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ABSTRACT 

 
In recent years, industry loss warranties (ILWs) have become increasingly popular in the 
reinsurance market. The defining feature of ILW contracts is their dependence on an in-
dustry loss index. The use of an index reduces moral hazard and generally results in low-
er prices compared to traditional, purely indemnity-based reinsurance contracts. Howev-
er, use of the index also introduces basis risk since the industry loss and the reinsured 
company’s loss are usually not fully correlated. The aim of this paper is to simultaneous-
ly examine basis risk and pricing of an indemnity-based industry loss warranty contract, 
which is done by comparing actuarial and financial pricing approaches for different 
measures of basis risk. Our numerical results show that modification of the contract pa-
rameters to reduce basis risk can either raise or lower prices, depending on the specific 
parameter choice. For instance, basis risk can be reduced by decreasing the industry loss 
trigger, which implies higher prices, or by increasing the reinsured company attachment, 
thus inducing lower prices. 

 

1. INTRODUCTION 

 

Industry loss warranties (ILWs) are innovative index-based reinsurance instruments that have 

become increasingly popular in recent years (Guy Carpenter, 2006). Payment on these con-

tracts is triggered by an industry loss, where the contracted trigger amount varies by geo-

graphic region and type of catastrophic event. Two predominant ILW forms are binary and 

indemnity-based contracts: binary contracts pay a fixed amount if the industry loss is trig-

gered; indemnity-based contracts take into consideration the reinsured company’s loss 

(SwissRe, 2006). Compared to other forms of alternative risk capital, ILWs are easier to draw 

up, more flexible, and incur fewer frictional costs than, for example, catastrophe bonds. In 

comparison to traditional reinsurance contracts, the underwriting and claim processes are 

simple and moral hazard is reduced substantially by integrating an industry index. In general, 

this type of contract can be offered at a lower price than that charged for traditional indemni-

                                                           

∗  Nadine Gatzert is at the University of Erlangen-Nürnberg, Chair for Insurance Economics, Lange 
Gasse 20, 90403 Nürnberg, Germany, nadine.gatzert@wiso.uni-erlangen.de.  Hato Schmeiser is at 
the University of St. Gallen, Chair for Risk Management and Insurance, Kirchlistrasse 2, 9010 St. 
Gallen, Switzerland, hato.schmeiser@unisg.ch. Denis Toplek is at Allianz Re, Munich. 



 2

ty-based reinsurance contracts. 

 

On the other hand, the reinsured has to bear the basis risk induced by ILWs, which arises if 

the industry-wide loss and the reinsured company’s loss are not fully correlated (see, e.g., 

Harrington and Niehaus, 1999; Doherty and Richter, 2002). This leads to a difference be-

tween the index-based payoff and the reinsured’s actual loss. Thus, for reinsurers, appropriate 

premium pricing is crucial, whereas taking basis risk into consideration is vital for the rein-

sured. The aim of this paper is to consider both perspectives by analyzing and comparing sev-

eral approaches for pricing ILWs and by studying the reinsured’s basis risk. 

 

To date, the relevant literature is primarily focused on other forms of alternative risk capital, 

such as cat bonds, for which pricing approaches, basis risk, and moral hazard have been ana-

lyzed (see, e.g., Doherty and Richter, 2002; Lee and Yu, 2002, 2007). Previous literature on 

ILWs has generally concerned itself with pricing binary contracts by calculating a risk load 

using the coefficient of variation (Ishaq, 2005) or with analyzing basis risk in the case of bina-

ry ILW contracts (Zeng, 2000). Beyond this, Zeng (2003) analyzes the tradeoff between basis 

risk and the cost of index-based instruments. 

 

Cummins et al. (2004) conduct an empirical study of general index-based instruments for cat-

astrophic losses. In particular, basis risk is analyzed by examining the hedging effectiveness 

of risk reduction using different risk measures. In addition, the relationship between hedging 

effectiveness and insurer characteristics is studied. Zeng (2005) applies an optimization meth-

od based on the genetic algorithm to measure the reinsurance efficiency of index-based con-

tracts, thereby taking into account cost and benefit. 

 

There are several ways that the basis risk associated with ILWs can be reduced. One can ei-

ther change the underlying industry index or book of business (thus also changing the volatili-

ty), or adjust contract parameters, such as the industry loss trigger level, the company’s at-

tachment point, or the limit of coverage. However, these changes will also have an effect on 

the price, depending on the pricing concept applied. In this paper, we examine the influence 

of such modifications on the pricing and basis risk of an individual indemnity-based ILW 

contract. We compare different established actuarial and financial pricing concepts and differ-

ent measures for basis risk. 
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Among the financial pricing approaches we consider are the contingent claims approach and 

the capital asset pricing model. The actuarial pricing principles include the expected value 

principle, the standard deviation principle, and the variance principle.1 Furthermore, we also 

include actuarial investment-equivalent reinsurance pricing as developed by Kreps (1998), 

which is commonly used in reinsurance practice. 

 

In contrast to Zeng (2003), we do not establish a benchmark contract or use optimization tools 

that depend on the risk management objective of the reinsured company. Instead, we analyze 

two types of basis risk. The first type is the risk that the reinsured suffers a substantial loss 

given that the industry-wide loss does not exceed the predetermined threshold. This risk is 

measured in two ways—(1) the probability of occurrence and (2) the expected payoff of the 

ILW contract that the reinsured does not receive because the industry-wide loss was not great 

enough to trigger coverage. The latter risk measure allows taking the extent of such a shortfall 

event into account. 

 

The second type of basis risk that will be considered here includes the probability that the 

industry loss does not exceed the trigger, conditioned on the event that the company loss ex-

ceeds the attachment point and the expected loss, given by the difference between the ex-

pected payoff of a traditional indemnity-based reinsurance contract and the expected ILW 

payoff. 

 

A numerical sensitivity analysis is conducted for changes in the reinsured company’s attach-

ment point, the industry loss trigger, and the correlation coefficient between the company loss 

and the industry loss. We also study the impact of the underlying processes’ volatility. We 

show that reducing basis risk through a modification of contract parameters can lead to both 

higher or lower prices, depending on which parameter is adjusted. Moreover, price is strongly 

dependent on the type of pricing approach employed and can vary substantially. 

 

The remainder of the paper is organized as follows. In Section 2, the model framework is dis-

cussed, including the ILW contract, a discussion and comparison of actuarial and financial 

pricing approaches, and the definition of basis risk measures. Section 3 contains numerical 

results based on a simulation study. Section 4 concludes. 

 

                                                           

1   An overview and discussion of different pricing approaches is presented in Embrechts (1998). 
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2. MODEL FRAMEWORK 

 

2.1  The Industry Loss Warranty Contract 

 

Industry loss warranty contracts can be designed in a variety of ways.2 A binary contract pays 

out a fixed amount if the industry-wide loss exceeds a predefined threshold. Another common 

design is indemnity-based, i.e., the reinsured company’s loss must exceed a certain amount 

and the industry loss must be larger than a preset trigger. However, the one feature that occurs 

in all ILWs is the presence of a trigger based on industry losses. 

 

The ILW contract analyzed in this paper contains an aggregate excess of loss contract with a 

layer limit L. Furthermore, the contract incorporates a second trigger that is based on the in-

dustry loss distribution I1 in t = 1 (see Zeng, 2000; Wharton Risk Center, 2007). Let S1 denote 

the company’s loss distribution in t = 1, A the attachment of the company loss, Y the industry 

loss trigger, and { }11 I Y>  the indicator function, which is equal to 1 if the industry loss in t = 

1 is greater than the trigger and 0 otherwise. Hence, the payoff of the contract X1 in t = 1 can 

be written as3 
 

( )( ) { }1 1 1min max ,0 , 1X S A L I Y= − ⋅ > . (1) 

 

The most frequently used reference indices for insured catastrophic events are those provided 

by the Property Claim Services (PCS) in the United States. Thus, the industry loss is usually 

determined by referencing a relevant PCS index. Outside of the United States, the insurance 

industry was lacking comparable indices in the past and had to rely on published loss figures 

provided by Swiss Re sigma or Munich Re’s NatCat service. In Europe, the market partici-

pants have established the PERILS industry loss index service, an industry loss data provider 

similar in concept to the PCS, to overcome this problem (see e.g. SwissRe, 2009). In addition, 

commercial modeling vendors offer parametric indices which are based on proprietary indus-

try exposure data. Burnecki, Kukla, and Weron (2000) show that, in general, a lognormal dis-

tribution provides a good fit to the analyzed PCS indices. We thus model both random varia-

bles I and S as geometric Brownian motions under the physical measure P, i.e., 

                                                           

2   An overview of ILW contracts is provided in SwissRe (2006). 
3  This contract form is also called a double-trigger contract (see, e.g., Gründl and Schmeiser, 2002; 

SwissRe, 2009). 
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S
t S t S t tdS S dt S dWµ σ= + , (2) 

I
t I t I t tdI I dt I dWµ σ= + , (3) 

 

with empirical drift µS and µI, volatility σS and σI, and WS, WI denoting standard Brownian 

motions on a probability space ( , , )PΩ F  with filtration Ft. The two Brownian motions are 

correlated with S IdW dW dtρ= . The solution of the stochastic differential equations is giv-

en by (see, e.g., Björk, 2004) 
 

( )( )2
1 0 1exp 0.5 S S

S S S t tS S W Wµ σ σ −= ⋅ − ⋅ + ⋅ − , 

( )( )2
1 0 1exp 0.5 I I

I I I t tI I W Wµ σ σ −= ⋅ − ⋅ + ⋅ − , 

 

thus leading to a lognormal distribution for S1 and I1, since the increments (Wt – Wt-1) follow a 

standard normal distribution. 

 

2.2 Pricing Methods 

 

Most premium calculation methods derive insurance prices Π  by determining a certainty 

equivalent CE for the uncertain contract loss payoff, thus making an investor indifferent be-

tween the stochastic loss payout and the deterministic certainty equivalent. In the premium 

calculation, the certainty equivalent is discounted with the risk-free interest rate. For the pay-

off of the contract at hand, this leads to 

 

( )1 1( ) exp ( )fX r CE XΠ = − ⋅ ,  

 

with fr  denoting the continuous one-period risk-free rate of return. Hence, the price of the 

contract depends on the way the certainty equivalent is determined.4 In the following sections, 

we discuss different actuarial and financial valuation methods for calculating the certainty 

equivalent. 

 

                                                           

4   Embrechts (1998) points out parallels between the determination of the certainty equivalent in ac-
tuarial mathematics and in financial valuation. 
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2.2.1 Actuarial Pricing Approaches 

 

In general, actuarial valuation methods rely on the individual decisionmaker’s risk prefer-

ences, usually assuming risk aversion (see Cummins, 1990a, p. 125) and thus calculate a load-

ing that is added to the expected loss of the contract in order to determine a certainty equiva-

lent for the loss distribution. In the actuarial literature, the assumption of risk aversion is usu-

ally based on classical ruin theory, which states that a premium equal to the net risk premium 

leads to certain ruin in an infinite planning horizon, regardless of how much equity capital the 

insurer holds (see Bühlmann, 1996, pp. 141–144). Bühlmann (1985) also relates insurance 

premiums to ruin theoretical stability criteria, i.e., a certain probability of ruin, and thus de-

duces actuarial premium calculation principles with the implicit assumption of risk aversion. 

There are several different actuarial approaches for determining the loading, resulting in cor-

respondingly different pricing principles.5 Below, we consider four actuarial pricing princi-

ples. 

 

Expected Value Principle 

Under the expected value principle, the certainty equivalent is determined by loading the ex-

pected contract loss E(X1) with a percentage Eδ  (> 0) of itself: 

 

1 1( ) ( )ECE E X E Xδ= + ⋅ ,  

 

where E denotes the expectation operator under the physical measure P. This approach is not 

risk sensitive since it considers only the expected value and no quantity that would represent 

the risk inherent in the contract. However, it requires only the first moment of the contract’s 

loss distribution and thus can be easily implemented. 

 

Standard Deviation Principle 

A widely used pricing principle in actuarial practice is the standard deviation principle, which 

determines the certainty equivalent by loading a portion Sδ  (> 0) of the standard deviation 

σ(X1) on the expected contract loss, leading to: 

 

1 1( ) ( )SCE E X Xδ σ= + ⋅ . 

                                                           

5  For an overview, see Goovaerts et al. (1984). 
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Variance Principle 

The variance principle can be derived from utility theory using an exponential utility function 

or normally distributed wealth (see Pratt, 1964). It defines the certainty equivalent as the ex-

pected loss and a fraction Vδ  (> 0) of the variance of the contract loss (2
1( )Xσ ), depending 

on the risk aversion of the company issuing the contract: 

 
2

1 1( ) ( )VCE E X Xδ σ= + ⋅ .  

 

Investment-Equivalent Reinsurance Pricing 

Kreps (1998) proposed the investment-equivalent reinsurance method for pricing individual 

contracts by specifying risk and return criteria. This concept assumes that the reinsurer allo-

cates assets so as to be able to reimburse contract losses. The reinsurance company requires at 

least the same return and at most the same risk on these assets as if they were invested in 

some other equivalent financial instrument (target investment). Therefore, under this pricing 

concept, the risk load of a contract can be interpreted as opportunity cost. 

 

Kreps (1998) considers two cases for the derivation of pricing formulas. First, costs are de-

fined as the loss of investment income that results from investing in the risk-free instruments 

(to secure the losses) instead of in the risky target investment; this is called the “switch case.” 

In the second case, costs are determined through hedging by buying European put options on 

the underlying target investment with a strike price equal to the investment in risk-free securi-

ties. In the following, we will focus on the switch case, which generally results in higher pric-

es than the option case and thus gives an upper bound for the premium. 

 

In the switch case, the risk load R is determined using a benchmark target investment and 

conditions on the internal rate of return of the resulting cash flows (taking into account out-

flow of contract losses and inflow of the allocated assets’ return). This leads to two con-

straints for the contract: The loss safety constraint (left part of the maximum operator in Equa-

tion (4)) represents the return requirement for the assets allocated to the contract, where assets 

must be sufficient to cover losses to a certain safety level amount. The investment variance 

constraint (right part of the maximum operator in Equation (4)) requires that the variance of 

the internal rate of return is at most as large as the variance of the target investment. The max-

imum of these two requirements is then set equal to R, resulting in 
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( )( ) ( )1 1( ) ( ) ( ) ( )
max ,

1 ( ) ( )

d X d
f fE y r q E X E y r X

R
E y y

α σ
σ

 − − −
 =
 +
 

, (4) 

where y is the yield rate of the target investment, which is used as a benchmark in pricing the 

contract. E(y) and σ(y) are the expected value and the standard deviation of the yield rate, d
fr  

denotes the discrete equivalent of ( )( )ln 1 d
f fr r= + , and Xqα  is the specified safety level 

amount (in absolute terms), i.e., the α-quantile of the contract’s loss distribution X1. The re-

sulting certainty equivalent is then given by 
 

1( )CE E X R= + . (5) 

 

The expected losses are loaded with the risk load derived from the investment criteria, thus 

again representing a risk-averse decisionmaker. 

 

2.2.2 Financial Pricing Approaches 

 

In contrast to actuarial pricing approaches, financial pricing concepts rely on the duplication 

of cash flows and are thus independent of individual preferences. Hence, in this model 

framework, one needs to assume that there are financial instruments that can be used to repli-

cate the evaluated contract’s payoff. 

 

Capital Asset Pricing Model (CAPM) 

In the CAPM, the certainty equivalent is defined as the expected value of the contract’s pay-

off and a risk adjustment, such that6 

 

1 1( ) ( , )mCE E X Cov X rλ= − ⋅ , (6) 

 

where mr  stands for the return of the market portfolio in t = 1 and λ  denotes the market price 

of risk, given by 

 

2

( )

( )

d
m f

m

E r r

r
λ

σ
−

= ,  

                                                           

6   For pricing insurance contracts in a CAPM framework, see, e.g., Fairley (1979), Hill (1979), 
D’Arcy and Doherty (1988), and Cummins (1990a). 
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where d
fr  again stands for the discretely compounded risk-free interest rate. 

 

Contingent Claims Approach 

Under the contingent claims approach,7 insurance contract prices are determined by taking the 

expected value of the payoff with respect to the risk-neutral martingale measure Q, leading to 

a certainty equivalent of: 

 

( )1
QCE E X= . 

 

By changing the probability measure to the risk-neutral measure Q, the drift of the stochastic 

processes in Equations (2) and (3) changes to the risk-free interest rate r f and the company 

loss and the industry loss at time 1 are given by 

 

( )( )2 , ,
1 0 1exp 0.5 Q S Q S

f S S t tS S r W Wσ σ −= ⋅ − ⋅ + ⋅ − , 

 

and 

 

( )( )2 , ,
1 0 1exp 0.5 Q I Q I

f I I t tI I r W Wσ σ −= ⋅ − ⋅ + ⋅ − , 

 

respectively, where ,Q S
tW  and ,Q I

tW  are standard Q-Brownian motions. Hence, in case of ge-

ometric Brownian motions, the contract’s cash flow is adjusted for systematic risk by chang-

ing the drift, while the standard deviation of the stochastic processes is not affected. 
 

2.2.3 Comparison of Pricing Approaches 

 

There are several important differences in the pricing approaches discussed in the previous 

sections. The actuarial methods in Section 2.2.1 evaluate individual contracts without consid-

ering diversification in the market or in the insurer’s portfolio. Hence, only the contract’s 

payoff is evaluated. In contrast, the financial methods in Section 2.2.2 assume that investors 

perfectly diversify unsystematic risk. Thus, only systematic risk is relevant for pricing insur-

ance contracts. However, since the financial pricing approaches lead to present-value calcu-

                                                           

7   See, e.g., Doherty and Garven (1986), Cummins (1990b), and Gatzert and Schmeiser (2008). 
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lus, prices are additive for any portfolio of contracts. Therefore, the composition of the insur-

er’s portfolio has no impact on pricing individual contracts. 

 

One further difference in the pricing methods arises from the effect of the contract’s volatility 

σ(X1). An increase in σ(X1) generally tends to induce higher premiums for all the pricing ap-

proaches under consideration––except for the expected value principle. In case of CAPM, this 

holds true only if there is systematic risk in the contract, i.e., if Cov(X1,rm) < 0. 

 

For all actuarial pricing concepts––except for investment-equivalent reinsurance pricing––the 

risk-free interest rate influences prices only as discount factor, but has no impact on calculat-

ing the certainty equivalent. In contrast, the risk-free interest rate does have an effect on the 

certainty equivalent determined with financial pricing methods. For investment-equivalent 

reinsurance pricing, lowering the risk-free interest rate leads to a higher risk load R, and thus 

to a higher certainty equivalent (see Equation (4)). Under the CAPM, the market price of risk 

λ increases when the risk-free rate is decreased. Hence, the effect of the covariance between 

the contract’s payoff X1 and the return of the market portfolio on the certainty equivalent is 

intensified if Cov(X1,rm) ≠ 0. Regarding the contingent claims approach, lowering r f implies a 

lower probability of exceeding the triggers A and Y. Thus, the contract payoff is reduced, 

leading to a lower certainty equivalent. 

 

In general, the distribution of X1 is non-normal and typically heavily skewed, as observed in a 

simulation study. For all pricing methods, the payoff structure of X1 is taken into account us-

ing the expected value (under the physical or the risk-neutral measure) or standard deviation 

of X1. The only approach that can account for higher moments is investment-equivalent rein-

surance pricing, which integrates the α-quantile of X1 when calculating the certainty equiva-

lent (see Equations (4) and (5)). Therefore, a higher α-quantile implies a higher certainty 

equivalent and thus higher premiums if the maximum function in Equation (4) is equal to the 

left expression in the maximum operator. 

 

2.3 Basis Risk 

 

From a buyer’s perspective, the ILW contract should protect the company from losses that 

could endanger its survival. Thus, the situation where the insurance company suffers a severe 

loss while the industry has moderate losses represents a risk to the buyer since both triggering 
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events must be fulfilled for the contract to pay out an indemnity. In general, this basis risk 

arises when using index triggers since company loss and industry loss are usually not fully 

correlated (see, e.g., Doherty and Richter, 2002). There are several ways of defining basis risk 

(see Zeng, 2003, p. 253). 

 

We consider two types of basis risk. First, we define as Type I basis risk the case where the 

company’s loss exceeds the attachment A, given that the industry loss does not exceed the 

trigger. Second, we consider as Type II basis risk the opposite case, i.e., the situation where 

industry loss is not triggered, given the insurance company has a severe loss. 

 

Type I Basis Risk 

To assess the Type I basis risk, we calculate the probability of occurrence under the real-

world measure P: 

 

( ) ( )
( )

1 1
1 1

1

,P S A I Y
P S A I Y

P I Y

> <
> < =

<
. (7) 

 

Furthermore, we measure basis risk by calculating the average loss amount the insurance 

company will not receive because the industry loss does not exceed the trigger: 

 

( )( )( )1 1min max ,0 ,E S A L I Y− < . (8) 

 

Hence, in contrast to Equation (7), Equation (8) takes the extent of company loss into account. 

 

Type II Basis Risk 

We further calculate the conditional probability that the industry loss does not exceed the 

trigger given that the company has a loss greater than the attachment, which can be consid-

ered as a critical level (see Zeng, 2000): 

 

( ) ( )
( )

1 1
1 1

1

,P I Y S A
P I Y S A

P S A

< >
< > =

>
. 
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In addition, we consider the extent of missed indemnity payments for the buyer by examining 

the difference between a traditional reinsurance contract and the ILW. A traditional reinsur-

ance contract Xtrad with the same contract parameters as the ILW contract can be divided into 

two parts using the industry loss index: 

 

( ) ( )( )( )
( )( ) { }( ) ( )( ) { }( )

( ) ( )( ) { }( )

1

1 1 1 1

1 1 1

min max ,0 ,

min max ,0 , 1 min max ,0 , 1

min max ,0 , 1 ,

tradE X E S A L

E S A L I Y E S A L I Y

E X E S A L I Y

= −

= − ⋅ > + − ⋅ <

= + − ⋅ <

 

 

which illustrates the relationship between the traditional reinsurance contract and an ILW 

contract, i.e., 

 

( ) ( ) ( )( ) { }( )1 1 1min max ,0 , 1tradE X E X E S A L I Y= − − ⋅ < .  (9) 

 

Thus, the ILW buyer can expect payment for only a part of the expected loss that could be 

claimed in full under a traditional reinsurance contract. The remainder, that is, the expected 

amount of payment not made, can then be considered as a measure of Type II basis risk, i.e., 

 

( )( ) { }( )1 1min max ,0 , 1 .E S A L I Y− ⋅ <  

 

Equation (9) also illustrates that prices based on expected losses under the ILW reflect the 

reduced indemnity payments and thus generally result in a lower price for this type of contract 

compared to a traditional reinsurance contract. 

 

3. SIMULATION STUDY 

 

This section analyzes the sensitivity of basis risk and premiums derived under different pric-

ing concepts with respect to changes in input parameters. The following examples will serve 

to identify key drivers for the basis risk. In addition, similarities and differences of the pricing 

approaches are examined. 
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Input Parameters for the Reference Contract 

Based on data provided in Hartwig (2005), we set the expected value of the company loss at 

the end of the contract term, ( )1E S , to $58 million, and the standard deviation of S1 to 

( )1Sσ  = $134 million. We follow Hilti, Saunders, and Lloyd-Hughes (2004) and assume that 

regional hurricane losses account for 50% of the historical U.S. industry total loss. Thus, for 

the industry loss, we set the expected value at the end of the contract term to ( )1E I  = $1,450 

million and the corresponding standard deviation to ( )1Iσ  = $3,550 million. The correlation 

coefficient between company loss 1S  and industry loss 1I  is set to ρ(S1, I1) = 0.60 and will be 

subject to sensitivity analysis. The empirical drift of S and I is assumed to be equal to an infla-

tion rate of 2.50%, as measured by the U.S. Consumer Price Index for the year 2006 (see U.S. 

Department of Labor, 2007). These assumptions lead to an initial nominal value of the com-

pany’s loss S0 = $56.57 million and an initial nominal value of the industry loss I0 = $1,414 

million. Hence, the resulting standard deviations of the stochastic processes in Equations (2) 

and (3) are given by σS = 135.89% and σI = 139.47% (the derivation of these quantities is 

provided in the Appendix). The contract specifications include a layer limit of L = $150 mil-

lion, an attachment of the company’s loss of A = $150 million, and an industry loss trigger of 

Y = $5,000 million. 

 

Regarding the expected value principle, and according to Andreadakis and Waters (1980), the 

safety loading is set to δE = 30.00%, for the standard deviation principle, δS = 10.00% (see 

Wang, 2000), and the variance principle has a loading δV = 1.50 ⋅10-7, a value that is close to 

data used by the Insurance Services Office in the United States (see Meyers and Kollar, 

1999). For investment-equivalent reinsurance pricing, the risk load is determined by an ex-

pected target yield rate E(y) = 5.30% and a standard deviation of σ(y) = 8.40% (see Kreps, 

1998). 

 

To obtain results under the financial pricing concept CAPM, we use the input data in Gründl 

and Schmeiser (2002). The correlation coefficients between industry loss and return of the 

market portfolio and between company loss and return of the market portfolio are fixed at -

0.20 and -0.10, respectively. Furthermore, the expected value and standard deviation of the 

return of the market portfolio are chosen as E(rm) = 8.00% and σ(rm) = 4.00%. Thus, the cor-

relation coefficient between the market rate of return rm and the contract payoff X1 can be es-
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timated from the simulated data and leads to a correlation coefficient ρ(X1, rm) of approxi-

mately -0.05. The correlation coefficient between X1 and rm determines 1( , )mCov X r  in Equa-

tion (6), which is needed to calculate the certainty equivalent under the CAPM. Finally, the 

discrete rate of return dfr  is given by 4.92%, a value based on 1-year U.S. Treasury constant 

maturity rates (see Federal Reserve, 2007), which corresponds to a continuously compounded 

rate of return fr  = 4.80%. The input data for the reference contract are summarized in Table 

1. 
 

Table 1: Input parameters for the reference contract 

Contract parameters E(S1) $58 million  

 σ(S1) $134 million 

 E(I1) $1,450 million 

 σ (I1) $3,550 million 

 µS, µI 2.50% 

 ρ(S1, I1) 0.60 

 L $150 million 

 Y $5,000 million 

 A $150 million 

 d
fr  4.92% 

 r f  4.80% 

Expected value principle δE 30.00% 

Standard deviation principle δS 10.00% 

Variance principle δV 1.5x10-7 

Investment-equivalent 
reinsurance pricing 

E(y) 5.30% 

σ (y) 8.40% 

Xqα  99%-quantile of X1 

CAPM ρ(rm, I1) -0.20 

 ρ(rm, S1) -0.10 

 E(rm) 8.00% 

 σ (rm) 4.00% 
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Numerical results are obtained using Monte Carlo simulation with 50,000 paths. To achieve 

better comparability, the same sequence of random numbers is used for all analyses. Normally 

distributed random variates are generated with the Box-Mueller scheme (see, e.g., Glasser-

man, 2004, p. 65). 

 

In the following examples, we study the influence of the correlation coefficient 1 1(S , I )ρ , the 

attachment of the company’s loss A, and the industry loss trigger Y, keeping everything else 

constant. We also look at the impact of industry loss volatility and company loss volatility, 

again leaving all else unchanged. Results are compared for the six pricing methods outlined 

above. 

 

In addition to prices and basis risk, we also calculate the safety loading resulting from each 

pricing method. The safety loading is calculated as the difference between the certainty 

equivalent and the expected contract payoff and is given as a percentage of the expected con-

tract payoff: 
 

( )
( )

1

1

CE E X
Safety Loading

E X

−
= .  (10) 

 

Varying the Correlation Coefficient between Company and Industry Loss 

We begin our numerical analysis by studying the impact of the correlation coefficient ρ(S1, 

I1). Figure 1 shows results for prices, safety loadings, and basis risk when ρ(S1,I1) = 0.2, 0.4, 

0.6, and 0.8, where ρ(S1,I1) = 0.6 corresponds to the reference contract. 
 

Figure 1 demonstrates that all ILW prices increase with increasing coefficient of correlation 

(Part a)), which is due to the higher probability that both triggers A and Y are exceeded. How-

ever, at the same time, the safety loading on the expected contract loss decreases for most 

pricing concepts (Part b)), since the expected contract loss increases more than does the cer-

tainty equivalent (see Equation (10)). This is particularly obvious in the case of the standard 

deviation principle, which shows a decrease from 120% to 55%, and for investment-

equivalent reinsurance pricing (from 54% to 25%). Exceptions are the expected value princi-

ple, which is constant at a rate of δE = 30%, and the variance principle with a nearly 0% load-

ing. 
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Figure 1: Prices, safety loadings, and basis risk as functions of the correlation coefficient 

ρ(S1, I1)  
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b) Safety Loading in % of E(X1) 
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c) Basis Risk Type I in Mio. US-$ and % 
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d) Basis Risk Type II in Mio. US-$ and % 
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Basis risk is independent of the type of valuation method used. Since the probability of a con-

current company loss and industry loss increases the higher the correlation coefficient, Part c) 

of Figure 1 exhibits a decreasing Type I basis risk (see Equations (7) and (8)). This observa-

tion also holds for the Type II basis risk. However, the analyzed contract setup results in a 

high level of basis risk. For a correlation of 0.8 between industry losses and company losses, 

the probability that the industry trigger is not exceeded given that the company has a severe 
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loss is still 57%. By taking advantage of the industry index granularity, this basis risk can be 

reduced substantially. Cao and Thomas (1999) show that using ZIP-code level index values 

instead of state level index values increases the average correlation coefficient for a company 

comprising the index from 0.401 to 0.921. As PCS loss estimates are available on state level, 

the distribution of these index values on county level can be simulated (see e.g. Cummins, 

Lalonde, and Phillips, 2004). The PERILS index values will be available on CRESTA level, 

corresponding aggregated postcode zones. 

 

In Figure 1, substantial discrepancies can be observed between prices derived by different 

pricing schemes in the considered example. In general, the price curves in Part a) can be 

grouped in essentially three categories. First, the prices calculated with the financial contin-

gent claims approach and the actuarial variance principle are very close, which is also visible 

in Part b) of Figure 1. Because of the low value of the coefficient δV, the safety loading of the 

variance principle is only 0.002% in relation to the expected loss, which means that the price 

obtained is very close to the expected contract payoff E(X1). A similar reasoning holds for the 

contingent claims approach, which has a loading that decreases from 5% to 4% with increas-

ing correlation coefficient. Here, the safety loading is due to changing the measure and there-

by adjusting the drift of the underlying processes. Therefore, the market price of risk in this 

case is given by the difference between the empirical drift and the risk-free rate over the 

standard deviation of the respective process. With a continuous risk-free rate (4.80%) and an 

empirical drift rate (2.50%), the loading imposed by the price derived under the contingent 

claims approach remains moderate. 

 

Second, the financial method CAPM and two actuarial methods—the expected value principle 

and investment-equivalent reinsurance pricing—have very similar results. Comparing the 

loading formulas for the CAPM and investment-equivalent reinsurance pricing, one can iden-

tify comparable elements since both concepts rely on an excess return above a risk-free in-

vestment, and a risk-sensitive quantity in the denominator, contributing to the similar curva-

ture of these two concepts. The expected value principle is close to the other two concepts. 

However, the CAPM and investment-equivalent reinsurance pricing both include quantities 

that are sensitive to variation of contract losses, namely, the standard deviation of contract 

losses, in the denominator. This leads to decreasing safety loadings since the contract losses 

become increasingly volatile with increasing correlation ρ(S1,I1). In contrast, the safety load-

ing of the expected value principle is a constant percentage of the expected contract loss. 
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Third, the actuarial standard deviation principle results in the highest prices out of all the pric-

ing concepts studied. Further analysis showed that all concepts—except the contingent claims 

approach—are very sensitive to changes in the risk-aversion parameters and safety loadings 

δS, δE, and δV. 

 

Pricing indications received from market participants exhibit increasing safety loadings with 

increasing industry triggers, e.g. based on modeling results from a catastrophe modeling firm, 

the risk load for a $20bn industry loss warranty equals 70% of expected loss and can be as 

high as 5 times the expected loss for $100bn contracts. As the assessment of expected loss can 

differ dramatically from one modelling firm to another, the absolute value of the loading fluc-

tuates with the expected loss value. These multiples stand in contrast to a risk neutral assess-

ment of industry loss warranties. On the other hand, the risk neutral prices represent a lower 

bound which could be achieved if the instruments were liquid, and traded constantly in signif-

icant volumes on an exchange. The current efforts to standardize these contracts and thus in-

crease secondary market trading (see e.g. SwissRe, 2009) can thus lead to significant price 

reductions. Cummins and Weiss (2009) observe that the cyclicality of reinsurance prices can 

also be observed in the ILW market. This phenomenon may be weakened for exchange-traded 

products with sufficient capacity. 

 

Varying Industry and Company Loss Trigger 

In a next step, the effect of changes in the industry loss trigger is analyzed by changing the 

trigger level from Y = 5,000 to 4,000 and then to 6,000 (Figure 2). The impact of changes in 

the reinsured company loss trigger is studied by varying A from 150 to 100 and then to 200 

(Figure 3). 

 

Figures 2 and 3 exhibit some similarities to the results displayed in Figure 1. As observed in 

the previous case, the standard deviation principle results in higher prices than all other pric-

ing approaches for the given calibration. Furthermore, the contingent claims approach and the 

variance principle have similar results; CAPM, the expected value principle, and investment-

equivalent reinsurance pricing all result in comparable prices. 



 19

Figure 2: Prices, safety loadings, and basis risk as functions of the industry loss trigger Y 
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b) Safety Loading in % of E(X1) 
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c) Basis Risk Type I in Mio. US-$ and % 
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d) Basis Risk Type II in Mio. US-$ and % 
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In both Figures 2 and 3, increasing the trigger levels A and Y leads to lower ILW prices, 

whereas the loadings generally increase and are thus in contradiction to the decreasing price, 

as was also observed in Figure 1. One exception is the CAPM price curve, which first de-

creases and then increases. The effect on basis risk of varying A and Y is the complete oppo-

site of the effect this variation has on price. With an increasing industry loss trigger Y (Figure 

2), basis risk increases, whereas a higher company loss trigger A results in a lower basis risk 

(Figure 3). This effect is explained by the definition of basis risk used (see, e.g., Equations (7) 
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and (8)). A higher industry loss trigger level Y results in a higher probability that the industry 

loss does not exceed Y and thus the conditional probability of {S > A} given {I < Y} decreas-

es. For the same reason, basis risk decreases when the company loss trigger A is raised be-

cause, in this case, the probability of the event {S > A}––ceteris paribus––decreases. Hence, 

increasing the company loss trigger A can make it possible for the reinsurer to offer lower 

prices (due to a lower expected contract payoff) and also reduce the basis risk associated with 

the contract. Increasing the industry loss trigger Y also leads to decreasing prices; however, 

the basis risk increases. 

 

Figure 3: Prices, safety loadings, and basis risk as functions of the company loss trigger A 

a) Prices in Mio. US-$ 
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b) Safety Loading in % of E(X1) 
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c) Basis Risk Type I in Mio. US-$ and % 
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d) Basis Risk Type II in Mio. US-$ and % 
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Varying the Volatility of Company Loss and Industry Loss 

The effects on pricing and basis risk of company loss volatility σ(S1) and industry loss volatil-

ity σ(I1) are illustrated in Figures 4 and 5. In both figures, volatility is reduced to -50% and 

increased up to +150% of the initial value, leaving everything else unchanged. Industry loss 

volatility is usually not influenced by a single company; modifications can be achieved only 

by changing the underlying industry index. 

 

The three groupings of pricing methods are immediately obvious from Figures 4 and 5, as 

observed previously. Otherwise, however, the price and basis risk curves differ substantially 

from previous analyses. For instance, both Figures 4 and 5 show that ILW prices first increase 

and then decrease with increasing volatility of company loss and also with increasing volatili-

ty of industry loss. In contrast, in these scenarios, basis risk exhibits characteristics that are 

very different compared to the previous analyses and are also different for changes in σ(S1) 

and σ(I1). 

 

In particular, increasing the volatility of company loss (Figure 4) first leads to an increase in 

basis risk and then, for even higher volatility, the risk decreases. In Part c) of Figure 4, basis 

risk measured by probability of occurrence is highest for the original volatility (+0%), and the 

highest expected loss caused by basis risk is at approximately +50%. Different results are 

found in Part d). Hence, the results are strongly dependent on the choice of risk measure. 

 

In Figure 5, the basis risk curves in Parts c) and d) first decrease and then slightly increase as 

the volatility of industry loss is further increased, resulting in a convex form. 

 

Hence, changes in volatility of industry loss or company loss have a similar impact on premi-

ums, but considerably different basis risk profiles. For company loss volatility (Figure 4), 

basis risk follows a concave curve, implying that within the ranges considered, basis risk can 

only increase up to a maximum value when varying the volatility of the company’s business 

(e.g., by underwriting certain business). For changes in the volatility of industry loss, howev-

er, basis risk is limited from below, in the examples considered and thus only lead to reduc-

tions in basis risk above a certain threshold. 
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Figure 4: Prices, safety loadings, and basis risk as functions of percentage changes in the 

company loss volatility σ(S1) 
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d) Basis Risk Type II in Mio. US-$ and % 
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Figure 5: Prices, safety loadings, and basis risk as functions of percentage changes in the in-

dustry loss volatility σ(I1) 

a) Prices in Mio. US-$ 
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c) Basis Risk Type I in Mio. US-$ and % 
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d) Basis Risk Type II in Mio. US-$ and % 
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4. SUMMARY 

 

This paper examines an indemnity-based industry loss warranty contract with regard to pric-

ing and basis risk. Since the measures for basis risk are independent of the applied valuation 

method, calculated price curves do not necessarily reflect basis risk. To identify the different 

key drivers for premium and basis risk, we conducted a sensitivity analysis with respect to 

modifications in contract parameters for different measures of basis risk. We also compared 
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several common actuarial and financial pricing approaches. Among the actuarial concepts are 

the expected value principle, the standard deviation principle, the variance principle, and in-

vestment-equivalent reinsurance pricing; among the financial concepts are the contingent 

claims approach and the capital asset pricing model. 

 

Our numerical results reveal substantial discrepancies between the prices obtained using dif-

ferent pricing schemes. For the calibration setup, three groups of pricing methods could be 

identified that led to similar price levels. In general, these differences and similarities result 

from economic differences in the considered pricing approaches and from the choice of model 

parameters. We further provided the safety loadings implied by the different pricing schemes 

by calculating the difference between certainty equivalent and expected contract payoff, given 

in percent of the expected contract payoff. For all examples considered, the safety loading 

curves ran opposite to the pricing curves. For instance, raising the industry loss trigger led to 

strictly decreasing prices, but to higher (or equal) safety loadings for all analyzed pricing 

methods. 

 

In the numerical analysis, an increase in the correlation coefficient between company and 

industry loss leads to higher prices and higher basis risk for all pricing concepts and risk 

measures. Furthermore, price and basis risk curves were concave with respect to increasing 

volatility of a reinsured book of business in the ranges considered. Increasing the volatility 

can thus induce lower prices for the ILW contract and, simultaneously, lower basis risk. The 

price curves for changes in industry loss volatility were concave as well. In contrast to the 

reinsured company’s volatility, all basis risk curves were convex. 

 

Regarding the trigger levels, we found that raising the industry loss trigger leads to an in-

crease of basis risk, whereas increasing the reinsured company loss trigger leads to decreases 

in basis risk. However, in both cases, raising the trigger levels leads to lower prices. 

 

This investigation of ILWs using different concepts of valuation and risk measurement pro-

vides insight into the structure and characteristics of this form of insurance product. The re-

sults demonstrate that a simultaneous analysis of both basis risk and pricing can be of substan-

tial informational value to both insurers and insurance buyers. 

 



 25

APPENDIX 

 
For the stochastic process as given in Equation (2), one obtains 

 

( )( )( ) ( )( )2
1 0exp ln 0.5 , exp ,S S SS N S N a bµ σ σ= + − = , 

 

where N(a,b) denotes a normally distributed random variable with expected value 

( ) 2
0ln 0.5a S µ σ= + −  and standard deviation Sb σ= , leading to a lognormal distribution 

for S1. Given the expected value 
 

( ) ( )2
1 exp 0.5E S a b= +  

 

and the standard deviation 

 

( ) ( )( ) ( )22
1 1exp 1S b E Sσ = − , 

 

σS and S0 can be obtained by transforming these equations. Using 

 

( )( ) 2
1ln 0.5a E S b= − , 

 

and 

( )
( )

2
1

2

1

ln 1
S

b
E S

σ = + 
 

, 

 

the standard deviation of the stochastic process σS and the initial nominal value S0 are given 

by 

 

( )
( )

2
1

2

1

ln 1S

S

E S

σσ  = + 
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( )( )
( ) ( )

( ) ( )

2
1

2 2
0

0 1

ln 0.5

ln 0.5 ln 0.5

exp .

a E S b

S m b

S E S

µ σ
µ

= −

⇔ + − = −

⇔ = −

 

 

A derivation of I0 and σI for the industry loss distribution I1 can be done analogously. 
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