricanes) making landfall in the U.S. during gegiod 1925 to 1995.
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Figure 2: Exemplary relative pricing error in percent througk approximation in Equation
(15) (layer limitM and trigger leveY in bn. U.S. $)
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Summary: Pricing binary ILWs

We presented different approaches for the valuaifdoinary ILWs under the assumption of
no-arbitrage. In the presence of a liquid cat boratket, we obtain Equation (5) under no
further assumptions. Since there may not be enouaglety of cat bonds to match the
parameters of every ILW, we further provided apprations for different trigger levels and

maturities. To compute prices for ILWs (and simiydor other index-linked catastrophic loss
instruments), the following three steps shouldabem to obtain/,}y 7.:

1. From non-zero cat bonds to zero coupon cat bonds.
2. Adjust the trigger level.

3. Adjust the maturity.

The possible cases, steps, and resulting apprawinsatre summarized in Table 1.
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Table 1: Overview of steps and solutions in the occurringesaor approximately calculating
the prices of binary ILWs by means of replicatioisgng cat bonds

Cases Steps and solutions Equations

Zero coupon cat bond, matching V,EVH (O) =g" —VCQ?’T’Y(O) (5)

maturity, matching trigger level

Zero coupon cat bond, mismatching V2T (t) = e‘r(T"f')\/lL‘;V'Y;(t)+ DY [ (6), (7)

maturity, matching trigger level with V2Y T (0)=e ™ - v*.Y(0)

Zero coupon cat bond, matching | View (0) =V 7 (0)+ D) (10)

maturity, mismatching trigger level | VX7 (0)= e ™ =2, 7(0)

Zero coupon cat bond, mismatching Eq. (10) to obtairV,y 7 (0) with (6), (7), (10)

maturity, mismatching trigger level | V7 (0) = e'r(T'_T”)Vlmyg(t)+ D'
Vit (0)=e" v

Non-zero coupon cat bond Use Eq. (12) to ob\éijl (0) : (6), (7), (10),
Adjust trigger level and maturity if | (12)
necessary

Cat bonds with non-binary payoff Use Eq. (15) teabVy e . | (6), (7), (10),
Adjust trigger level and maturity if | (15)
necessary

5. EMPIRICAL EXAMPLES FOR PRICING | NDEX-LINKED CATASTROPHIC L OSSINSTRUMENTS
BY REPLICATION USING CAT BONDS

5.1 Consistent pricing of binary ILWsusing cat bonds

To illustrate and test the previously developedraxmations, we use secondary market cat
bond prices provided by Lane (2002) and comparetlieeretically derived ILW prices
obtained by means of our approximations (see Thb¥gth the actual ILW prices dated from
04/01/2002 as provided by McDonnell (20820 approximate the price of a binary ILW
related to earthquake risk in California with a unay of one year, the secondary market
price of the cat bond “Western Capitalis used, which features the same underlying hbisk,

8 Note that we need information regarding the &tt@ent point and the layer of the cat bond, whichase of
secondary (and primary) market data is typically provided. Also, ILW prices are very difficult mbtain
due to OTC transactions, which is why we use aniieap example from 2002 where these information
were available.

Date of issue: 02/2001; maturity: 01/2003; coupbfO; attachment point: $22.5bn; exhaustion point:
$31.5bn; probability of first loss: 0.0082; probdhiof exhaustion: 0.0034; expected loss: 0.00B8ex:
PCS; risk: California earthquake (see Lane and ®#hk(2001), and Michel-Kerjan et al. (2011) foreth
attachment and exhaustion point). As we have rarimdtion regarding the risk exposure period, weiiass
that it equals the maturity.

19
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mismatching maturity (10 months instead of one yeard a non-binary payoff (layer
between $22.5bn and $31.5bn). The secondary mpricgt is given as the spread (spreads
published by Goldman Sachs at 03/31/2002: bid: ig}2ask: 554 bp (Lane, 2002)) over
LIBOR (2.03% a® 03/31/2002). We use the developed approximationdetive a bid-ask
interval for ILW prices and in the following exhibthe calculation for the ask price.
Regarding the intensity of occurrence, due to & tdalternative information we assume=
0.0082, which corresponds to the probability offitet loss?* and define 03/31/2002 &s O.
Since our approximations use zero coupon cat barmmksy we transform the secondary
market spread using the LIBOR rate to a non-bizarg coupon price through

~225M= 1
VC(;”[\,(l_(ﬁlzéSM_ 315 225 9,10/1(0) — - = 0.941,
(1+0.0554+ 0.02082

where 10 months (from 03/31/2002 to 01/31/2003) lafe until the cat bond matures.
According to Equation (15), we can use the midpo@&atangle rule to approximate the price
of a zero coupon cat bond with binary payoff angger Ievel%(22.5+ 31.52 2 (middle of
the layer of the non-binary cat bond) by

bow=25 S 07 1011

Voat rs0115 (0)=Varmsion: = {0) = 0.941¢

which, as illustrated in the previous section fu tase of hurricanes, should generally work
well for smaller layers and higher trigger le%eTThe maturity of the ILWs, whose prices are
stated in McDonnell (2002), is one year. For thgustchent of the mismatching maturity
(from 10 months to one year) we use Equation (#) wi= 0.0082, and the price of a binary
ILW with trigger level of $27bn is then derived by

10
12

V“tj\f/71122//1122(0) =g+ e_r[{— e s l( & OY5° 1(0) - _ég)j =506 ¢

The ask price is thus given by 5.06% and the saabteulation for the bid price yields
5.82%% The actual prices stated by McDonnell (2002) a&5% for an ILW with a trigger

2 See http://de.global-rates.com.

The probability of the first loss is the prob#@pilthat the attachment point is exceeded (see, &ajeotti,
Gurtler and Winkler (2012, p. 405) for a formal ciéstion).

Taking Figure 2 (North Atlantic hurricane datatead of California earthquake) as a rough indicafor the
pricing error, the latter would amount to around.2%.

We additionally calculated the outcome includicmupon payments with resulting ask and bid prices o
5.09% and 5.85%.
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level of $25bn and 4.25% for trigger level of $30krhich already shows a high degree of
consistency with our approximation when using tlek @rice (despite the use of an
approximated intensity using the probability ofsfirloss and the use of only partial
information for the ILW price, for instance), whasethe difference is higher when using the
bid price.

5.2 Consistent pricing of cat bond
Another application of our proposed approximatiomfulas is the consistent pricing of cat
bonds. The available characteristics and pricefowrf selected cat bonds written on U.S.

hurricane risk using the PCS industry loss indexsarmmarized in Table 2.

Table 2: Characteristics of Successor X Ltd 2012-1; IbisliRegd. 2012-1 A; Ibis Re Il Ltd.
2012-1 B; Mythen Re Ltd. 2012-1

Name Date of Maturity Spread (at Expected Conditional Prob. Prob.
Issue issuance) loss expected of 1st  of last
loss loss loss
Successor X Ltd. 2012-1 01/2012  01/2015 1100 2.59%83% 3.12%  2.24%
Ibis Re Il Ltd. 2012-1 A 01/2012  02/2015 835 1.38% 59,2% 2.33% 0.89%
Ibis Re Il Ltd. 2012-1 B 01/2012  02/2015 1350 3.38% 67,9% 498% 2.36%
Mythen Ltd. 2012-1 05/2012  05/2015 850 1.09% 73,6% 1.48% 0.82%

Notes: See Lane (2013) for Mythen Ltd. 2012-1 aamtkl(2012) for Ibis Re Il Ltd. and Successor X Ltd.

As in the last section, prices are given as thaual) spread over LIBOR and the quarterly
secondary market spreads are displayed in FigudeS3.hurricanes can only occur during the
hurricane season from June to November, such hlesetcat bonds cover the same seasons
and we can assume that they have the same madndtyisk exposure period. Due to sub-
and super-hedging considerations, prices at eveint n time are ordered according to the
related expected loss, i.e., a cat bond with higlipected loss generally has a higher spread.

Figure 3: Secondary market spreads for Successor X Ltd 2012islRe Il Ltd. 2012-1 A,
Ibis Re Il Ltd. 2012-1 B and Mythen Re Ltd. 2012-dm 06/30/12 to 03/31/14

14

Spread in %

06/30/12 09/30/12 12/31/12 03/31/13 06/28/13 09/30/13 12/31/13 03/31/14

—e—Successor X Ltd 2012-1 —& |bis Re Il Ltd. 2012-1 A
«+#-.|bis Rell Ltd. 2012-1 B == Mythen Ltd. 2012-1 A

Source of data: Lane (2013) and Lane (2014).



23

Analogously to the ILW pricing formulas in Equats(¥) and (10), the price of cat bonds (in
terms of the spread premium) is given by

VAR (0) = VaE(0)+ (Va0 - Vi 9), (16)

where we observe the price of a binary cat bontl trigger levelY (Vck;ffT(O)) in the market
and, analogously to Section 4.3, use an empiricallibrated model to calculate the
difference term

=

We exemplarily follow Galeotti, Guertler and Winkes (2012) and apply the model of
Wang (2004) to calculat®, , i.e.

D\; =Vb,Y,T(0) -V by ,T(O)

cat,T' cat,T

- %(cb(cb‘l(PFLY)+/])+ (o7 (PLL) +/])—(CD(CD‘1( PFL)+ )+ (o7 PLL) ”)))

where PFL is the probability of the first los$LL the probability of the last loss and the
market price of risk is obtained by solving the nonlinear regression

V2T (0) = %(q: (07 (PFL)+A)+ 0 (0 PLLY) +A)) te.

With 4 and the parameters stated in TabIeDZ; andVCfoT(O) can be calculated using
Equation (16) and be compared with the empiricategst As an example, the real and
approximated prices of Ibis Re Il Ltd. are showrkigure 4 (wheré is determined by using
the empirical input parameters of the other thraebonds in Table 2), where we can again
observe a high degree of consistency. As mentidmefdre, by combining empirically
observed prices and only using theoretical modaigie difference term (as displayed by
Equation (16)), model risk can be considerably cedu
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Figure 4: Real and approximated prices (using the Wang toamsfor the difference term) of
Ibis Re Il Ltd. 2012-1 A from 06/30/12 to 03/31/ading Mythen Ltd. 2012-1
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—e— |bis Re Il Ltd. 2012-1 A ++#-< Approximation

6. OUTLOOK: PRICING I NDEMNITY-BASED (DOUBLE-TRIGGER) CONTRACTS

For pricing indemnity-based contracts by meanspfication, the tradability of the company
loss L' must be examined. Toward this end, we provide firsughts on how the company
loss could be treated and suggest three approashed) can be explored in future research.
The payoff of an indemnity-based ILW with attachmpaint A, maximum payofiM, trigger
level Y, risk exposure period unfiland maturing at tim&" is given by

Rov T =min{ M (1= A ), =((5- A (50 A M) )3, an

where (), = max((D). From Equations (2) and (17), one can see themie structure of
ILWSs. A binary ILW is a binary call on the industhyss indexl ", and an indemnity-based

ILW corresponds to a call spread option on the camggossL’ with an additional trigger for
the industry loss.

Independence between company loss and industrynidss

First, in casel” and L™ are independent, the price of an indemnity-bad&tl (Equation
(17)) can be described by

VA T(0) = EQ(e_ rT (( L - ®+ _( Lr - ( A+ M))+)1{|TT,>Y}j
= (CTLT A(0)-cp A (O)) EQ( e_rT'](ITT»Y}j ’

where CrL,T'A(O) is the price of a call option on the company laSswith strike priceA
maturing at timer’. For the treatment of the index, we refer to thevigus sections, and
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CFL,T'A(O) can be calculated using actuarial pricing priresplfor instance. In addition, we
refer to Mgller (2003) for the latter part, whenglifference prices are calculated using, e.qg.,
the traditional variance principle and assumingt ttlee company loss is log-normally
distributed. However, Mgller (2003) considers caats combining insurance and financial
risk, where independence is a more realistic assampStill, even though independence
between the index and the company loss would impdybstantial degree of basis risk and
would thus be problematic regarding the risk mansage purpose of an indemnity-based
index-linked catastrophic loss instrument, empineaults by Cummins, Lalonde and Phillips
(2004) for the U.S. market show that especially Ismaurers exhibit very low correlations
between their own losses and industry loss indi€ks.authors also show that hedging using
a statewide industry loss index is only effectioe the largest insurers in their sample. In
addition, this calculation could provide a lowewnbd for an efficient price.

Approximating the company loss based on the stock [oss

Second, one could approximate the company lossith the loss of the stock price, which in
turn is assumed to be traded, thus allowing agdptifaee valuation, i.e. through a functipn

wheref satisfies mild regularity conditions (e.g., sublattexpected values can be derived),
where the entire path of the stock prize s<t is considered. The functidnvould provide
the company los4] by just observing the stock price and, therefeiace the stock is
tradable on a liquid market, one can revert toteafe-free pricing methods for the company
loss. For instance, one can assume that the oelytgeausing a jump of the stock price are
catastrophic events. In this case, the functishould sum up all jumps until tinteor the
abnormal returns following a catastrophe for a sjgeevent window. The event study
literature may provide insight regarding the relaship between insured losses due to
catastrophes and their impact of stock prices. iRstance, Hagendorff, Hagendorff and
Keasey (2014) and Lamb (1995) provide evidencettier U.S. market that insured losses
caused by catastrophes are reflected in the stock foss. Based on these results, an
approximation of the insured loss based on stoide peactions should probably also include
company characteristics (e.g. the insurer’s logosure), the market environment (degree of
competition and market premium level), and may dispend on the type of catastrophe.

Doing this would result in a structured risk marmagat product, which can be treated as in
Cox, Fairchild and Pedersen (2004) and by usingrage-free valuation. However, there are
several problems related to the use of such steatrisk management products. A joint-
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stock company is needed and there is a risk of Inhazard, as companies may try to publish
negative information or overestimated company kes (which could be adjusted after the
maturity of the instrument) if the issued produsttiiggered to make it more valuable.

Furthermore, one fundamental problem is that tbeksprice of the company will decline in a

less pronounced way than in cases without heddihgs, the stock price loss would not

reflect the actual loss resulting from the catgeieo Hanke and Po6tzelberger (2003) formally
illustrate this issue for the case of arbitragefpeices of options on a company’s own stock.
They show that the resulting prices differ fromcpda obtained through classical option
pricing theory and that ignoring this effect imgliarbitrage opportunities.

Exploiting the dependence: functional relationshgiween | and L

Third, one could assume a functional relationshepMeen the industry loss index and the
company loss motivated by the typically high degrefe dependence between these
processes. This approach reduces indemnity-based index-lirdegdstrophic loss instruments
to non-indemnity-based instruments and allows apglthe replication techniques developed
previously. A high degree of dependence is realisiince basis risk arises if the company
loss and the industry loss are not fully dependse¢, e.g., Harrington and Niehaus (1999),
Gatzert and Kellner (2011)). For instance, Cummiradonde and Phillips (2004) show that
36% of Florida hurricane insurers could effectivelse instruments based on a statewide
index without being exposed to a high degree oisb@sk, while smaller insurer are generally
exposed to high basis risk (see also Harrington Hrehaus (1999)). Following these
arguments, one can assume a functional relatiohshipeenL” and 17, i.e.,

L =g(1),
implying that the payoff (see Equation (1)) cardescribed as
Rr=h(15.5)=h(11.9(17)),

which leads to an analogous situation as in the cdsnon-indemnity-based instruments,
since the payoff only depends on the industry logex at maturity. One simple example
could beg(x) = alx, with 0< a<1 representing an indication of the market sharepifioal
studies on the relation between the insurer’s bssel the industry loss index as reflected in
the functiong may be based on regression or correlation anabgisy empirical data of
catastrophe losses and individual insurer lossesinktance, as is done by Harrington and

24 Alternatively, one can assume stochastic deparedenreflect the case where the company is netetl by
a catastrophe.
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Niehaus (1999) or Cummins, Lalonde and Phillipg©0@0The functiorg and the accuracy of
the approximation may thereby depend on the insusxposure with respect to respective
catastrophe, the aggregated industry loss, aniihthef business, amongst others.

7. SUMMARY

This paper presents new approaches and technigudsow prices for index-linked
catastrophic loss instrument can be derived usirmtrage-free pricing by proposing
replication techniques and approximations that sonovercome the requirement of direct
tradability of the underlying loss indices. In peutar, contrary to traditional option pricing
theory, one cannot necessarily assume that therlyimdeindustry loss index is tradable
itself; however, there may be a liquid market fertain derivatives, including cat bonds. This
is of great relevance today in the academic liteggtbut it will be even more relevant in the
future for the insurance industry and financialdstors, when index-linked catastrophic loss
instruments become even more widespread than tmathyhen there are truly liquid markets
for derivatives (e.g., cat bonds) on the industsslindex.

We apply the proposed approaches and considerabotne arbitrage-free pricing of ILWSs,
where we assume a liquid cat bond market to ertkergradability of the underlying industry
loss index. We hence consider a liquid index-linkatl bond market (equivalent to a liquid
option market) for various trigger levels and magies, and first derive prices for binary
ILWs. We thereby show that we do not need any apiomconcerning the distribution of
the underlying industry loss index, which represenimajor advantage as compared to other
pricing approaches. If a suitable cat bond is mailable for approximating ILW prices, we
provide approximations under some reasonable aggumapThus, one main contribution of
the paper is to propose approaches to overcomecri@al point of tradability of the
underlying loss processes in case of index-linkathstrophic loss instruments through
suitable approximations and by deriving explicitplieating portfolios or close
approximations using traded derivatives providirglieit pricing formulas.

When calculating prices for indemnity-based doukbger catastrophic loss instruments,
which in addition to the index depend on the conyploss, one major problem is the

behavior of the company loss, which should be trbeed&n some sense when using risk-
neutral valuation. We provide first consideratiaegarding three potential approaches for
solving this issue and address problems assocmtedhem, leaving further theoretical and

empirical analyses for future research. In genemath considerations regarding indemnity
triggers will be increasingly relevant in the figurespecially against the background of an
increasing share of indemnity-based cat bond trdiose.
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Appendix

Itf is a compound Poisson process defined through

I S
Il =>X,
i=1

where N, and X' are independentlN, denotes the claims arrival process (i.e., a Pnisso
process with intensityl) and X' the i.i.d. claims. The probability for exceedirwe ttrigger
level is given through

Q(ITT>Y)=1—Q( |§sY):1— é”i@ c{i X< a (19)

k=0

Furthermore, we assume that the industry loss imt@¢tporates the actual catastrophe losses
instantaneously and if = 2 or more catastrophes occur, the industry ilodsx almost surely
exceeds the trigger level. Hence, we can approxifagtation (19) through (sum urkiE 1)

Q(lTT >Y)=1— - e AT X< Y (20)

An interpretation is that there are just two podiigs for the index not to be triggered: no
claim or one claim with size* lower than the trigger levéd. This should approximately be
true if we model only the occurrence of very largeents. Solving this equation for
Q( Xt< Y) leads to

—Q(ITT~ >Y)+1— g7 ~ eT\/P oY ,?(0)_ AT

cat,T'

e AT e AT

Q(x'sY)=

We useT =T', T = T' and Equation (20) again to calculeiﬂa;
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Now we can calculatMLWT( )through
Vini(0)=e - e (0)+ gy
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