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ABSTRACT 

 
Index-linked catastrophic loss instruments have become increasingly attractive for 
investors and play an important role in risk management. Their payout is tied to the 
development of an underlying industry loss index (reflecting losses from natural 
catastrophes) and may additionally depend on the ceding company’s loss. 
Depending on the instrument, pricing is currently not entirely transparent and does 
not assume a liquid market. We show how arbitrage-free and market-consistent 
prices for such instruments can be derived by overcoming the crucial point of 
tradability of the underlying processes. We develop suitable approximation and 
replication techniques and – based on these – provide explicit pricing formulas 
using cat bond prices. Finally, we use empirical examples to illustrate the 
suggested approximations. 
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1. INTRODUCTION 
 

Alternative risk transfer (ART) has become increasingly relevant in recent years for insurers 

and investors,1 especially due to a considerably growing risk of extreme losses from natural 

catastrophes caused by value concentration and climate change, as well as the limited (and 

volatile) capacity of traditional reinsurance markets in the past (Cummins, Doherty and Lo, 

2002). In this context, ART intends to provide additional (re)insurance coverage by 

transferring insurance risks to the capital market. This offers considerably higher capacities 

and can thus help satisfy the high demand as well as reduce the market power of reinsurance 

companies (Froot, 2001). Moreover, ART could fix the problem of “nondiversification traps” 

in the catastrophe insurance markets by offering new risk transfer opportunities besides the 

pooling of risks in the reinsurance market as described in Ibragimov, Jaffee and Walden 

(2009). Among the most commonly used ART instruments are index-linked catastrophic loss 

instruments such as index-based cat bonds2 or industry loss warranties (ILWs), for instance, 

whose defining feature is their dependence on an industry loss index and which may also 

depend on the company-specific loss resulting from a natural catastrophe.3 However, the 

current degree of liquidity of the various index-linked instruments considerably differs. While 

the market for cat bonds is fairly well developed with an increasingly relevant secondary 

market (Albertini, 2009), for instance, the market for ILWs is less liquid and limited 

(Elementum Advisors, 2010).  

 

In this paper, we focus on how these products can be priced in a consistent way and discuss 

under which assumptions (e.g., regarding a liquid underlying market) risk-neutral valuation 

can be used. This procedure can considerably simplify pricing and enhance transparency, 

making the market as a whole more efficient. In addition, risk-neutral valuation is of great 

relevance for the inclusion of such instruments in enterprise risk management strategies as it 

provides a mark-to-market valuation approach, allowing for (partial) hedging, versus the 

traditional mark-to-model approaches with the associated model risk (which is very hard to 

quantify). We develop new pricing approaches by means of approximations and replication 

techniques and apply them to industry loss warranties (ILWs) as a representative of index-

linked catastrophic loss instruments under the assumption of a liquid cat bond and stock 

market, while carefully addressing the necessary prerequisites and limitations, and we also 

illustrate the approaches by consistently pricing different cat bonds. We study binary 

                                                 
1  The volume of outstanding cat bonds, for instance, reached $17.5bn in 2013 (see AON (2013)). Investors 

include, e.g., specialized funds, institutional investors, mutual funds, and hedge funds (see AON (2013)). 
2  There are various versions of cat bonds with different types of triggers, including indemnity-based and non-

indemnity based triggers with parametric, modelled loss, and industry loss triggers, for instance (see, e.g., 

Hagedorn et al. (2009)), 
3  See, e.g., Cummins and Weiss (2009) and Barrieu and Albertini (2009) for an overview of the ART market. 
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contracts in detail, whose payout depends on the industry index only, and discuss indemnity-

based contracts, where the payout depends on both the industry index and the individual 

company losses, thus representing a double-trigger product. The approaches derived in this 

paper can also be transferred to the consistent pricing of other index-linked catastrophic loss 

instruments.  

 

In the literature, several papers examine the actuarial and financial pricing of index-linked 

catastrophic loss instruments such as ILWs, for instance, (e.g., Ishaq (2005), Gatzert and 

Schmeiser (2012), Braun (2011)) and discuss the underlying assumption briefly (see Braun 

(2011). However, the tradability of the underlying processes as well as direct replication and 

consistent pricing has not been discussed in detail so far in this context. However, several 

papers have dealt with risk-neutral valuation in the context of cat bonds (see, e.g., Nowak and 

Romaniuk (2013), Haslip and Kaishev (2010)) and compute explicit pricing formulas, while 

other authors focused on the consistent pricing of double-trigger contracts (e.g., Lane, 2004) 

or empirical aspects using econometric pricing approaches (e.g., Jaeger, Müller and Scherling 

(2010), Galeotti, Guertler and Winkelvos (2012), Braun (2014)).  

 

In general, the main assumption when using risk-neutral valuation is the tradability of an 

underlying process. Since the underlying process can usually not be traded directly like a 

stock, one has to assume a liquid market for (certain) derivatives. We derive a general 

approach for dealing with this issue, describe the underlying assumptions and apply this 

approach to binary ILWs as well as cat bonds. This is done by means of direct or approximate 

replication with traded derivatives using available cat bonds, which leads to explicit and 

consistent prices.4 In particular, using ILWs as an example, we assume the existence of a 

liquid cat bond market to handle the tradability of the industry loss index and to apply 

arbitrage-free valuation. Since there is a growing secondary market for cat bonds, this 

assumption appears to be at least appropriate in the foreseeable future (see, e.g., Albertini 

(2009) for a description of the secondary market). Moreover, we show that liquidity 

assumptions are not needed to the same extent as in classical option pricing theory because 

continuous trading is not necessary to replicate ILWs when using cat bonds, i.e., a static 

hedging approach is sufficient, which also reduces transaction costs and possible tracking 

errors. Therefore, the liquidity requirement is reduced to the availability of suitable cat bonds 

at the time of replication. We derive prices for binary / non-indemnity-based ILWs, where the 

payout only depends on the industry loss index exceeding a contractually defined trigger level 

                                                 
4  The prices of available index-linked catastrophic loss instruments such as ILWs should generally be 

consistent with the prices of other derivatives traded on an already liquid market such as in the case of cat 

bonds. To ensure this consistency, the prices of ILWs should equal the prices of replicating portfolios 

consisting of tradable derivatives (cat bonds). This is also generally in line with the findings in Jaeger, Müller 

and Scherling (2010). 
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during the contract term. If a suitable cat bond is not available for deriving ILW prices, we 

provide proper approximations under some additional assumptions. To illustrate and test the 

proposed approximations in case of index-linked instruments, we derive the price of an ILW 

using secondary market cat bond prices and compare the resulting price with the available 

real-world ILW prices, finding a high degree of consistency, which supports our suggested 

approximations for replicating portfolios. Moreover, as a further application, we approximate 

prices of cat bonds using empirical data and compare them with real secondary market data in 

order to examine whether the market prices consistently. 

 

In the case of instruments that are only index-linked (i.e., non-indemnity-based), one major 

advantage is that no assumptions concerning the distribution of the underlying industry loss 

index are necessary. In the case of indemnity-based index-linked catastrophic loss 

instruments, whose payout in addition to the industry loss index also depends on the 

company-specific loss caused by a catastrophe, one major problem is the behavior of the 

company loss, which should be tradable in some weak sense when using risk-neutral 

valuation. Therefore, we further suggest and briefly discuss three potential approaches for 

solving this issue. Furthermore, we examine the adequacy of our assumptions and indicate in 

which cases they can be used. 

 

The presented approaches for pricing index-linked catastrophic loss instruments are of high 

relevance today and especially for the future (both for practical as well as academic 

endeavors), when index-linked catastrophic loss hedging instruments will become even more 

widespread than today and when some markets for derivatives like the cat bond market are 

truly liquid. One main contribution of our work is to overcome the crucial point of the 

tradability of the loss index through suitable approximations and to provide explicit pricing 

formulas using replication techniques. While the focus of the paper is primarily theoretical, 

we use empirical examples to illustrate the suggested approaches by comparing ILW and cat 

bond prices with the ones derived based on the replication and approximation techniques. 

 

The remainder of the paper is structured as follows. Section 2 gives an overview of related 

literature with a focus on the underlying theory and assumptions. Section 3 introduces index-

linked catastrophic loss instruments and ILWs as representatives of index-linked catastrophic 

loss hedging instruments, their basic properties and the underlying industry loss indices. In 

Section 4 we present the pricing approaches and as an example apply the approaches to 

consistently price ILWs and cat bonds in Section 5. Section 6 gives an outlook on the pricing 

of indemnity-based products, and Section 7 concludes. 
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2. FURTHER RELATED LITERATURE 

 

There are several papers which deal with the pricing of index-linked catastrophic loss 

instruments such as ILWs or strongly related products. Actuarial pricing principles are 

applied to ILWs in Gatzert and Schmeiser (2012), for instance, while Gründl and Schmeiser 

(2002) compare actuarial pricing approaches with the capital asset pricing model to calculate 

prices for double-trigger reinsurance contracts, which are similar to indemnity-based ILWs. 

Furthermore, there are papers that combine financial and actuarial pricing approaches such as 

Møller (2002, 2003), who discusses the valuation and hedging of insurance products that 

depend on both the financial market and insurance claims. Regarding the arbitrage-free 

pricing of ART instruments related to index-linked catastrophic loss instruments, there is a 

wide literature, which is outlined in the following.  

 

First, Cummins and Geman (1995) develop a model to price cat futures and call spreads 

written on the aggregated claims process using an arbitrage approach based on a jump 

diffusion model. In contrast, Bakshi and Madan (2002) price options written on the average 

level of a Markov process using a mean-reverting process and derive closed-form solutions 

for cat option prices. Haslip and Kaishev (2010) price reinsurance contracts with specific 

focus on catastrophe losses. They assume a liquid market of indemnity-based cat bonds and 

that the aggregated loss process of a company follows a compound Poisson process, and then 

calculate arbitrage-free prices for the excess of loss reinsurance contracts using Fourier 

transformations. In contrast to their setting, we only assume a liquid cat bond market with 

comparable index-based cat bonds and weaken the distributional assumptions. Prices for 

catastrophe equity puts, which are double-trigger contracts that can only be exercised if the 

insured loss rises above a certain level, are derived in Jaimungal and Wang (2006), who 

extend the work of Cox, Fairchild and Pedersen (2004) by allowing non-constant interest rates 

and non-constant losses for every occurring catastrophe. The authors derive an explicit 

formula and the Greeks for the price of the option using standard arbitrage-free option pricing 

theory and based on the Merton (1976) approach. This assumes the insured loss follows a 

compound Poisson process, the stock price process follows a geometric Brownian motion 

between the jumps of the compound Poisson process, and that the influence of the insured 

loss on the stock price process is relative, i.e., the absolute loss of the stock price depends on 

its value before a jump happens.  

 

Integral to one of our pricing approaches for ILWs is the valuation of cat bonds. In this 

context, Bantwal and Kunreuther (2000) observe that the spreads of cat bonds do not 

necessarily align with standard investor preferences and draw on behavioral economics as one 

explanation for this observation. Furthermore, due to jumps induced by natural catastrophes, 
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the market of cat bonds is generally incomplete. To deal with incompleteness, one approach is 

offered by Merton (1976), who argues that the risk of jumps can be completely neutralized by 

diversification, as jumps are of an idiosyncratic nature. Under this “risk-neutralized” 

assumption, one can employ arbitrage-free pricing.5 In Cox and Pedersen (2000) and Cox, 

Fairchild and Pedersen (2004), the pricing of catastrophe bonds has also been discussed, 

where the latter deal with the dynamics and interactions of losses and share value. In Poncet 

and Vaugirard (2002), a pricing approach is introduced that uses stochastic interest rates and a 

diffusion process for the industry loss index without jump risk from catastrophes, while in 

Vaugirard (2003a) jumps are accounted for by means of a jump diffusion process.6 The 

consistent pricing of double-trigger cat bonds based on single trigger bonds is studied in Lane 

(2004), who points out that in the absence of arbitrage, the sum of the prices of two single 

trigger cat bonds should generally equal the sum of the prices of two fitting double-trigger cat 

bonds (one junior and one senior tranche). In Section 5, we further develop this idea when 

applying our approaches to the consistent pricing of single trigger cat bonds and without 

assuming perfectly fitting cat bonds. An empirical example for a potential security-class 

arbitrage opportunity is discussed in Jaeger, Müller and Scherling (2010, p. 27f), who show 

that the same risk may be priced differently depending on the type of security using ILWs and 

cat bonds as an example.7 However, the authors also emphasize the different contract terms as 

one potential main reason for observed differences in prices. Based on their empirical data 

they further critically evaluate other types of arbitrage, stating that there may be rather small 

program replication arbitrage opportunities (mainly arising from other risks or transaction 

costs), and regarding trigger type arbitrage find no evidence in their historical data. 

 

Apart from that, Galeotti, Guertler and Winkelvos (2012) empirically compare different 

pricing models for cat bonds using primary market data and find that the Wang (2000) 

transform (using the student-t-distribution) as well as linear models provide the most accurate 

fit if the financial crisis is not taken into account in the dataset. If the latter is included in the 

analysis, all models provide similar results. Also based on primary market data, Braun (2014) 
                                                 
5  See, e.g., Lee and Yu (2002) for an application of this approach to pricing cat bonds using risk-neutral 

valuation under default risk, basis risk, and moral hazard. Alternatively, an equilibrium model can be 

employed (see, e.g. Zhu (2011), and Cox and Pedersen (2000) for a brief discussion on the relation of the two 

frameworks). 
6  Other pricing approaches are based on equilibrium models (see Dieckmann (2010)) or employ the pricing 

techniques of credit risk by means of probability-of-default and loss-given-default, which translate to 

probability-of-catastrophe and loss-given-catastrophe (see Jarrow (2010)). Moreover, Dieckmann (2010) 

shows that the term structure of cat bonds is slightly upwards sloping, which can partly be explained by the 

equilibrium assumption. 
7  The example (referring to March 2007) suggested buying the (three-year) Mystic Re cat bond on Northeast 

U.S. wind with an industry loss trigger of $30 to $40 billion and linear payout with a spread of LIBOR + 700 

bps and buying a (twelve months) binary ILW on Northeast U.S. wind with a $30 billion trigger level for 615 

bps (p. 27). 
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proposes an econometric pricing model for cat bonds and shows that the expected loss is the 

most relevant determinant of the cat bond spread at issuance, while territory, sponsor, 

reinsurance cycle, and spreads on comparably rated corporate bonds also have a considerable 

impact. Indemnity-triggers, in contrast, do not imply a higher spread for investors despite the 

risk of moral hazard, which the author explains with an increasing rate of acceptance among 

investors as well as incentive provisions, where sponsor and investor proportionally share the 

risk above a certain threshold. Guertler, Hibbeln and Winkelvos (2014) use secondary market 

data to study the impact of natural catastrophes and the financial crisis on cat bond prices and 

to identify factors that influence premiums, showing that especially ratings play a role, in 

contrast to indemnity-triggers, which is similar to Braun (2014). 

 
3. MODELING INDEX-LINKED CATASTROPHIC LOSS INSTRUMENTS 
 

One main property of index-linked instruments such as ILWs is that they depend on an 

industry loss index, which generally does not instantaneously reflect the exact insured 

damage. Instead, if a catastrophe occurs, the first value of the index is a preliminary 

estimation (see, e.g., Kerney (2013a)), which is adjusted if necessary or at predetermined 

points in time (see PCS (2013) and PERILS (2013)). To take this development into account, 

we follow the approach of Vaugirard (2003a, 2003b) and assume the actual (contractually 

defined) maturity T′  of the index-linked catastrophic loss instruments to exceed the risk 

exposure period T, during which the catastrophe must occur in order to trigger a payoff. 

Newly occurring catastrophes between the end of the risk exposure period T and the maturity 

T'  are not taken into account, but adjustments of the loss estimates from the catastrophes that 

occurred during the risk exposure period (between time 0 and T) are taken into account and 

are reflected in the index. Hence, while the time interval from 0 to T represents the risk 

exposure period, the time interval from T to T '  is referred to as the development period. 

Thus, an industry loss index incorporates data from insured losses arising from an occurring 

catastrophe and each qualifying event is reflected in the index.  

 

In the following, we consider an aggregated industry loss index TI  for the risk exposure 

period until time T by aggregating estimated losses from all catastrophes (e.g., of the same 

and contractually defined type) that occurred during the risk exposure period.8  Hence, 

following, e.g., Biagini, Bregman and Meyer-Brandis (2008), the aggregated industry loss 

index TI  for the risk exposure period until T, taking into account the development of the 

estimations until time t T ′≤ , is given by 

                                                 
8  This loss information is provided by specialized industry loss index providers. Note that this also depends on 

the type of index-linked catastrophic loss instruments. E.g., if dealing with occurrence ILWs (see Ishaq 

(2005)), whose payoff does not depend on the sum of insured damage but only on the loss caused by the first 

event), one needs a different approach, but our techniques are applicable as well.  
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where t TN∧  (with ( )t T min t,T∧ = ) is the number of catastrophes that occurred up to time t 

within the risk exposure period until T and i
tX  denotes the time-dependent estimation of the 

insured loss arising due to the i-th catastrophe at time t. In the following, we focus on index-

linked catastrophic loss instruments, whose payoffs depend on the industry loss index at 

maturity T′  and which can be defined by 

 

( )T T
T TP h I ,′ ′=    

 

where h is a non-negative measurable function. There are also indemnity-based index-linked 

catastrophic loss instruments, which additionally depend on the company loss. The payoff at 

time T′  of such indemnity-based index-linked catastrophic loss instrument is analogously 

given by 

 

( )T T T
T T TP h I ,L ,′ ′ ′=   (1) 

 

where TL  denotes (analogously to TI ) the estimated aggregated company loss for the risk 

exposure period until T. In Figure 1, we depict the development of an industry loss index for a 

single catastrophe. After the catastrophe occurred, the loss estimations are adjusted several 

times, and additionally occurring catastrophes during the risk exposure period would cause 

additional jumps. The solid dot on the right side corresponds to the value of the industry loss 

index at maturity and hence the payoff is given by applying the function h to this value. Note 

that while downward adjustments of the estimation are possible in principle, they are unlikely 

and adjustments are typically upward.9  

 

Figure 1: Exemplary development of an industry loss index in the case of one catastrophe 

and adjustments of loss estimations over time 

 

                                                 
9  See, e.g., McDonnell (2002) for the development of the Property Claim Service estimations of the ten U.S. 

natural catastrophes with the highest insured damage. 
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We assume that TI  is given by an industry loss index provider such as, e.g., the Property 

Claim Service (PCS) index for the U.S. or the PERILS index for Europe. It represents an 

estimation of the total insured loss caused by a catastrophe. PCS provides insured property 

loss and defines a catastrophe as an event that causes at least $25 million in direct insured 

property losses and affects a significant number of policyholders and insurers. The PCS index 

covers perils including earthquake, fire, hail, hurricane, terrorism, utility service disruption 

and winter storm. The loss data is updated approximately every 60 days, if the event caused 

more than $250 million in insured property losses, until PCS believes the estimated loss 

reflects the insured loss for the industry (see PCS (2013) and Kerney (2013a)). PERILS 

defines a catastrophe as an event exceeding a total loss of €200 million and estimates only 

property windstorm losses in Europe and property flood losses in the U.K. It publishes the 

first index value report six weeks after the event at the latest and updates after three, six and 

twelve months. More updates are provided if necessary but the reporting is final in any case 

after 36 months (see PERILS (2013)). It is important to keep in mind that these indices do not 

incorporate information instantaneously but with a certain delay; however under the 

assumption of sufficient liquidity in the derivatives market, we can assume that information is 

incorporated almost instantaneously (similar to the CDS market for credit defaults) into the 

derivatives prices (e.g., cat bonds that play a crucial role here). 

 

One main problem related to the use of an index-linked catastrophic loss instrument in the 

context of hedging is basis risk, which arises if the dependence between the index and the 

company’s losses (that are to be hedged) is not sufficiently high. In particular, the company 

loss could be high, but the industry loss index could be too low to trigger a payoff. There are 

several definitions of basis risk and we refer to Cummins, Lalonde and Phillips (2004) for a 

discussion of basis risk associated with index-linked catastrophic loss instruments.  

 
4. PRICING INDEX-LINKED CATASTROPHIC LOSS INSTRUMENTS 
 

4.1 Pricing by replication under the no-arbitrage assumption 

 

In general, actuarial valuation methods for insurance contracts are based on the expected loss 

plus a specific loading, which depends, e.g., on the insurers’ risk aversion and its already 

existing portfolio (see Gatzert and Schmeiser, 2012). Financial pricing approaches generally 

allow the derivation of market-consistent prices. For arbitrage-free valuation, one has to 

calculate the expected value under a certain risk-neutral measure Q given the existence of a 

liquid market and independent of the existing portfolio. If there is a unique risk-neutral 

measure (i.e., the market is complete) the arbitrage-free price is unique and the price 

corresponds to the initial value of a self-financing portfolio replicating the cash flow 

(Harrison and Kreps, 1979). 
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In the present setting, we focus on the two stochastic processes of importance: the industry 

loss index TI  and the company loss TL . These processes need to be tradable in a more general 

sense, as there is no possibility to trade TI  or TL  directly like a stock and it is unrealistic to 

assume that there is a possibility to buy or sell this index; however, we assume there is a 

liquid market for certain derivatives on the industry loss index TI .10 To avoid arbitrage 

opportunities, the prices of these derivatives should coincide with the expectation of the 

discounted cash flow under a risk-neutral measure (unique or not, depending on the market’s 

completeness), and the prices of other index-linked catastrophic loss instruments should be 

consistent with the prices of the derivatives already traded on a liquid market (given a 

sufficient degree of comparability in regard to transaction costs, for instance). To ensure this 

consistency, the prices of these other instruments should equal the expectations under the 

same risk-neutral measure, or, equivalently, should equal the prices of replicating portfolios 

consisting of tradable derivatives, for instance. In case the market is incomplete, i.e., there are 

not sufficient traded derivatives available (no exact replicating portfolio; only partial hedging 

is possible), other approaches can be used, such as sub-/super-hedging (e.g., Bertsimas, 

Kogan and Lo, 2001), by choosing a self-financing portfolio based on maximizing expected 

utility (e.g., Henderson, 2002), or by selecting a risk-neutral measure according to certain 

criteria (e.g., jump risk is not priced, see Merton (1976), Delbaen and Schachermayer (1996)).  

 

We thus assume that the liquid market for certain index-linked catastrophic loss instruments 

(e.g., cat bonds) is at least large enough to allow the derivation of an exact replicating 

portfolio or at least a close approximation. For instance, in case suitable cat bonds are 

available for perfectly replicating the respective instrument’s cash flows (e.g., an ILW or 

another cat bond), a unique arbitrage-free price can be derived.11 Alternatively, in case the 

required cat bonds are not available (e.g., mismatching trigger level or time to maturity), we 

derive suitable approximations for the replicating portfolio. Using direct replication also has 

the significant advantage that a risk-neutral measure does not have to be specified and that 

model risk is significantly reduced for the hedger. 

 

                                                 
10  These derivatives also represent index-linked catastrophic loss instruments. Note, however, that the 

assumption of liquidity only holds for certain types of derivatives, as standard call and put options on an 

industry loss index are not traded on a liquid market. Call and put options were introduced 1995 by CBOT, 

but due to limited trading these options were delisted in 2000 (see, e.g., Cummins and Weiss (2009)). Hence, 

the derivatives we focus on in the following are cat bonds, which exhibit a considerable market volume with 

a relevant secondary market. In case that there is a liquid derivatives market in the sense that calls and puts 

on the underlying industry loss index are traded at all strikes, the Litzenberg formula could be applied to for 

static replication. 
11  The instruments we focus on are not path-dependent and there could be various measures resulting in the 

same prices for instruments with a payoff depending only on T
TI ′ . Since there is no difference for the prices 

of the instruments we consider, it is not relevant which of these measures we take. 
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In case of indemnity-based index-linked catastrophic loss instruments, one crucial point and 

major problem in addition to the treatment of the industry loss index is the tradability of the 

company loss TL . As potential remedies we discuss three preliminary approaches with 

varying degrees of assumptions in Section 6. 
 
4.2 Industry Loss Warranties  

 

We apply the proposed approaches to price binary ILWs, whose payoff depends on whether 

the industry loss index exceeds the trigger level Y at the end of the development period T′  
(see McDonnell (2002)). The payoff at maturity T′  of a binary ILW (denoted “b”) with 

trigger level Y and risk exposure period until T  is given by 

 

{ }1 T
T

b,Y ,T
ILW ,T I Y

P D
′

′ >
= ⋅ ,   (2) 

 

where D represents the possible payout and { }1 T
TI Y′ >

 denotes the indicator function, which is 

equal to 1 if T
TI Y′ > , i.e., if the industry loss index at maturity T

TI ′  exceeds the trigger level Y 

(due to catastrophes that occurred during the risk exposure time T), and 0 otherwise.12    

 

To illustrate our approach more specifically, we assume that there is a liquid cat bond market 

consisting of cat bonds (with comparable maturities and strikes etc.) that can be used to derive 

consistent ILW prices by means of replicating the ILWs’ cash flows.13 This extends the 

approach of Haslip and Kaishev (2010), who also assume a liquid cat bond market but – in 

contrast to our analysis – focus on indemnity-based cat bonds, and then evaluate excess of 

loss reinsurance contracts under additional assumptions concerning the risk-neutral measure 

Q. The assumption of a liquid cat bond market can be considered reasonably realistic given 

the high volume of cat bonds (more than $17 billion of capital outstanding in 2013 (see AON 

(2013)) and a growing secondary market with a considerable volume of cat bond transactions 

(see Moody (2013)). Furthermore, sponsors are becoming more and more familiar with this 

kind of risk transfer and service providers involved in structuring and marketing exhibit an 

increasing experience. In addition, frictional costs of cat bond transactions are decreasing 

                                                 
12  Note that an alternative but less common representation of an ILW would be that the payoff is triggered if the 

index exceeds the trigger limit during the contract term (knock-in barrier option). The following analysis can 

be extended to this case as well. 
13  In general, in case the market is incomplete and ILWs cannot be fully replicated, under suitable assumptions 

it can still be possible to at least approximately (dynamically) replicate the ILWs (see, e.g., Bertsimas, Kogan 

and Lo (2001), Xu (2006), where arbitrage-free price windows are derived by means of sub- and super-

hedges). With the derivation of sub- and super-hedges, one obtains a price interval in which any arbitrage-

free price of the ILW has to be contained. Within the interval, the chosen price will depend on the risk 

preference of the investor and might still be subject to inefficiencies.  
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(less than 20 basis points, see Kerney (2013b)). Time to market and frictional costs are further 

improved by the use of different securitization structures involving a Special Purpose Insurer 

(SPI) instead of a Special Purpose Vehicle (SPV), which can be set up in less than three to 

four weeks overall (see Garrod (2014)), thus also improving the degree of liquidity in the cat 

bond market. In addition, Braun (2014) points out that sponsors recently started to 

increasingly use shelf-offerings (e.g. Swiss Re Successor Series), where additional classes of 

notes can be issued repeatedly out of the same SPV, which eases access to capacity and 

considerably reduces transaction costs. These developments also contribute to reducing 

differences in transaction costs and transaction times between cat bonds and ILWs, as the 

latter are generally more easily available and less costly.14 However, we show that liquidity is 

not needed to the same extent as in classical option pricing as continuous replication is not 

necessary to replicate ILWs when using cat bonds, i.e., a static hedging approach is sufficient. 

Moreover, the Bermuda Stock Exchange, among others (see Artemis (2013)), has started to 

list cat bonds, which is a first step to trading them on the exchange, indicating that the 

secondary market is growing, the transaction time on the primary market and the frictional 

costs are decreasing and even if the market is not yet enough liquid, it appears reasonable to 

assume that it will become liquid in the foreseeable future in view of the current 

developments.  

 

The approach using available cat bonds in order to (at least approximately) replicate cash 

flows can also be used for pricing other index-linked catastrophic loss instruments covering a 

wide variety of instruments. Hence, once the replicating portfolio is known, prices can easily 

be calculated as they can directly be observed in the market. In addition, this approach can be 

used to test the degree of liquidity in the market. Consistent prices would encourage the 

assumption of a liquid market, while inconsistent prices would contradict this assumption and 

lead to an arbitrage opportunity or indicate the existence of an external risk that might not 

have been incorporated into market prices.  

 
4.3 Pricing binary ILWs by replication using cat bonds 
 

In the following, we present different ways of replicating cash flows of binary ILWs. In case 

of a liquid cat bond market, the whole market is represented by the filtered probability space

( )( )0t t
,F , F ,P

≥
Ω , where ( ) 0t t

F
≥

 is a filtration satisfying the usual assumptions and tF  

represents all information up to time t. Following the fundamental theorem of asset pricing 

(see, e.g., Delbaen and Schachermayer (1994)), the price of every contingent claim is given 

by the expectation of the discounted payoff under an equivalent martingale measure Q.  

                                                 
14  Note that in case the approaches presented here are applied to consistently price cat bonds, transaction costs 

would be even more comparable. 
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The discounted payoff (at time 0) of an index-based cat bond with binary payoff (denoted 

“b”),15 trigger level Y, risk exposure period until T, coupon payment c and maturing at time 

T′   and without loss of generality an assumed nominal of 1 is generally given by 

 

{ } { }
1

1 1j

TT
Tt j

n
r tb,Y ,T r T

cat ,T I YI Y
j

P c e e ,
′

− ⋅ ′− ⋅
′ ≤≤

=

= ⋅ +∑   (3) 

 

where r is the constant risk-free interest rate (this assumption can be weakened) and n is the 

number of coupon payments (coupon time intervals). In the following, we first assume that 

there is a perfectly fitting cat bond, i.e., a zero coupon ( 0c = ) cat bond with the same trigger 

level Y, the same risk exposure period until T and maturing at the same time T′ , and then 

extend our formula to imperfectly fitting cat bonds under certain additional assumptions. 

 

Matching maturity and trigger level 

 

First, if there are binary zero coupon cat bonds with the same maturity and the same trigger 

level as the ILW, we can proceed as follows. According to Equation (3), the risk-neutral price 

at time t of a zero coupon (denoted “0”) cat bond with binary payoff, trigger level Y, risk 

exposure period until T, maturing at time T′  is (see Haslip and Kaishev (2010)) 

 

( ) ( )
{ }

( ) ( )
{ }

0 1 1T T
T T

r T t r T t r T tb , ,Y ,T Q Q
cat ,T t tI Y I Y

V t E e | F e E e | F .
′ ′

′ ′ ′− − − − − −
′ ≤ >

   = = −   
   

 (4) 

 

Hence, together with (2) (and D = 1), Equation (4) turns into 

  

( ) ( ) ( )0 r T tb, ,Y ,T b,Y ,T
cat ,T ILW ,TV t e V t ,′− −

′ ′= −    

 

where b,Y ,T
ILW ,TV ′  is the price of a binary ILW with risk exposure period until T, trigger level Y 

and maturing at time T′ .16 Thus, in the presence of a zero coupon cat bond with the same 

trigger level Y and same maturity, the price is given by 

 

( ) ( )
{ }

( ) ( )01 T
T

r T t r T tb,Y ,T Q b, ,Y ,T
ILW ,T t cat ,TI Y

V t E e | F e V t ,
′

′ ′− − − −
′ ′>

 = = − 
 

 (5) 

 

                                                 
15  Even though proportional payouts are generally more common in practice, the Mexican cat bond issued 

2009, for instance, featured a binary trigger (see Cummins, 2008). 
16   A related observation is made by Vaugirard (2003a), who observes that the buyer of a catastrophe bond holds 

a short position on a binary option on the index. 
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where ( )r T te ′− −
 is the price of the related zero coupon bond without catastrophe (or any other 

default) risk under the assumption of a constant interest rate. In case of a non-constant interest 

rate this could be replaced with the price of a zero coupon bond maturing at time T′  without 

default risk. For the remainder of the paper, we assume without loss of generality that t = 0. 

Note that since direct replication is used, independence between the risk-free rate and the 

industry loss index is not necessary in this case. Equation (5) thus also yields a replicating 

portfolio for a binary ILW. In particular, the cash flow of a binary ILW with risk exposure 

period until T, trigger level Y maturing at time T′  can be perfectly replicated by buying a zero 

coupon bond without default risk and selling a binary zero coupon cat bond with risk 

exposure period until T, trigger level Y and maturing at time T′ .  
 

One has to take into account that the chance of finding a perfectly fitting cat bond in the 

market might be low, such that an approximation in spite of a maturity mismatch might be 

easier. Therefore, we further provide approximations if there are only cat bonds with different 

maturity, different trigger level, non-zero or non-binary coupons available.  

 

Matching trigger level but mismatching maturity 

 

We next assume that there is a liquid market for binary zero coupon cat bonds with the same 

trigger level Y but different maturities and different risk exposure periods, thus implying an 

incomplete market setting. In this case, sub- and super-hedging can be applied, where the 

arbitrage-free price of an ILW with maturity T′  lies between the prices of ILWs with shorter 

and longer time to maturity, both given by Equation (5), which results in an upper and lower 

bound for the ILW price. The obtained range can be rather large, which is why we choose the 

zero coupon cat bond with the maturity T′ɶ  and risk exposure period until Tɶ  that is closest to 

the parameters of the ILW we intend to price (everything else equal, i.e., trigger level and 

index). The aim is thus to approximate the binary ILW price b,Y ,T
ILW ,TV ′  with the price of this cat 

bond, which can be observed in the market. First, the price of a binary ILW with risk 

exposure period until Tɶ , trigger level Y and maturing at time T′ɶ  is given through Equation 

(5) by 

 

( ) { } ( )00 1 0
T
T

b,Y ,T rT Q rT b, ,Y ,T
ILW,T cat ,TI Y

V e E e V
′

′ ′− −
′ ′>

 = = − 
 

ɶ

ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ,  (6) 

 

which can then be used to price the ILW with different maturity and different risk exposure 

period by 
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( ) { } { } { } { }

( ) ( )( )
( ) ( )

0

0

0 1 1 1 1

0 0

0

T TT T
T TT T

b ,Y ,T rT Q rT Q
ILW ,T I Y I YI Y I Y

rT rT b ,Y ,T T ,T rT rT rT b , ,Y ,T T ,T
ILW ,T T ,T cat ,T T ,T

r T TrT b , ,Y ,T
cat ,T

V e E e E

e e V D e e e V D

e e V

′ ′′ ′

′ ′− −
′ > >> >

′ ′ ′ ′ ′ ′ ′− − −
′ ′ ′ ′

′ ′− −′−
′

   = = + −        

= + = − +

= − +

ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ

T ,T
T ,T

D ,′
′ɶ ɶ

 (7) 

 

where 

 

{ } { }1 1T T
T T

T ,T rT Q
T,T I Y I Y

D e E
′ ′

′ ′−
′ > >

 = − 
 

ɶ

ɶ

ɶ ɶ   

 

is the residual difference in (7) arising from the approximation error due to using an 

observable traded cat bond with mismatching maturity (closest to the one of the ILW). To 

calculate T ,T
T ,T

D ′
′ɶ ɶ
, additional assumptions regarding the distribution of I are needed. However, if 

the maturities are close, the approximation difference T ,T
T ,T

D ′
′ɶ ɶ

 is small and would only 

marginally depend on the underlying distribution assumptions.  

 

To exemplarily calculate T ,T
T ,T

D ′
′ɶ ɶ
 for a realistic scenario, let the risk exposure period be equal to 

the maturity (T T′= , T T′=ɶ ɶ ) and assume that the industry loss index reflects the real 

catastrophe losses instantaneously. Furthermore, let TI  follow a compound Poisson process 

under Q, which is not too restrictive if TI  follows a compound Poisson process under the real 

world measure P. Delbaen and Haezendonck (1989) showed under some reasonable 

assumptions, which should be fulfilled in most non-life insurance cases, that TI  remains a 

compound Poisson process under any equivalent risk-neutral measure. For a further treatment, 

we refer to Mürmann (2008) and Aase (1992). These assumptions lead to 

 

1

tN
T i
t

i

I X ,
=

=∑
ɶ

   (8) 

 

where Nt and Xi are independent, Nt denotes the claims arrival process (i.e., a Poisson process 

with intensity λ) and Xi the i.i.d. claims (see, e.g, Levi and Partrat (1991)). Furthermore, we 

assume that the industry loss index incorporates the actual catastrophe losses instantaneously 

and if two or more catastrophes occur, the industry loss index almost surely exceeds the 

trigger level. 
 

Using these assumptions and a resulting 
T ,T
T ,T

D ′
′ɶ ɶ  as shown in the Appendix, we can 

approximate the ILW price through  
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( ) ( ) ( )( )00 0
T Tb,Y ,T rT rT T rT b, ,Y ,T T

ILW,T cat ,T

T
V e e e e e V e

T
λλ λ− −− − − − = + − − − 

 

ɶ ɶ ɶ ɶ

ɶ
ɶ

. (9) 

 

Note that combining market data (available cat bond price) and model assumptions regarding 

the difference term D in (7) will generally reduce potential model risk involved in pricing 

index-linked catastrophic instruments, which would be considerably higher when applying the 

distributional assumptions to price the ILW without using any market data. 
 
Matching maturity but mismatching trigger level 

 

If the maturity of the cat bond and the ILW is the same, but the trigger level Y differs, bounds 

for prices can be obtained by analogously applying the approach in the last section (Equation 

(7)). We similarly obtain 

 

( ) { } { } { } { }

( ) ( )0

0 1 1 1 1

0 0

T T T T
T T T T

b,Y ,T rT Q rT Q
ILW ,T tI Y I Y I Y I Y

b,Y ,T Y rT b, ,Y ,T Y
ILW ,T cat ,TY Y

V e E e E

V D e V D

′ ′ ′ ′

′ ′− −
′ > > > >

′−
′ ′

    = = + −    
    

= + = − +

ɶ ɶ

ɶ ɶ

ɶ ɶ

 (10) 

 

for the price of a binary ILW with trigger level Y, risk exposure period until T and maturing at 

time T′  with an approximation error (residual difference) 

 

{ } { }1 1T T
T T

Y rT Q
Y I Y I Y

D e E .
′ ′

′−
> >

 = − 
 

ɶ ɶ
 

 

Using the same assumptions as in the previous subsection and following Burnecki, Kukla and 

Weron (2000) and Katz (2002), who showed that the log-normal distribution provides the best 

fit to the PCS index among typical claim size distributions17, we assume that the i.i.d. claims 
iX  follow a log-normal distribution with parameter µ and σ2. In this case we can derive an 

approximation for ( )T
TQ I Y′ >  using the assumptions from the last subsection (see Appendix 

A), i.e., 

 

( ) ( )
( )

11

1

T T T
T

T T

Q I Y e e T Q X Y

ln Y
e e T ,

λ λ

λ λ

λ

µ
λ

σ

′ ′− −
′

′ ′− −

′> ≈ − − ≤

 −
 ′= − − Φ
 
 

ɶ ɶ

ɶ   (11) 

 

                                                 
17  Note that the distribution under the risk-neutral measure Q can be different, but when using the Wang 

transform (see Wang (2000)), for instance, one obtains a log-normal distribution under Q, too, but with 

adjusted parameter. 
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where Φ is the standard normal distribution function. Equation (11) then leads to 

 

{ } { }

( ) ( )

( ) ( )

1 1

1 1

T T
T T

Y rT Q
Y I Y I Y

rT T T rT T T

rT T

D e E

ln Yln Y
e e e T e e e T

ln Yln Y
e e T

λ λ λ λ

λ

µµ
λ λ

σ σ

µµ
λ

σ σ

′ ′

′−
> >

′ ′ ′ ′ ′ ′− − − − − −

′ ′− −

 = − 
 

  − − 
  ′ ′= − − Φ − − − Φ           

  −− 
  ′= −Φ + Φ        

ɶ ɶ

ɶ

ɶ

 

 

which can be used to solve Equation (10) under our simplifying assumptions. 

 

Non-zero coupon cat bonds 

 

If there is no market for zero coupon cat bonds (as is currently the case), non-zero coupon cat 

bonds need to be used for approximating ILW prices. The decomposition follows the standard 

bond stripping approach, where each coupon itself is understood as a zero coupon bond with 

adjusted nominal, interest rate and maturity. To calculate the price of an ILW involving only 

the non-zero coupon cat bond price b,Y ,T
cat ,TV ′ , we use Equation (6). Recall Equation (3) for the 

payoff of such a cat bond and Equation (7) for adjusting a mismatching maturity to obtain 
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∑

∑

∑ ∑

∑ ( )( ) ( )
1

0 0j

n
T ,tb,Y ,T rT b,Y ,T
T ,T ILW ,T

j

D e V′−
′ ′

=

+ + −∑

  

 

Solving this equation for ( )0b,Y ,T
ILW ,TV ′  leads to the price of a binary ILW with trigger level Y, 

risk exposure period until T and maturity T′ , i.e. 

 

( ) ( ) ( )
1

1 1 1

0 0 1jj j

n n n
r T trt T ,tb,Y ,T rT b,Y ,T

ILW ,T cat ,T T ,T
j j j
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  

∑ ∑ ∑  (12) 
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Cat bonds with non-binary payoff 

 

We now assume a zero coupon cat bond with non-binary payoff, risk exposure period until T, 

trigger level Y , limit M, and maturing at time T′  to have nominal 1 and that the payment at 

time T′  depends on the extent (captured by T
TI ′ ) to which the industry loss index exceeds the 

trigger Y at time T′ . The price of this cat bond is given by  

 

( )
( )( )

( ) ( )( )
( )

0 0 1

1
0 0

1
0

T T

T

T
T,Y ,M ,T Q rT

cat ,T

rT I ,Y I ,Y M
T T

rT I ,Y ,Y M
T

min I Y ,M
V E e

M

e C C
M

e C ,
M

′′ +−
′

′− +
′ ′

′− +
′

  −
  = −
   
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= − −

= −

 (13) 

 

where ( )0
TI ,Y

TC ′  is the price of a call option on the industry loss index TI  with strike price 

Y maturing at time T′  and ( )0
TI ,Y ,Y M

TC +
′  is the price of the associated call spread. We use the 

midpoint rectangle rule to approximate ( )0
TI ,Y ,Y M

TC +
′  by 

 

( ) ( )( )( )
( ) ( )

( )2

0

0

0
2

TI ,Y ,Y M Q rT T
T T

Y M Y M
rT T b,x,T

T ILW ,T

Y Y

M
b,Y ,T

rT T
T ILW ,T

C E e min I Y ,M

e Q I x dx V dx

M
M e Q I Y M V

′+ −
′ ′ +

+ +
′−

′ ′

+′−
′ ′

= −

= > =

 ≈ ⋅ > + = ⋅ 
 

∫ ∫

 (14) 
 

and use Equations (13) and (14) to obtain 

 

( ) ( ) ( )0 02 20 0 0
M M

b,Y ,T b, ,Y ,T
rT rT ,Y ,M ,T

ILW ,T cat ,T cat ,TV e V e V
+ +′ ′− −

′ ′ ′= − ≈ −
 (15) 

 

for the price of a binary ILW with trigger level 1
2Y M+ , risk exposure period until T and 

maturing at time T′ . The approximation generally works well for small layers. Figure 2 

illustrates the relative pricing error assuming compound Poisson losses with parameters from 

Katz (2002), which were estimated for individual North Atlantic tropical cyclones (primarily 

hurricanes) making landfall in the U.S. during the period 1925 to 1995. 
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Figure 2: Exemplary relative pricing error in percent through the approximation in Equation 

(15) (layer limit M and trigger level Y in bn. U.S. $)  

  
Notes: Monte-Carlo simulation based on 500,000 sample paths; layer and trigger level in bn U.S. $. Relative 

pricing error in Equation (15) = ( ) ( ) ( )

1

1 2 20 0 0

M M
b ,Y ,T b ,Y ,TTI ,Y ,Y MC M V V

T ILW ,T ILW ,T

−
   + +   + −⋅ − ⋅   ′ ′ ′   
   

. Parameters of the log-normal 

distribution according to Katz (2002): µ = -1.090, σ = 2.307, the intensity of the compound Poisson process is λ 

= 1.8, maturity is set to 1. 

 

Summary: Pricing binary ILWs 

 

We presented different approaches for the valuation of binary ILWs under the assumption of 

no-arbitrage. In the presence of a liquid cat bond market, we obtain Equation (5) under no 

further assumptions. Since there may not be enough variety of cat bonds to match the 

parameters of every ILW, we further provided approximations for different trigger levels and 

maturities. To compute prices for ILWs (and similarly for other index-linked catastrophic loss 

instruments), the following three steps should be taken to obtain b,Y ,T
ILW ,TV ′ : 

 

1. From non-zero cat bonds to zero coupon cat bonds. 

2. Adjust the trigger level. 

3. Adjust the maturity. 

 

The possible cases, steps, and resulting approximations are summarized in Table 1. 
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Table 1: Overview of steps and solutions in the occurring cases for approximately calculating 

the prices of binary ILWs by means of replications using cat bonds 

Cases Steps and solutions Equations 

Zero coupon cat bond, matching 

maturity, matching trigger level  

( ) ( )00 0b,Y,T rT b, ,Y
ILW,T cat,TV e V′−

′ ′= −  (5) 

Zero coupon cat bond, mismatching 

maturity, matching trigger level 

( ) ( ) ( )r T Tb ,Y ,T b ,Y ,T T ,T
ILW ,T ILW ,T T ,T

V t e V t D
′ ′− − ′

′ ′ ′= +
ɶ ɶ

ɶ ɶ ɶ
 

with ( ) ( )00 0b,Y ,T rT b, ,Y ,T
ILW ,T cat ,T

V e V′−
′ ′= −ɶ ɶ ɶ

ɶ ɶ  

(6), (7) 

Zero coupon cat bond, matching 

maturity, mismatching trigger level 

( ) ( )0 0b,Y ,T b,Y ,T Y
ILW ,T ILW ,T Y

V V D′ ′= +ɶ

ɶ  

( ) ( )00 0b,Y ,T rT b, ,Y ,T
ILW ,T cat ,TV e V′−

′ ′= −ɶ ɶ

 

(10) 

Zero coupon cat bond, mismatching 

maturity, mismatching trigger level 

Eq. (10) to obtain ( )0b,Y ,T
ILW,TV ′ with 

( ) ( ) ( )0
r T Tb ,Y ,T b ,Y ,T T ,T

ILW ,T ILW ,T T ,T
V e V t D

′ ′− − ′
′ ′ ′= +

ɶɶ ɶ ɶ

ɶ ɶ ɶ
 

( ) ( )00 0b,Y ,T rT b, ,Y ,T
ILW ,T cat ,T

V e V′−
′ ′= −ɶ ɶ ɶ ɶ ɶ

ɶ ɶ  

(6), (7), (10) 

Non-zero coupon cat bond Use Eq. (12) to obtain ( )0b,Y ,T
ILW,TV ′ . 

Adjust trigger level and maturity if 

necessary 

(6), (7), (10), 

(12) 

Cat bonds with non-binary payoff Use Eq. (15) to obtain 
0 5b,Y , M,T

ILW,TV +
′ . 

Adjust trigger level and maturity if 

necessary 

(6), (7), (10), 

(15) 

 

5. EMPIRICAL EXAMPLES FOR PRICING INDEX-LINKED CATASTROPHIC LOSS INSTRUMENTS 

BY REPLICATION USING CAT BONDS 

 

5.1 Consistent pricing of binary ILWs using cat bonds 

 

To illustrate and test the previously developed approximations, we use secondary market cat 

bond prices provided by Lane (2002) and compare the theoretically derived ILW prices 

obtained by means of our approximations (see Table 1) with the actual ILW prices dated from 

04/01/2002 as provided by McDonnell (2002).18 To approximate the price of a binary ILW 

related to earthquake risk in California with a maturity of one year, the secondary market 

price of the cat bond “Western Capital”19 is used, which features the same underlying risk, but 

                                                 
18  Note that we need information regarding the attachment point and the layer of the cat bond, which in case of 

secondary (and primary) market data is typically not provided. Also, ILW prices are very difficult to obtain 

due to OTC transactions, which is why we use an empirical example from 2002 where these information 

were available. 
19  Date of issue: 02/2001; maturity: 01/2003; coupon: 510; attachment point: $22.5bn; exhaustion point: 

$31.5bn; probability of first loss: 0.0082; probability of exhaustion: 0.0034; expected loss: 0.0055; index: 

PCS; risk: California earthquake (see Lane and Beckwith (2001), and Michel-Kerjan et al. (2011) for the 

attachment and exhaustion point). As we have no information regarding the risk exposure period, we assume 

that it equals the maturity. 
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mismatching maturity (10 months instead of one year) and a non-binary payoff (layer 

between $22.5bn and $31.5bn). The secondary market price is given as the spread (spreads 

published by Goldman Sachs at 03/31/2002: bid: 642 bp, ask: 554 bp (Lane, 2002)) over 

LIBOR (2.03% at20 03/31/2002). We use the developed approximations to derive a bid-ask 

interval for ILW prices and in the following exhibit the calculation for the ask price. 

Regarding the intensity of occurrence, due to a lack of alternative information we assume λ = 

0.0082, which corresponds to the probability of the first loss,21 and define 03/31/2002 as t = 0. 

Since our approximations use zero coupon cat bond prices, we transform the secondary 

market spread using the LIBOR rate to a non-binary zero coupon price through 

 

( )
( )

0, 22.5, 31.5 22.5 9,10/12
,10/12 10

12

1
0 0.9410

1 0.0554 0.0203

Y M
catV = = − = = =

+ +
, 

 

where 10 months (from 03/31/2002 to 01/31/2003) are left until the cat bond matures. 

According to Equation (15), we can use the midpoint rectangle rule to approximate the price 

of a zero coupon cat bond with binary payoff and trigger level ( )1
2 22.5 31.5 27+ =  (middle of 

the layer of the non-binary cat bond) by 

 

( ) ( )
22 5 31 5

0 27 10 12 0 22 5 31 5 22 5 10 122
10 12 10 120 0 0 9410

. .
b, ,Y ,T / ,Y . ,M . . ,T /

cat ,T' / cat ,T' /V V .
+= = = = = − =

= =≈ = , 

 

which, as illustrated in the previous section for the case of hurricanes, should generally work 

well for smaller layers and higher trigger level.22 The maturity of the ILWs, whose prices are 

stated in McDonnell (2002), is one year. For the adjustment of the mismatching maturity 

(from 10 months to one year) we use Equation (9) with λ = 0.0082, and the price of a binary 

ILW with trigger level of $27bn is then derived by 

 

( ) ( ) ( )( )10 10 10
12 12 12

127 12 12 1 1 1 0 27 10 12
12 12 10 1210

12

1
0 0 5 06rb, , / r r b, , , /

ILW , / cat , /V e e e e e V e . %.
λ λλ − − −− ⋅ − ⋅ − ⋅ 

= + − − ⋅ − ≈ 
 

 

 

The ask price is thus given by 5.06% and the same calculation for the bid price yields 

5.82%.23 The actual prices stated by McDonnell (2002) are 5.25% for an ILW with a trigger 

                                                 
20  See http://de.global-rates.com. 
21  The probability of the first loss is the probability that the attachment point is exceeded (see, e.g., Galeotti, 

Gürtler and Winkler (2012, p. 405) for a formal description). 
22  Taking Figure 2 (North Atlantic hurricane data instead of California earthquake) as a rough indication for the 

pricing error, the latter would amount to around 2-2.5%. 
23  We additionally calculated the outcome including coupon payments with resulting ask and bid prices of 

5.09% and 5.85%. 
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level of $25bn and 4.25% for trigger level of $30bn, which already shows a high degree of 

consistency with our approximation when using the ask price (despite the use of an 

approximated intensity using the probability of first loss and the use of only partial 

information for the ILW price, for instance), whereas the difference is higher when using the 

bid price. 

 

5.2 Consistent pricing of cat bond  

 

Another application of our proposed approximation formulas is the consistent pricing of cat 

bonds. The available characteristics and prices of four selected cat bonds written on U.S. 

hurricane risk using the PCS industry loss index are summarized in Table 2. 

 

Table 2: Characteristics of Successor X Ltd 2012-1; Ibis Re II Ltd. 2012-1 A; Ibis Re II Ltd. 

2012-1 B; Mythen Re Ltd. 2012-1  
Name Date of 

Issue 
Maturity Spread (at 

issuance) 
Expected 
loss 

Conditional 
expected 
loss 

Prob. 
of 1st 
loss 

Prob. 
of last 
loss 

Successor X Ltd. 2012-1 01/2012 01/2015 1100 2.59% 83% 3.12% 2.24% 
Ibis Re II Ltd. 2012-1 A 01/2012 02/2015 835 1.38% 59,2% 2.33% 0.89% 
Ibis Re II Ltd. 2012-1 B 01/2012 02/2015 1350 3.38% 67,9% 4.98% 2.36% 
Mythen Ltd. 2012-1 05/2012 05/2015 850 1.09% 73,6% 1.48% 0.82% 

Notes: See Lane (2013) for Mythen Ltd. 2012-1 and Lane (2012) for Ibis Re II Ltd. and Successor X Ltd. 
 
As in the last section, prices are given as the (annual) spread over LIBOR and the quarterly 

secondary market spreads are displayed in Figure 3. U.S. hurricanes can only occur during the 

hurricane season from June to November, such that these cat bonds cover the same seasons 

and we can assume that they have the same maturity and risk exposure period. Due to sub- 

and super-hedging considerations, prices at every point in time are ordered according to the 

related expected loss, i.e., a cat bond with higher expected loss generally has a higher spread.  
 
Figure 3: Secondary market spreads for Successor X Ltd 2012-1, Ibis Re II Ltd. 2012-1 A, 

Ibis Re II Ltd. 2012-1 B and Mythen Re Ltd. 2012-1 from 06/30/12 to 03/31/14 

 

Source of data: Lane (2013) and Lane (2014). 
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Analogously to the ILW pricing formulas in Equations (7) and (10), the price of cat bonds (in 

terms of the spread premium) is given by 

 

( ) ( ) ( ) ( )( )0 0 0 0b,Y ,T b ,Y ,T b ,Y ,T b ,Y ,T
cat ,T cat ,T cat ,T cat ,TV V V V′ ′ ′ ′= + −ɶ ɶ

,  (16) 

 

where we observe the price of a binary cat bond with trigger level Yɶ  ( ( )0b,Y ,T
cat ,TV ′
ɶ

) in the market 

and, analogously to Section 4.3, use an empirically calibrated model to calculate the 

difference term 

 

( ) ( )0 0Y b,Y ,T b,Y ,T
cat ,T cat ,TY

D V V′ ′= − ɶ

ɶ . 

 

We exemplarily follow Galeotti, Guertler and Winkelvos (2012) and apply the model of 

Wang (2004) to calculate Y
Y

D ɶ
, i.e. 
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PFL PLL PFL PLL ,λ λ λ λ

′ ′

− − − −

= −

= Φ Φ + + Φ Φ + − Φ Φ + + Φ Φ +

ɶ

ɶ
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where PFL is the probability of the first loss, PLL the probability of the last loss and the 

market price of risk λ is obtained by solving the nonlinear regression  

 

( ) ( )( ) ( )( )( )1 11
0

2
i i ib ,Y ,T Y Y

cat ,T iV PFL PLLλ λ ε− −
′ = Φ Φ + + Φ Φ + +ɶ ɶ ɶ

. 

 

With λ and the parameters stated in Table 2, 
Y
Y

D
ɶ  and ( )0b,Y,T

cat,TV ′  can be calculated using 

Equation (16) and be compared with the empirical prices. As an example, the real and 

approximated prices of Ibis Re II Ltd. are shown in Figure 4 (where λ is determined by using 

the empirical input parameters of the other three cat bonds in Table 2), where we can again 

observe a high degree of consistency. As mentioned before, by combining empirically 

observed prices and only using theoretical models for the difference term (as displayed by 

Equation (16)), model risk can be considerably reduced. 
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Figure 4: Real and approximated prices (using the Wang transform for the difference term) of 

Ibis Re II Ltd. 2012-1 A from 06/30/12 to 03/31/14 using Mythen Ltd. 2012-1 

 

 
6. OUTLOOK: PRICING INDEMNITY-BASED (DOUBLE-TRIGGER) CONTRACTS 
 

For pricing indemnity-based contracts by means of replication, the tradability of the company 

loss TL  must be examined. Toward this end, we provide first thoughts on how the company 

loss could be treated and suggest three approaches, which can be explored in future research. 

The payoff of an indemnity-based ILW with attachment point A, maximum payoff M, trigger 

level Y, risk exposure period until T and maturing at time T′  is given by 

 

( )( ) { } ( ) ( )( )( ) { }1 1T T
T T

A,M ,Y ,T T T T
ILW ,T T T TI Y I Y

P min M, L A L A L A M ,
′ ′

′ ′ ′ ′> >+ + +
= − = − − − +  (17) 

 

where ( ) ( )0max ,
+

⋅ = ⋅ . From Equations (2) and (17), one can see the option-like structure of 

ILWs. A binary ILW is a binary call on the industry loss index TI , and an indemnity-based 

ILW corresponds to a call spread option on the company loss TL  with an additional trigger for 

the industry loss.   

 

Independence between company loss and industry loss index 

 

First, in case TI  and TL  are independent, the price of an indemnity-based ILW (Equation 

(17)) can be described by 
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where ( )0
TL ,A

TC ′  is the price of a call option on the company loss TL  with strike price A 

maturing at time T′ . For the treatment of the index, we refer to the previous sections, and 
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( )0
TL ,A

TC ′  can be calculated using actuarial pricing principles, for instance. In addition, we 

refer to Møller (2003) for the latter part, where indifference prices are calculated using, e.g., 

the traditional variance principle and assuming that the company loss is log-normally 

distributed. However, Møller (2003) considers contracts combining insurance and financial 

risk, where independence is a more realistic assumption. Still, even though independence 

between the index and the company loss would imply a substantial degree of basis risk and 

would thus be problematic regarding the risk management purpose of an indemnity-based 

index-linked catastrophic loss instrument, empirical results by Cummins, Lalonde and Phillips 

(2004) for the U.S. market show that especially small insurers exhibit very low correlations 

between their own losses and industry loss indices. The authors also show that hedging using 

a statewide industry loss index is only effective for the largest insurers in their sample. In 

addition, this calculation could provide a lower bound for an efficient price.  

 

Approximating the company loss based on the stock price loss 

 

Second, one could approximate the company loss TL  with the loss of the stock price, which in 

turn is assumed to be traded, thus allowing arbitrage-free valuation, i.e. through a function f, 

 

( )( )0

T
t s t s

L f S
≥ ≥

≈ , 

 

where f satisfies mild regularity conditions (e.g., such that expected values can be derived), 

where the entire path of the stock price 0 s t≤ ≤  is considered. The function f would provide 

the company loss TtL  by just observing the stock price and, therefore, since the stock is 

tradable on a liquid market, one can revert to arbitrage-free pricing methods for the company 

loss. For instance, one can assume that the only events causing a jump of the stock price are 

catastrophic events. In this case, the function f should sum up all jumps until time t or the 

abnormal returns following a catastrophe for a specific event window. The event study 

literature may provide insight regarding the relationship between insured losses due to 

catastrophes and their impact of stock prices. For instance, Hagendorff, Hagendorff and 

Keasey (2014) and Lamb (1995) provide evidence for the U.S. market that insured losses 

caused by catastrophes are reflected in the stock price loss. Based on these results, an 

approximation of the insured loss based on stock price reactions should probably also include 

company characteristics (e.g. the insurer’s loss exposure), the market environment (degree of 

competition and market premium level), and may also depend on the type of catastrophe.  

 

Doing this would result in a structured risk management product, which can be treated as in 

Cox, Fairchild and Pedersen (2004) and by using arbitrage-free valuation. However, there are 

several problems related to the use of such structured risk management products. A joint-
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stock company is needed and there is a risk of moral hazard, as companies may try to publish 

negative information or overestimated company loss data (which could be adjusted after the 

maturity of the instrument) if the issued product is triggered to make it more valuable. 

Furthermore, one fundamental problem is that the stock price of the company will decline in a 

less pronounced way than in cases without hedging. Thus, the stock price loss would not 

reflect the actual loss resulting from the catastrophe. Hanke and Pötzelberger (2003) formally 

illustrate this issue for the case of arbitrage-free prices of options on a company’s own stock. 

They show that the resulting prices differ from prices obtained through classical option 

pricing theory and that ignoring this effect implies arbitrage opportunities.  

 

Exploiting the dependence: functional relationship between I and L 

 

Third, one could assume a functional relationship between the industry loss index and the 

company loss motivated by the typically high degree of dependence between these 

processes.24 This approach reduces indemnity-based index-linked catastrophic loss instruments 

to non-indemnity-based instruments and allows applying the replication techniques developed 

previously. A high degree of dependence is realistic, since basis risk arises if the company 

loss and the industry loss are not fully dependent (see, e.g., Harrington and Niehaus (1999), 

Gatzert and Kellner (2011)). For instance, Cummins, Lalonde and Phillips (2004) show that 

36% of Florida hurricane insurers could effectively use instruments based on a statewide 

index without being exposed to a high degree of basis risk, while smaller insurer are generally 

exposed to high basis risk (see also Harrington and Niehaus (1999)). Following these 

arguments, one can assume a functional relationship between TL  and TI , i.e.,  

 

( )T T
t tL g I= ,   

 

implying that the payoff (see Equation (1)) can be described as 

 

( ) ( )( )T T T T T
T T T T TP h I ,L h I ,g I′ ′ ′ ′ ′= = , 

 

which leads to an analogous situation as in the case of non-indemnity-based instruments, 

since the payoff only depends on the industry loss index at maturity. One simple example 

could be ( )g x a x= ⋅ , with 0 1a≤ ≤  representing an indication of the market share. Empirical 

studies on the relation between the insurer’s losses and the industry loss index as reflected in 

the function g may be based on regression or correlation analysis using empirical data of 

catastrophe losses and individual insurer losses, for instance, as is done by Harrington and 
                                                 
24  Alternatively, one can assume stochastic dependence to reflect the case where the company is not affected by 

a catastrophe.  
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Niehaus (1999) or Cummins, Lalonde and Phillips (2004). The function g and the accuracy of 

the approximation may thereby depend on the insurer’s exposure with respect to respective 

catastrophe, the aggregated industry loss, and the line of business, amongst others.  

 
7. SUMMARY 
 

This paper presents new approaches and techniques of how prices for index-linked 

catastrophic loss instrument can be derived using arbitrage-free pricing by proposing 

replication techniques and approximations that aim to overcome the requirement of direct 

tradability of the underlying loss indices. In particular, contrary to traditional option pricing 

theory, one cannot necessarily assume that the underlying industry loss index is tradable 

itself; however, there may be a liquid market for certain derivatives, including cat bonds. This 

is of great relevance today in the academic literature, but it will be even more relevant in the 

future for the insurance industry and financial investors, when index-linked catastrophic loss 

instruments become even more widespread than today and when there are truly liquid markets 

for derivatives (e.g., cat bonds) on the industry loss index. 

 

We apply the proposed approaches and considerations to the arbitrage-free pricing of ILWs, 

where we assume a liquid cat bond market to ensure the tradability of the underlying industry 

loss index. We hence consider a liquid index-linked cat bond market (equivalent to a liquid 

option market) for various trigger levels and maturities, and first derive prices for binary 

ILWs. We thereby show that we do not need any assumption concerning the distribution of 

the underlying industry loss index, which represents a major advantage as compared to other 

pricing approaches. If a suitable cat bond is not available for approximating ILW prices, we 

provide approximations under some reasonable assumptions. Thus, one main contribution of 

the paper is to propose approaches to overcome the crucial point of tradability of the 

underlying loss processes in case of index-linked catastrophic loss instruments through 

suitable approximations and by deriving explicit replicating portfolios or close 

approximations using traded derivatives providing explicit pricing formulas. 

 

When calculating prices for indemnity-based double-trigger catastrophic loss instruments, 

which in addition to the index depend on the company loss, one major problem is the 

behavior of the company loss, which should be tradable in some sense when using risk-

neutral valuation. We provide first considerations regarding three potential approaches for 

solving this issue and address problems associated with them, leaving further theoretical and 

empirical analyses for future research. In general, such considerations regarding indemnity 

triggers will be increasingly relevant in the future, especially against the background of an 

increasing share of indemnity-based cat bond transactions.  
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Appendix 
 

T
tI
ɶ

 is a compound Poisson process defined through 
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T i
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where tN  and iX  are independent, tN  denotes the claims arrival process (i.e., a Poisson 

process with intensity λ) and iX  the i.i.d. claims. The probability for exceeding the trigger 

level is given through  
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  (19) 

 

Furthermore, we assume that the industry loss index incorporates the actual catastrophe losses 

instantaneously and if k = 2 or more catastrophes occur, the industry loss index almost surely 

exceeds the trigger level. Hence, we can approximate Equation (19) through (sum until k = 1) 

 

( ) ( )11T T T

T
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An interpretation is that there are just two possibilities for the index not to be triggered: no 

claim or one claim with size 1X  lower than the trigger level Y. This should approximately be 

true if we model only the occurrence of very large events. Solving this equation for 

( )1Q X Y≤  leads to 
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We use T T ′= , T T ′=ɶ ɶ  and Equation (20) again to calculate 
T,T
T,T

D ′
′ɶ ɶ  
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Now we can calculate ( )0b,Y ,T
ILW ,TV through: 
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