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ABSTRACT

In recent years, industry loss warranties (ILWsjehbecome increasingly popular in the
reinsurance market. The defining feature of ILWtcacts is their dependence on an in-
dustry loss index. The use of an index reduces Inhazard and generally results in low-
er prices compared to traditional, purely indembiged reinsurance contracts. Howev-
er, use of the index also introduces basis riskesthe industry loss and the reinsured
company’s loss are usually not fully correlatede ®im of this paper is to simultaneous-
ly examine basis risk and pricing of an indemniaséd industry loss warranty contract,
which is done by comparing actuarial and finangidating approaches for different
measures of basis risk. Our numerical results sthatvmodification of the contract pa-
rameters to reduce basis risk can either raidewer prices, depending on the specific
parameter choice. For instance, basis risk cardheced by decreasing the industry loss
trigger, which implies higher prices, or by incriegsthe reinsured company attachment,
thus inducing lower prices.

1. INTRODUCTION

Industry loss warranties (ILWs) are innovative ird@sed reinsurance instruments that have
become increasingly popular in recent years (Gusp€&der, 2006). Payment on these con-
tracts is triggered by an industry loss, where ¢betracted trigger amount varies by geo-
graphic region and type of catastrophic event. predominant ILW forms are binary and
indemnity-based contracts: binary contracts paxedfamount if the industry loss is trig-
gered; indemnity-based contracts take into conatder the reinsured company’'s loss
(SwissRe, 2006). Compared to other forms of alteraaisk capital, ILWs are easier to draw
up, more flexible, and incur fewer frictional costean, for example, catastrophe bonds. In
comparison to traditional reinsurance contracte, Winderwriting and claim processes are
simple and moral hazard is reduced substantiallyntagrating an industry index. In general,

this type of contract can be offered at a lowecethan that charged for traditional indemni-

7 Nadine Gatzert is at the University of Erlangeirhberg, Chair for Insurance Economics, Lange
Gasse 20, 90403 Nurnberg, Germany, nadine.gatzesti@uui-erlangen.de. Hato Schmeiser is at
the University of St. Gallen, Chair for Risk Managet and Insurance, Kirchlistrasse 2, 9010 St.
Gallen, Switzerland, hato.schmeiser@unisg.ch. Deodek is at Allianz Re, Munich.



ty-based reinsurance contracts.

On the other hand, the reinsured has to bear this bak induced by ILWs, which arises if
the industry-wide loss and the reinsured compalgss are not fully correlated (see, e.g.,
Harrington and Niehaus, 1999; Doherty and Rich2€Q2). This leads to a difference be-
tween the index-based payoff and the reinsuredisgaatoss. Thus, for reinsurers, appropriate
premium pricing is crucial, whereas taking bassk iinto consideration is vital for the rein-
sured. The aim of this paper is to consider botlspesetives by analyzing and comparing sev-

eral approaches for pricing ILWs and by studying tiinsured’s basis risk.

To date, the relevant literature is primarily foedson other forms of alternative risk capital,
such as cat bonds, for which pricing approachesisbiask, and moral hazard have been ana-
lyzed (see, e.g., Doherty and Richter, 2002; Le® Yam, 2002, 2007). Previous literature on
ILWs has generally concerned itself with pricingndy contracts by calculating a risk load
using the coefficient of variation (Ishag, 2005moth analyzing basis risk in the case of bina-
ry ILW contracts (Zeng, 2000). Beyond this, Zen@(Q2) analyzes the tradeoff between basis

risk and the cost of index-based instruments.

Cummins et al. (2004) conduct an empirical studgerieral index-based instruments for cat-
astrophic losses. In particular, basis risk is yred by examining the hedging effectiveness
of risk reduction using different risk measuresatidition, the relationship between hedging
effectiveness and insurer characteristics is stidieng (2005) applies an optimization meth-
od based on the genetic algorithm to measure theurance efficiency of index-based con-

tracts, thereby taking into account cost and benefi

There are several ways that the basis risk assdcwith ILWs can be reduced. One can ei-
ther change the underlying industry index or bobkusiness (thus also changing the volatili-
ty), or adjust contract parameters, such as thesing loss trigger level, the company’s at-
tachment point, or the limit of coverage. Howewbgse changes will also have an effect on
the price, depending on the pricing concept appliedhis paper, we examine the influence
of such modifications on the pricing and basis ékan individual indemnity-based ILW

contract. We compare different established actuand financial pricing concepts and differ-

ent measures for basis risk.



Among the financial pricing approaches we consaterthe contingent claims approach and
the capital asset pricing model. The actuarialipgigrinciples include the expected value
principle, the standard deviation principle, and ttariance principlé.Furthermore, we also

include actuarial investment-equivalent reinsurapdeing as developed by Kreps (1998),

which is commonly used in reinsurance practice.

In contrast to Zeng (2003), we do not establiskrachmark contract or use optimization tools
that depend on the risk management objective ofdimsured company. Instead, we analyze
two types of basis risk. The first type is the ribkt the reinsured suffers a substantial loss
given that the industry-wide loss doest exceed the predetermined threshold. This risk is
measured in two ways—(1) the probability of occnoe and (2) the expected payoff of the
ILW contract that the reinsured does not receivaabse the industry-wide loss was not great
enough to trigger coverage. The latter risk meaallogvs taking the extent of such a shortfall

event into account.

The second type of basis risk that will be congdehnere includes the probability that the
industry loss does not exceed the trigger, contktioon the event that the company loss ex-
ceeds the attachment point and the expected logm @y the difference between the ex-
pected payoff of a traditional indemnity-based semance contract and the expected ILW

payoff.

A numerical sensitivity analysis is conducted fbaeges in the reinsured company’s attach-
ment point, the industry loss trigger, and the elation coefficient between the company loss
and the industry loss. We also study the impadhefunderlying processes’ volatility. We
show that reducing basis risk through a modificatidd contract parameters can lead to both
higheror lower prices, depending on which parameter issddfli Moreover, price is strongly

dependent on the type of pricing approach emplayetican vary substantially.

The remainder of the paper is organized as folldwSection 2, the model framework is dis-

cussed, including the ILW contract, a discussiod eomparison of actuarial and financial

pricing approaches, and the definition of basik ngeasures. Section 3 contains numerical
results based on a simulation study. Section 4lades.

! An overview and discussion of different pricagproaches is presented in Embrechts (1998).



2. MODEL FRAMEWORK
2.1 Thelndustry Loss Warranty Contract

Industry loss warranty contracts can be designedvariety of way$.A binary contract pays

out a fixed amount if the industry-wide loss exceadgredefined threshold. Another common
design is indemnity-based, i.e., the reinsured @ms loss must exceed a certain amount
and the industry loss must be larger than a ptagger. However, the one feature that occurs

in all ILWs is the presence of a trigger basedrmtustry losses.

The ILW contract analyzed in this paper containg@ggregate excess of loss contract with a
layer limit L. Furthermore, the contract incorporates a secoggdet that is based on the in-
dustry loss distributiofy int = 1 (see Zeng, 2000; Wharton Risk Center, 200&)SL.denote
the company’s loss distribution tr= 1, A the attachment of the company logghe industry
loss trigger, and.{ l >Y} the indicator function, which is equal to 1 if imelustry loss int =

1 is greater than the trigger and O otherwise. Hetie payoff of the contragh int = 1 can

be written a%
X, =min(max(§ - AQ ,0)0{ 1> Y. (1)

The most frequently used reference indices forrgtscatastrophic events are those provided
by the Property Claim Services (PCS) in the UnBakes. Thus, the industry loss is usually
determined by referencing a relevant PCS indexsi@aitof the United States, the insurance
industry was lacking comparable indices in the past had to rely on published loss figures
provided by Swiss Re sigma or Munich Re’s NatCatise. In Europe, the market partici-

pants have established the PERILS industry lossxisérvice, an industry loss data provider
similar in concept to the PCS, to overcome thidbjam (see e.g. SwissRe, 2009). In addition,
commercial modeling vendors offer parametric ingliedrich are based on proprietary indus-
try exposure data. Burnecki, Kukla, and Weron (3G0®w that, in general, a lognormal dis-

tribution provides a good fit to the analyzed P@&ides. We thus model both random varia-

blesl andSas geometric Brownian motions under the physiczdsuareP, i.e.,

An overview of ILW contracts is provided in Safge (2006).
This contract form is also called a double-triggentract (see, e.g., Griindl and Schmeiser, 2002;
SwissRe, 2009).
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d§ = us S dtros S AW, 2)
dl. =g ldt+g1dw', (3)

with empirical drift i andg, volatility os andagi, andW?, W denoting standard Brownian
motions on a probability spadd?, 7,P) with filtration 4. The two Brownian motions are
correlated withdW® dW' = p di. The solution of the stochastic differential edprs is giv-
en by (see, e.qg., Bjork, 2004)

S = g@xp(,us— 0.5172+USEQ W - V\f’l))

1, =1,@xp(y, - 0557 +0, iy -W',)),

thus leading to a lognormal distribution f§randl;, since the increment¥{ — W.,) follow a

standard normal distribution.
2.2 Pricing Methods

Most premium calculation methods derive insurandeep 1 by determining a certainty
equivalentCE for the uncertain contract loss payoff, thus mgkam investor indifferent be-
tween the stochastic loss payout and the deterigirasrtainty equivalent. In the premium
calculation, the certainty equivalent is discounteth the risk-free interest rat€or the pay-

off of the contract at hand, this leads to
M(X,) =exp(-r, ) ICE(X,),

with r, denoting the continuous one-period risk-free citeeturn. Hence, the price of the

contract depends on the way the certainty equivigetetermined.In the following sections,
we discuss different actuarial and financial vatratmethods for calculating the certainty

equivalent.

* Embrechts (1998) points out parallels betweenditermination of the certainty equivalent in ac-

tuarial mathematics and in financial valuation.



2.2.1 Actuarial Pricing Approaches

In general, actuarial valuation methods rely on itighvidual decisionmaker’s risk prefer-
ences, usually assuming risk aversion (see Cumrb@®a, p. 125) and thus calculate a load-
ing that is added to the expected loss of the aohtn order to determine a certainty equiva-
lent for the loss distribution. In the actuaridtature, the assumption of risk aversion is usu-
ally based on classical ruin theory, which stalted & premium equal to the net risk premium
leads to certain ruin in an infinite planning honz regardless of how much equity capital the
insurer holds (see Buhlmann, 1996, pp. 141-144hIBann (1985) also relates insurance
premiums to ruin theoretical stability criteriag.i.a certain probability of ruin, and thus de-
duces actuarial premium calculation principles wita implicit assumption of risk aversion.
There are several different actuarial approacheddtermining the loading, resulting in cor-
respondingly different pricing principlésBelow, we consider four actuarial pricing princi-

ples.

Expected Value Principle
Under the expected value principle, the certaigyivealent is determined by loading the ex-

pected contract lods(X;) with a percentagé, (> 0) of itself:

CE= E(X)+3. 0K X),

whereE denotes the expectation operator under the pHysieasure?. This approach is not
risk sensitive since it considers only the expesade and no quantity that would represent
the risk inherent in the contract. However, it riegsi only the first moment of the contract’s

loss distribution and thus can be easily implemente

Standard Deviation Principle
A widely used pricing principle in actuarial praiis the standard deviation principle, which
determines the certainty equivalent by loading gigo O, (> 0) of the standard deviation

o(X1) on the expected contract loss, leading to:

CE = E(X)+3, ().

®>  For an overview, see Goovaerts et al. (1984).



Variance Principle

The variance principle can be derived from utittigory using an exponential utility function
or normally distributed wealth (see Pratt, 1964}dfines the certainty equivalent as the ex-
pected loss and a fractia®, (> 0) of the variance of the contract IossZ(Xl)), depending

on the risk aversion of the company issuing therectt
CE=E(X)+q, [°(X).

Investment-Equivalent Reinsurance Pricing

Kreps (1998) proposed the investment-equivalemstegance method for pricing individual
contracts by specifying risk and return criteri&isTconcept assumes that the reinsurer allo-
cates assets so as to be able to reimburse colugsaes. The reinsurance company requires at
least the same return and at most the same rigkese assets as if they were invested in
some other equivalent financial instrument (taigeestment). Therefore, under this pricing

concept, the risk load of a contract can be intggal as opportunity cost.

Kreps (1998) considers two cases for the derivabiopricing formulas. First, costs are de-
fined as the loss of investment income that redtot® investing in the risk-free instruments
(to secure the losses) instead of in the riskyetaivestment; this is called the “switch case.”
In the second case, costs are determined throwtgirtgeby buying European put options on
the underlying target investment with a strike pregjual to the investment in risk-free securi-
ties. In the following, we will focus on the switclase, which generally results in higher pric-

es than the option case and thus gives an uppeddouthe premium.

In the switch case, the risk lo&lis determined using a benchmark target investraadt
conditions on the internal rate of return of theuténg cash flows (taking into account out-
flow of contract losses and inflow of the allocateskets’ return). This leads to two con-
straints for the contract: The loss safety consti@eft part of the maximum operator in Equa-
tion (4)) represents the return requirement foratbeets allocated to the contract, where assets
must be sufficient to cover losses to a certaietgdevel amount. The investment variance
constraint (right part of the maximum operator mugtion (4)) requires that the variance of
the internal rate of return is at most as largthas/ariance of the target investment. The max-

imum of these two requirements is then set equB| tesulting in



(B0 - 1) (@ - EX) (B Y- §*)a(x)
1+E(y) ' a(y)

R = max : 4
wherey is the yield rate of the target investment, whghsed as a benchmark in pricing the
contractE(y) anda(y) are the expected value and the standard deviatitre yield raterfd
denotes the discrete equivalent qu(zln(1+rfd)), and q) is the specified safety level
amount (in absolute terms), i.e., tequantile of the contract’s loss distributidq. The re-

sulting certainty equivalent is then given by

CE=E(X)+ R. (5)

The expected losses are loaded with the risk l@avet from the investment criteria, thus

again representing a risk-averse decisionmaker.
2.2.2 Financial Pricing Approaches

In contrast to actuarial pricing approaches, fimangricing concepts rely on the duplication
of cash flows and are thus independent of indiMidquaferences. Hence, in this model
framework, one needs to assume that there arecfadanstruments that can be used to repli-
cate the evaluated contract’s payoff.

Capital Asset Pricing Model (CAPM)
In the CAPM, the certainty equivalent is definedlas expected value of the contract’s pay-
off and a risk adjustment, such that

CE=E(X)-A0CoVY X% [), (6)

wherer, stands for the return of the market portfolid in1 andA denotes the market price

of risk, given by

_ E(rm) - rfd

(1)

® For pricing insurance contracts in a CAPM fraragw see, e.g., Fairley (1979), Hill (1979),

D’Arcy and Doherty (1988), and Cummins (1990a).



where rfd again stands for the discretely compounded ris&-interest rate.

Contingent Claims Approach
Under the contingent claims approddhsurance contract prices are determined by tatkiag
expected value of the payoff with respect to tek-rieutral martingale measu@ leading to

a certainty equivalent of:
CE=E°(X).

By changing the probability measure to the risktredumeasur&), the drift of the stochastic
processes in Equations (2) and (3) changes toiskdree interest rates and the company

loss and the industry loss at time 1 are given by

S = Sexp( - 0.50% +o WP~ W),
and

=1, exp(r, - 0.557 + 0, N2 -w')),

respectively, wher®\[%® andW®' are standar@®-Brownian motions. Hence, in case of ge-
ometric Brownian motions, the contract’'s cash fligvadjusted for systematic risk by chang-

ing the drift, while the standard deviation of #techastic processes is not affected.

2.2.3 Comparison of Pricing Approaches

There are several important differences in theipgi@pproaches discussed in the previous
sections. The actuarial methods in Section 2.2aluete individual contracts without consid-
ering diversification in the market or in the insts portfolio. Hence, only the contract’'s
payoff is evaluated. In contrast, the financial moels in Section 2.2.2 assume that investors
perfectly diversify unsystematic risk. Thus, onljystematic risk is relevant for pricing insur-

ance contracts. However, since the financial pgi@pproaches lead to present-value calcu-

" See, e.g., Doherty and Garven (1986), Cummi®8Qi), and Gatzert and Schmeiser (2008).
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lus, prices are additive for any portfolio of cadts. Therefore, the composition of the insur-

er’s portfolio has no impact on pricing individw@ntracts.

One further difference in the pricing methods aigem the effect of the contract’s volatility
o(X1). An increase iro(X;) generally tends to induce higher premiums fottadl pricing ap-
proaches under consideration—except for the egpealue principle. In case of CAPM, this

holds true only if there is systematic risk in tontract, i.e., if CoXy,rm) <O.

For all actuarial pricing concepts—except for stweent-equivalent reinsurance pricing—the
risk-free interest rate influences prices only ssalint factor, but has no impact on calculat-
ing the certainty equivalent. In contrast, the Hfii’de interest rate does have an effect on the
certainty equivalent determined with financial prgc methods. For investment-equivalent
reinsurance pricing, lowering the risk-free inténege leads to a higher risk lo&) and thus

to a higher certainty equivalent (see Equation. @hder the CAPM, the market price of risk
A increases when the risk-free rate is decreaseadcd;¢he effect of the covariance between
the contract’'s payofK; and the return of the market portfolio on the @@ty equivalent is
intensified if CovKy,ry) # 0. Regarding the contingent claims approach, logex implies a
lower probability of exceeding the triggefsandY. Thus, the contract payoff is reduced,

leading to a lower certainty equivalent.

In general, the distribution of; is non-normal and typically heavily skewed, asenbsd in a
simulation study. For all pricing methods, the gagtructure ofX; is taken into account us-
ing the expected value (under the physical or islemmeutral measure) or standard deviation
of X;. The only approach that can account for higher pramis investment-equivalent rein-
surance pricing, which integrates tlrequantile ofX; when calculating the certainty equiva-
lent (see Equations (4) and (5)). Therefore, adrighquantile implies a higher certainty
equivalent and thus higher premiums if the maxinfuncttion in Equation (4) is equal to the

left expression in the maximum operator.

2.3 BasisRisk

From a buyer’'s perspective, the ILW contract shquiotect the company from losses that

could endanger its survival. Thus, the situatiorerglthe insurance company suffers a severe

loss while the industry has moderate losses represerisk to the buyer since both triggering
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events must be fulfilled for the contract to pay an indemnity. In general, this basis risk
arises when using index triggers since company dossindustry loss are usually not fully

correlated (see, e.g., Doherty and Richter, 20D2¢re are several ways of defining basis risk
(see Zeng, 2003, p. 253).

We consider two types of basis risk. First, we mefas Type | basis risk the case where the
company’s loss exceeds the attachm&ngiven that the industry loss does not exceed the
trigger. Second, we consider as Type Il basis thekopposite case, i.e., the situation where

industry loss is not triggered, given the insurac@m@mpany has a severe loss.

Type | Basis Risk
To assess the Type | basis risk, we calculate thbapility of occurrence under the real-

world measuré:

P($>M<Y)=P(§P(>,1A<$)<Y)- ™

Furthermore, we measure basis risk by calculatirveg &verage loss amount the insurance

company will not receive because the industry thsss not exceed the trigger:

E(min(max(§- AQ .| L<Y). 8)
Hence, in contrast to Equation (7), Equation (Besathe extent of company loss into account.

Type Il Basis Risk
We further calculate the conditional probabilityaththe industry loss does not exceed the
trigger given that the company has a loss greatar the attachment, which can be consid-

ered as a critical level (see Zeng, 2000):

P(l,<v.§> A
P(s>4

P(I,<Y|§> A=
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In addition, we consider the extent of missed indiggrpayments for the buyer by examining
the difference between a traditional reinsuranagract and the ILW. A traditional reinsur-
ance contrack"™ with the same contract parameters as the ILW aohtran be divided into

two parts using the industry loss index:

E( Xtrad )

E(min(max(S— AQ |))
(min(max(Q— AQ .o > Y})+ E( mif mak $- AP JO{1 )< }()
(x1)+E(min(max(§— AQ . 0Of I< \}) 1

E
E

which illustrates the relationship between the itraal reinsurance contract and an ILW

contract, i.e.,

E(X,)=E(x™)- gmin(max $- AQ . )C{ J< ¥). 9)

Thus, the ILW buyer can expect payment for onlyaa pf the expected loss that could be
claimed in full under a traditional reinsurance ttact. The remainder, that is, the expected

amount of payment not made, can then be consideradneasure of Type Il basis risk, i.e.,

E(min(max(§- A0 .J0{ 1< ¥})

Equation (9) also illustrates that prices basedexpected losses under the ILW reflect the
reduced indemnity payments and thus generallytresallower price for this type of contract

compared to a traditional reinsurance contract.
3. SIMULATION STUDY

This section analyzes the sensitivity of basis @8l premiums derived under different pric-
ing concepts with respect to changes in input patars. The following examples will serve
to identify key drivers for the basis risk. In afiloin, similarities and differences of the pricing

approaches are examined.
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Input Parameters for the Reference Contract

Based on data provided in Hartwig (2005), we setekpected value of the company loss at
the end of the contract ternE(Si), to $58 million, and the standard deviation Sifto
U(S_) = $134 million. We follow Hilti, Saunders, and Md-Hughes (2004) and assume that
regional hurricane losses account for 50% of tiséohical U.S. industry total loss. Thus, for
the industry loss, we set the expected value agttigeof the contract term t&(1,) = $1,450
million and the corresponding standard deviationm(dl) = $3,550 million. The correlation
coefficient between company 10§ and industry losd, is set too(S;, I1) = 0.60 and will be
subject to sensitivity analysis. The empirical tdoif Sandl is assumed to be equal to an infla-
tion rate of 2.50%, as measured by the U.S. Consemee Index for the year 2006 (see U.S.
Department of Labor, 2007). These assumptions tieaoh initial nominal value of the com-
pany’s l0ss§ = $56.57 millionand an initial nominal value of the industry ldss= $1,414
million. Hence, the resulting standard deviatiohshe stochastic processes in Equations (2)
and (3) are given bys = 135.89% andy; = 139.47% (the derivation of these quantities is
provided in the Appendix). The contract specifioasi include a layer limit df = $150 mil-
lion, an attachment of the company’s los#\cf $150 million, and an industry loss trigger of

Y = $5,000 million.

Regarding the expected value principle, and acogrth Andreadakis and Waters (1980), the
safety loading is set té = 30.00%, for the standard deviation principbe= 10.00% (see
Wang, 2000), and the variance principle has a f@adj = 1.500107, a value that is close to
data used by the Insurance Services Office in th#éed States (see Meyers and Kollar,
1999). For investment-equivalent reinsurance pgicthe risk load is determined by an ex-
pected target yield raté(y) = 5.30% and a standard deviationafy) = 8.40% (see Kreps,
1998).

To obtain results under the financial pricing c@tc@APM, we use the input data in Grindl
and Schmeiser (2002). The correlation coefficidogveen industry loss and return of the
market portfolio and between company loss and metdirthe market portfolio are fixed at -
0.20 and -0.10, respectively. Furthermore, the etgoevalue and standard deviation of the
return of the market portfolio are choserkds,) = 8.00% ando(r,,) = 4.00%. Thus, the cor-

relation coefficient between the market rate ofimet,, and the contract payoX; can be es-
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timated from the simulated data and leads to aeladron coefficiento(Xy, ry) of approxi-
mately -0.05. The correlation coefficient betwegrandr,, determinesCoV X, [,) in Equa-
tion (6), which is needed to calculate the certasquivalent under the CAPM. Finally, the
discrete rate of returlnfd is given by 4.92%, a value based on 1-year U.8adury constant
maturity rates (see Federal Reserve, 2007), whoctesponds to a continuously compounded
rate of returnr, =4.80%. The input data for the reference contaagetsummarized in Table

1.

Table 1: Input parameters for the reference contract

Contract parameters E(S) $58 million
a(Sy) $134 million
E(l) $1,450 million
o (1) $3,550 million

Us, L 2.50%
ASL 1) 0.60
L $150 million
Y $5,000 million
A $150 million
rd 4.92%
Iy 4.80%
Expected value principle 0o S 30.00%
Standard deviation principle 0o 10.00%
Variance principle o 1.5x10’
I n_vestment-eql_Ji\_/al ent E(y) 5.30%
reinsurance pricing o) 8.40%
q; 99%-quantile o,
CAPM A 1) -0.20
Arm S1) -0.10
E(rm) 8.00%

o(rm) 4.00%
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Numerical results are obtained using Monte Camousation with 50,000 paths. To achieve
better comparability, the same sequence of randambers is used for all analyses. Normally
distributed random variates are generated withBive-Mueller scheme (see, e.g., Glasser-
man, 2004, p. 65).

In the following examples, we study the influenééhe correlation coefficienp(S, , |, ), the

attachment of the company’s lo&sand the industry loss trigg&t keeping everything else
constant. We also look at the impact of industigsloolatility and company loss volatility,
again leaving all else unchanged. Results are cardgar the six pricing methods outlined

above.

In addition to prices and basis risk, we also dateuthe safety loading resulting from each
pricing method. The safety loading is calculatedttzes difference between the certainty
equivalent and the expected contract payoff amivisn as a percentage of the expected con-

tract payoff:

Safety Loadingr CEE_(—i()Xi) : (10)

Varying the Correlation Coefficient between Compansg Industry Loss
We begin our numerical analysis by studying theaotpf the correlation coefficien¥(S,,
l,). Figure 1 shows results for prices, safety logsijrand basis risk whei{S,11) = 0.2, 0.4,

0.6, and 0.8, wherg(S,,1;) = 0.6 corresponds to the reference contract.

Figure 1 demonstrates that all ILW prices increagh increasing coefficient of correlation
(Part a)), which is due to the higher probabilitgttboth triggeré\ andY are exceeded. How-
ever, at the same time, the safety loading on ¥peated contract loss decreases for most
pricing concepts (Part b)), since the expectedraontoss increases more than does the cer-
tainty equivalent (see Equation (10)). This is igatarly obvious in the case of the standard
deviation principle, which shows a decrease fron®%2to 55%, and for investment-
equivalent reinsurance pricing (from 54% to 25%cé&ptions are the expected value princi-

ple, which is constant at a rate &f= 30%, and the variance principle with a nearly |0%a-

ing.
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Figure 1. Prices, safety loadings, and basis risk as funstminthe correlation coefficient
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Basis risk is independent of the type of valuatimethod used. Since the probability of a con-
current company loss and industry loss increasesitfher the correlation coefficient, Part c)
of Figure 1 exhibits a decreasing Type | basis (&ge Equations (7) and (8)). This observa-
tion also holds for the Type Il basis risk. Howeuvie analyzed contract setup results in a
high level of basis risk. For a correlation of B&ween industry losses and company losses,
the probability that the industry trigger is notcegded given that the company has a severe
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loss is still 57%. By taking advantage of the intdggndex granularity, this basis risk can be
reduced substantially. Cao and Thomas (1999) shaivusing ZIP-code level index values
instead of state level index values increases\tbeage correlation coefficient for a company
comprising the index from 0.401 to 0.921. As PC&lestimates are available on state level,
the distribution of these index values on countyelecan be simulated (see e.g. Cummins,
Lalonde, and Phillips, 2004). The PERILS index eslwill be available on CRESTA level,

corresponding aggregated postcode zones.

In Figure 1, substantial discrepancies can be wbdebetween prices derived by different
pricing schemes in the considered example. In gén#re price curves in Part a) can be
grouped in essentially three categories. First,pifiees calculated with the financial contin-
gent claims approach and the actuarial varianaeipie are very close, which is also visible
in Part b) of Figure 1. Because of the low valughef coefficientd,, the safety loading of the
variance principle is only 0.002% in relation t@ tbxpected loss, which means that the price
obtained is very close to the expected contracoipds(X,). A similar reasoning holds for the
contingent claims approach, which has a loadingdkareases from 5% to 4% with increas-
ing correlation coefficient. Here, the safety loeglis due to changing the measure and there-
by adjusting the drift of the underlying processEserefore, the market price of risk in this
case is given by the difference between the engbidcift and the risk-free rate over the
standard deviation of the respective process. itlontinuous risk-free rate (4.80%) and an
empirical drift rate (2.50%), the loading imposeglthe price derived under the contingent

claims approach remains moderate.

Second, the financial method CAPM and two actuaneihods—the expected value principle
and investment-equivalent reinsurance pricing—heegy similar results. Comparing the
loading formulas for the CAPM and investment-eqglémareinsurance pricing, one can iden-
tify comparable elements since both concepts ralym excess return above a risk-free in-
vestment, and a risk-sensitive quantity in the d@nator, contributing to the similar curva-
ture of these two concepts. The expected valueipieis close to the other two concepts.
However, the CAPM and investment-equivalent reiasae pricing both include quantities
that are sensitive to variation of contract lossesnely, the standard deviation of contract
losses, in the denominator. This leads to decrgasafety loadings since the contract losses
become increasingly volatile with increasing catien o(S.,11). In contrast, the safety load-

ing of the expected value principle is a constamtentage of the expected contract loss.
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Third, the actuarial standard deviation princigsults in the highest prices out of all the pric-
ing concepts studied. Further analysis showedalhabncepts—except the contingent claims
approach—are very sensitive to changes in theaveksion parameters and safety loadings

Os, 05, andoy.

Pricing indications received from market particifgaaxhibit increasing safety loadings with
increasing industry triggers, e.g. based on modetesults from a catastrophe modeling firm,
the risk load for a $20bn industry loss warrantyadg 70% of expected loss and can be as
high as 5 times the expected loss for $100bn ccistras the assessment of expected loss can
differ dramatically from one modelling firm to ahet, the absolute value of the loading fluc-
tuates with the expected loss value. These mudtigland in contrast to a risk neutral assess-
ment of industry loss warranties. On the other hamel risk neutral prices represent a lower
bound which could be achieved if the instrumentsavliguid, and traded constantly in signif-
icant volumes on an exchange. The current effortdndardize these contracts and thus in-
crease secondary market trading (see e.g. SwigR8) can thus lead to significant price
reductions. Cummins and Weiss (2009) observe hHwatyclicality of reinsurance prices can
also be observed in the ILW market. This phenomenan be weakened for exchange-traded

products with sufficient capacity.

Varying Industry and Company Loss Trigger

In a next step, the effect of changes in the inglusiss trigger is analyzed by changing the
trigger level fromY = 5,000 to 4,000 and then to 6,000 (Figure 2). il@act of changes in
the reinsured company loss trigger is studied bying A from 150 to 100 and then to 200
(Figure 3).

Figures 2 and 3 exhibit some similarities to theuhes displayed in Figure 1. As observed in
the previous case, the standard deviation prinegselts in higher prices than all other pric-
ing approaches for the given calibration. Furtheemthe contingent claims approach and the
variance principle have similar results; CAPM, thgected value principle, and investment-

equivalent reinsurance pricing all result in conafée prices.
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Figure 2: Prices, safety loadings, and basis risk as funstadrihe industry loss triggéf
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In both Figures 2 and 3, increasing the triggeelle¥A andY leads to lower ILW prices,
whereas the loadings generally increase and aeeithcontradiction to the decreasing price,
as was also observed in Figure 1. One exceptitheiCAPM price curve, which first de-
creases and then increases. The effect on basisfrngaryingA andY is the complete oppo-
site of the effect this variation has on price. MWah increasing industry loss triggéfFigure

2), basis risk increases, whereas a higher comlossytriggerA results in a lower basis risk
(Figure 3). This effect is explained by the defontof basis risk used (see, e.g., Equations (7)
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and (8)). A higher industry loss trigger lewelesults in a higher probability that the industry
loss does not exceetland thus the conditional probability d& §& A} given {lI <Y} decreas-
es. For the same reason, basis risk decreasestin@ompany loss triggeX is raised be-
cause, in this case, the probability of the evéht {A}—ceteris paribus—decreases. Hence,
increasing the company loss triggercan make it possible for the reinsurer to offevdo
prices (due to a lower expected contract payoff) @so reduce the basis risk associated with
the contract. Increasing the industry loss triggaalso leads to decreasing prices; however,

the basis risk increases.

Figure 3: Prices, safety loadings, and basis risk as funstadrthe company loss triggar

a) Prices in Mio. US-$ b) Safety Loading in % dE(X,)
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Varying the Volatility of Company Loss and Indudtogs

The effects on pricing and basis risk of comparsg heolatility o(S;) and industry loss volatil-
ity o(l1) are illustrated in Figures 4 and 5. In both fegrvolatility is reduced to -50% and
increased up to +150% of the initial value, leavewgrything else unchanged. Industry loss
volatility is usually not influenced by a singlerapany; modifications can be achieved only
by changing the underlying industry index.

The three groupings of pricing methods are immedtiiabbvious from Figures 4 and 5, as
observed previously. Otherwise, however, the paice basis risk curves differ substantially
from previous analyses. For instance, both Figdrasd 5 show that ILW prices first increase
and then decrease with increasing volatility of pamy loss and also with increasing volatili-
ty of industry loss. In contrast, in these scermrlmasis risk exhibits characteristics that are

very different compared to the previous analyseat ae also different for changes &S,)
anda(l,).

In particular, increasing the volatility of compalogs (Figure 4) first leads to an increase in
basis risk and then, for even higher volatilitye tisk decreases. In Part c) of Figure 4, basis
risk measured by probability of occurrence is hgitier the original volatility (+0%), and the
highest expected loss caused by basis risk is @bajmately +50%. Different results are

found in Part d). Hence, the results are stronglyethdent on the choice of risk measure.

In Figure 5, the basis risk curves in Parts c) @nfirst decrease and then slightly increase as

the volatility of industry loss is further increaseesulting in a convex form.

Hence, changes in volatility of industry loss omgpany loss have a similar impact on premi-
ums, but considerably different basis risk profilésr company loss volatility (Figure 4),
basis risk follows a concave curve, implying thahim the ranges considered, basis risk can
only increase up to a maximum value when varyirggublatility of the company’s business
(e.g., by underwriting certain business). For clesng the volatility of industry loss, howev-
er, basis risk is limited from below, in the exaegkonsidered and thus only lead to reduc-

tions in basis risk above a certain threshold.



Figure 4. Prices, safety loadings, and basis risk as funstwinpercentage changes in the

company loss volatility(S;)
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Figure 5: Prices, safety loadings, and basis risk as funstadrpercentage changes in the in-

dustry loss volatilityo(l1)

a) Prices in Mio. US-$ b) Safety Loading in % dE(X,)
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4. SUMMARY

This paper examines an indemnity-based industiy Weerranty contract with regard to pric-
ing and basis risk. Since the measures for basisare independent of the applied valuation
method, calculated price curves do not necessarilgct basis risk. To identify the different
key drivers for premium and basis risk, we conddid@esensitivity analysis with respect to
modifications in contract parameters for differemasures of basis risk. We also compared
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several common actuarial and financial pricing apphes. Among the actuarial concepts are
the expected value principle, the standard devigtianciple, the variance principle, and in-
vestment-equivalent reinsurance pricing; among fthancial concepts are the contingent

claims approach and the capital asset pricing model

Our numerical results reveal substantial discrelgagnoetween the prices obtained using dif-
ferent pricing schemes. For the calibration sethpge groups of pricing methods could be
identified that led to similar price levels. In geal, these differences and similarities result
from economic differences in the considered pri@pgroaches and from the choice of model
parameters. We further provided the safety loadimgdied by the different pricing schemes

by calculating the difference between certaintyiegjent and expected contract payoff, given
in percent of the expected contract payoff. Foreathmples considered, the safety loading
curves ran opposite to the pricing curves. Foraims, raising the industry loss trigger led to
strictly decreasing prices, but to higher (or ejsafety loadings for all analyzed pricing

methods.

In the numerical analysis, an increase in the &rom coefficient between company and
industry loss leads to higher prices and higheisbask for all pricing concepts and risk

measures. Furthermore, price and basis risk cumege concave with respect to increasing
volatility of a reinsured book of business in tlaages considered. Increasing the volatility
can thus induce lower prices for the ILW contraat,asimultaneously, lower basis risk. The
price curves for changes in industry loss volgtilitere concave as well. In contrast to the

reinsured company’s volatility, all basis risk ceswvere convex.

Regarding the trigger levels, we found that raidimg industry loss trigger leads to an in-
crease of basis risk, whereas increasing the n@dstompany loss trigger leads to decreases
in basis risk. However, in both cases, raisingttigger levels leads to lower prices.

This investigation of ILWs using different conceptisvaluation and risk measurement pro-
vides insight into the structure and charactegstit this form of insurance product. The re-
sults demonstrate that a simultaneous analysistbftiasis risk and pricing can be of substan-

tial informational value to both insurers and irswe buyers.
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APPENDI X

For the stochastic process as given in Equatigro(® obtains
s =exp( N(In( §)+4s - 0.5% o)) = exif N ab),

where N(a,b) denotes a normally distributed random variablethwexpected value
a=In(S)+x-0.50" and standard deviatioh = oy, leading to a lognormal distribution

for S;. Given the expected value

E(S)=expl a+ 0.55)

and the standard deviation

ZORNCTOREER

Os andS can be obtained by transforming these equatiossigJ
a=In(E(Sg))-0.58,

and

b:\/ln£l+az(sl)E(§)2].

the standard deviation of the stochastic proegsand the initial nominal valu& are given

by

“S:J'”[“UZ(S%@)ZJ




a=In(E(g))-0.58
= In(S)+u-0.50%=In(m-0.55
-« s=E S)exp(-4).

A derivation oflp andgj for the industry loss distributidn can be done analogously.
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