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THE EFFECTIVENESS OF MORTALITY CONTINGENT BONDS UNDER 

ADVERSE SELECTION: A STUDY OF SELECTED IMPACT FACTORS 

 

Hannah Wesker∗ 

 

ABSTRACT 

 
Recently, the increasing life expectancy witnessed in most industrialized coun-
tries has led to a greater demand by life insurance companies for possibilities to 
hedge the risk inherent in annuities. In particular, owing to a limited capacity of 
reinsurance companies, the need for alternatives to hedge against this risk has 
steadily increased. One of these alternatives is the transfer of longevity risk to 
the capital market by means of mortality contingent bonds or other capital mar-
ket instruments. Previous analyses focus on aspects such as pricing, the impact 
of basis risk, or calibration of the hedge. The aim of this paper is to study the 
effectiveness of mortality contingent bonds for different selected characteristics 
of the bonds, including, e.g., its maturity, the investment strategy, or the poli-
cyholders’ age under different assumptions concerning adverse selection. To-
ward this end, we use the model of adverse selection put forward by Gatzert 
and Wesker (2011) and model a survivor bond as proposed by Blake and Bur-
rows (2011), thereby focusing on two default risk measures for analyzing the 
effectiveness of mortality contingent bonds. Our results show that, although the 
maturity of the bond should be sufficiently long for hedging to be efficient, the 
bond does not need to cover the complete maximum duration of the annuities. 

 

1. INTRODUCTION 

 

In many countries, the market for annuities and private pensions has increased considerably in 

recent years, partially owing to initiatives by governments to advocate private retirement sav-

ing.1 At the same time, life expectancy in most industrialized countries has risen substantially, 

leading to higher than expected payouts for annuities for insurance companies. These two 

effects have led to an increasing demand by life insurance companies for possibilities to 

hedge the risk inherent in annuities. One possibility, which has lately received greater atten-

tion, is the possibility to transfer longevity risk to capital markets, for example by means of 

                                              
∗  Hannah Wesker is a doctoral student at the Friedrich-Alexander-University (FAU) of Erlangen-Nuremberg, 

Chair for Insurance Economics, Lange Gasse 20, 90403 Nuremberg, Germany, hannah.wesker@wiso.uni-

erlangen.de.  
1  In Germany, for example, the so called “Riester”-annuity was introduced in 2001 to promote private saving 

for retirement to complement the social pension program, whereby the government supports these products 

through direct subsidies to the premium and tax savings (see, e.g. Kling, Russ, and Schmeiser (2006)) 
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mortality contingent bonds (MCB) or standardized instruments such as q-forwards. Although 

twelve (re-) insurance companies and banks have collaborated to found the Life & Longevity 

Market Association (LLMA) with the aim to promote a liquid market for capital market in-

struments designed to hedge mortality and longevity related risks, thus far, there have been 

rather few successful transactions with respect to transferring longevity risk.2 One of the ob-

stacles for the creation of a successful and liquid market for mortality-linked securities is the 

occurrence of basis risk, which arises if the development of mortality in the population under-

lying the hedge is not perfectly correlated with the development of mortality within the insur-

er’s portfolio. In hedging longevity risk, one important source of basis risk is adverse selec-

tion, which here refers to the fact that due to mortality heterogeneity and information asym-

metries, mortality for annuitants is in general lower than for the population as a whole.3 Since 

the payout of MCBs is often linked to the development of mortality for the entire population, 

adverse selection might substantially hamper the effectiveness of these instruments. The aim 

of this paper is therefore to study the impact of different selected characteristics of the MCB, 

including e.g., the coupon payment and the maturity of the bond, and of the insurance compa-

ny, for example the riskiness of the asset portfolio, on the effectiveness of MCBs under ad-

verse selection. We thereby focus on the risk situation of an insurance company selling a port-

folio of annuities. Furthermore, following Gatzert and Wesker (2011) we analyze the impact 

of mortality information in underwriting by considering two assumptions differing in the abil-

ity of the insurance company to estimate and forecast adverse selection.  

 

For analyzing the impact of adverse selection, annuitant mortality has to be estimated and 

forecasted. This can be achieved either by means of specifying a model for the relationship 

between annuitant and population mortality or by means of a two population model. With 

respect to modeling the relationship between population and annuitant mortality, Plat (2009) 

focuses on the relative difference between annuitant and population mortality, which is mod-

eled through an age and time dependent portfolio-specific mortality factor. Ngai and Sherris 

(2011) use a similar approach and assume a portfolio specific mortality factor, which is con-

stant over time and linear in age (this assumption is in line with Stevenson and Wilson 

(2008)). Brouhns, Denuit, and Vermunt (2002a) instead use a Brass-type relational model to 

capture the difference between the central death rates for annuitants and the central death rates 

for the population. A number of authors, including Li and Lee (2005), Jarner and Kryger 

(2009), Li and Hardy (2011), Cairns et al. (2011), and Dowd et al. (2011), propose two-

population mortality models. 

                                              
2  Although transactions for hedging longevity risk have been scarce, there have been several examples with 

respect to hedging mortality risk (i.e., the risk of unexpected high mortality), for example by Swiss Re. 
3  See Gatzert and Wesker (2011) for a more detailed discussion of adverse selection and its impact on the risk 

situation of an insurance company. 
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Concerning the effectiveness of MCBs (and other types of mortality-linked securities) under 

adverse selection and the impact of the resulting basis risk, extensive research has been con-

ducted in recent years. The impact of basis risk on a survivor swap has been qualitatively 

studied by Sweeting (2007) in a utility-maximizing framework. He concludes that in his 

framework, basis risk is usually smaller than the risk premium that hedgers would be willing 

to pay and consequently basis risk should not be an obstacle to the creation of a market for 

longevity risk. In line with his results, Ngai and Sherris (2011), who use a static framework 

for quantifying basis risk, and Plat (2009), who studies a survivor swap, find that basis risk 

does not significantly affect hedging effectiveness. Cairns et al. (2011) aim to decompose the 

hedging effectiveness of a longevity swap by comparing a customized and a standardized 

longevity swap and find that the most important factors affecting hedging effectiveness are 

population basis risk, implemented through the differing mortality experience of Continuous 

Mortality Investigation (CMI) data and mortality for England & Wales, and recalibration risk. 

Coughlan et al. (2007) take another approach and use historical data to assess the hedging 

effectiveness of q-forwards for hedging insured lives when the q-forward is based on popula-

tion mortality. They conclude that from a long-term perspective, the loss in efficiency is ra-

ther small. Furthermore, Coughlan et al. (2011) introduce a general framework for assessing 

basis risk and find in an illustrative example based on UK data that basis risk can be consider-

ably reduced by applying their framework. In this context, Coughlan et al. (2011) define the 

concept of population basis risk, which refers to basis risk arising from a mismatch of demo-

graphic characteristics between the hedged and the underlying population. They contribute 

this to a mismatch of four factors, namely gender, age, country, and “subpopulation basis,” 

the latter of which refers to hedging a subpopulation with mortality of the population as a 

whole. The effect of “country” population basis risk has been studied by Li and Hardy (2011), 

wherein the underlying mortality is based on mortality in the US and the hedged population is 

Canadian, and by Li and Luo (2011), who evaluate the impact of basing a mortality forward 

on the UK mortality for hedging mortality in Canada, France, and Scotland, respectively.4 In 

this context, Zhou, Li, and Tan (2011) analyze the pricing of mortality-linked securities under 

population basis risk, which is implemented as subpopulation risk, i.e., the difference between 

the UK and Scottish mortality as well as the difference between the mortality experience of 

the UK and the mortality experience implied by the CMI data. 

 

We extend the analysis in Gatzert and Wesker (2011) further and conduct a comprehensive 

analysis of the impact of different selected characteristics of the MCB, the investment strategy 

and the policyholders’ age, on the hedge effectiveness of MCBs with respect to the risk situa-

tion of a life insurance company under different assumptions concerning adverse selection. 

                                              
4  Li and Luo (2011) present this study as an example of the effect of basis risk on their proposed calibration 

method for constructing efficient longevity hedges based on standardized mortality forwards. 
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We thereby consider the role of mortality information in underwriting by making different 

assumptions concerning the ability of the insurance company to estimate and price adverse 

selection as conducted in Gatzert and Wesker (2011). Adverse selection is modeled based on 

the extension of the Brass-type relational model devised by Brouhns, Denuit, and Vermunt 

(2002a) and used by Gatzert and Wesker (2011), which allows a difference in the level and 

trend of annuitant mortality as compared to population mortality. For risk management, we 

model a survivor bond as introduced by Blake and Burrows (2001), the payout of which is 

based on the mortality of the population as a whole. Basis risk therefore arises due to adverse 

selection effects, as the mortality of the population underlying the hedge differs from the mor-

tality of the hedged population. For studying the effectiveness of the MCB in depth for differ-

ent contract characteristics, the impact of the hedge effectiveness is analyzed under different 

assumptions about the size of the coupon payment and the maturity of the bond. Furthermore, 

we assess the impact of different characteristics of the insurance company and the insurance 

portfolio, that is, the riskiness of the asset base and the age of annuitants. 

 

Our results show that the characteristics of the MCB can have a crucial impact on its effec-

tiveness with respect to decreasing the risk level of an insurance company. In particular, one 

main result is that when considering the maturity of the bond, we find that the effectiveness of 

MCBs increases for longer maturities, but the greatest increases in the effectiveness of MCBs 

can be achieved for shorter durations. However, further increases in the maturities of MCBs 

of already relatively long durations yield almost negligible increases in effectiveness. This 

implies that MCBs can prove useful for hedging the risk inherent in annuities even if they do 

not cover the entire duration of the annuity. Furthermore, we find that the investment strategy 

has a considerable impact not only on the risk situation of an insurance company but also on 

the effectiveness of MCBs, whereby MCBs prove most effective for a rather conservative 

asset strategy. Lastly, the impact of adverse selection and the resulting basis risk on the hedge 

effectiveness of MCBs increases considerably for older annuitants. 

 

The remainder of the paper is structured as follows. Section 2 introduces the methods for 

modeling and forecasting annuitant mortality as well as the model of the insurance company, 

the life insurance contracts considered, and the MCBs studied. Section 3 contains results of 

the numerical analyses and Section 4 presents the conclusion. 

 

2. MODEL FRAMEWORK 

 

In this section, we first present the model for forecasting annuitant mortality and subsequently 

introduce the model of the life insurance company and the MCB. Lastly, we present the risk 
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measures used to assess the hedge effectiveness of MCBs. The model framework presented in 

this Section is based on the model introduced in Gatzert and Wesker (2011). 
 

Modeling and forecasting annuitant mortality  

For estimating and forecasting mortality of the population as a whole, we use the model pro-

posed by Brouhns, Denuit, and Vermunt (BDV) (2002a), which is an extension of the Lee-

Carter (1992) model and was also used in the analysis by Gatzert and Wesker (2011).5 In this 

model the Poisson-distributed realized number of deaths at age x and time τ, ,xD τ , is modeled 

as 

 

( )( ), ,~x x xD Poisson Eτ τ µ τ⋅  with ( ) x xa b k
x e τµ τ + ⋅= , (1) 

 

where xa  and xb  are constant over time and represent the demographic part of the model, 

while kτ  is varying over time and constitutes the time series part of the model.6 Furthermore, 

( ) ( )( ), 1 1 / 2x x xE n nτ τ τ−= − +  is the risk exposure at age x and time τ  from which the Pois-

son-distributed number of deaths ,xD τ  arises. nx(τ) hereby denotes the number of persons aged 

x still alive at the end of year τ (see Brouhns, Denuit, and Vermunt (2002b)).7  

 

For estimating the parameters of the BDV (2002a) model Maximum-Likelihood estimation is 

used whereby the maximization problem can be solved by using a uni-dimensional Newton 

method as proposed by Goodman (1979). Given the estimated parameters of xa  and xb , fore-

casts for the values of the time index kτ  are needed to predict future population mortality 

( )xµ τ . For forecasting kτ , Lee and Carter (1992) propose to fit an ARIMA process of the 

form 

 
1 1 2 2 1 1 2 2... ...p p q qk k k kτ τ τ τ τ τ τ τφ α α α δ ε δ ε δ ε ε− − − − − −= + ⋅ + ⋅ + + ⋅ + ⋅ + ⋅ + + ⋅ +  

 

                                              
5  An important advantage of the model used by Brouhns, Denuit, and Vermunt (2002a) is that the restrictive 

assumption of homoscedastic errors made in the Lee-Carter (1992) model is relaxed. Furthermore, the Pois-

son distribution is well suited for modeling the number of deaths (see Brillinger (1986)). The Lee-Carter 

(1992) model is one of the first models for stochastic mortality and is still widely used. In recent literature, 

however, alternative models have been proposed, which, depending on the respective country and population 

under consideration, might provide a better fit to the data. For the following analysis, the mortality model 

mentioned above thus might be substituted with another stochastic mortality model, whereas here the exten-

sion of the Lee-Carter (1992) model by Brouhns, Denuit, and Vermunt (2002a) is used as an example to 

highlight the characteristics influencing the effectiveness of MCBs. 
6  For an interpretation of these parameters, see also Gatzert and Wesker (2011). 
7  For simulation purposes, the above formula cannot be used, since nx(τ) is not known. Following Brouhns, 

Denuit, and Vermunt (2002b), the formula ( ) ( ), 1 lnx x xE n q pτ τ= − − ⋅  is therefore used instead, whereby xq  

is the one year death probability of an x-year old and xp  the respective survival probability. 
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on the estimated values of kτ , where the order p and q are chosen using methods from time 

series analysis, τε  is an error term with ( ) 0E τε =  and constant variance, and φ  is the drift 

term. Forecasts of kτ  are then obtained by replacing the coefficients φ , iα , and jδ  with their 

respective estimates and setting 0τε = . 

 

A general problem in insurance markets are asymmetric information and the resulting adverse 

selection effects. In the annuities market, adverse selection effects arise from mortality heter-

ogeneity8 and the inability of the insurance company to access this information and thus to 

distinguish between individuals with above or below average health. Furthermore, the indi-

vidual health situation, which is at least partially known to the individual himself, usually 

influences insurance decisions (see Finkelstein and Poterba (2002)) such that individuals with 

above average health are more likely to buy annuities. Mortality heterogeneity and asymmet-

ric information thus lead to adverse selection effects giving rise to differences in the level of 

mortality rates and in their development over time between annuitants and the general popula-

tion (see, e.g., Brouhns, Denuit, and Vermunt (2002a), Gatzert and Wesker (2011)). Although 

the BDV (2002a) model can be used to predict mortality for the population as a whole, a sepa-

rate model relating annuitant mortality to population mortality thus has to be specified to cap-

ture adverse selection effects.9 We therefore use the extension of the brass-type relational 

model by Gatzert and Wesker (2011), which is based on the model proposed by Brouhns, 

Denuit, and Vermunt (2002a), given by 

 

( ) ( ) ( )( ), 1 , 2 , ,ln ln lnann pop pop
x x x index xeτ τ τ τµ α β µ β µ τ= + ⋅ + ⋅ ⋅ + . (2) 

 

In this model annuitant mortality (marked by the superscript “ann”) is specified as a function 

of population mortality (marked by the superscript “pop”) and time indexτ , whereby population 

mortality can be forecasted using the BDV (2002a) model. As stated in Gatzert and Wesker 

(2011), β1 reflects the improvement of annuitant mortality relative to the improvement of 

population mortality, whereas β2 reflects the development of the speed of relative improve-

ment, which is incorporated by means of the interaction term between mortality rates and a 

time index τindex (see Gatzert and Wesker (2011)). 

 

Based on the estimated coefficients α, β1, and β2 and the forecasted population mortality 

( )pop
xµ τ  given by the BDV (2002a) model, annuitant mortality ( )ann

xµ τ  can be predicted 

                                              
8  Mortality heterogeneity here refers to the fact that mortality rates are not identical for all individuals of the 

same age x but differ depending, for example, on genetic predisposition or life style (see Gatzert and Wesker 

(2011)). 
9  An alternative to this approach would be to use a two-population model for population and annuitant mortali-

ty. 
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whereby the normally distributed error term ,xe τ , which is assumed to have zero mean and 

constant variance, is considered in forecasting to incorporate random deviations from the 

mean relationship between annuitant and population mortality (see Gatzert and Wesker 

(2011)). Given the force of mortality ( )ann
xµ τ , the Poisson-distributed number of deaths can 

be simulated using Equation (1). 

 

When studying the impact of selected characteristics of the MCB and the insurance company 

on the effectiveness of MCBs under adverse selection, we furthermore concentrate on the role 

of mortality information in underwriting, which is of special importance due to the scarceness 

of data on annuitant mortality. Following Gatzert and Wesker (2011), we therefore consider 

two additional scenarios for adverse selection. On the one hand, we study a scenario that is 

referred to as “adverse selection misestimated,” where the parameters of Equation (2) are 

misestimated, such that only the difference in the level and not in the trend between popula-

tion and annuitant mortality is taken into account, i.e. β1 = 1, β2 = 0, and 0α ≠ . On the other 

hand, we consider a scenario wherein the insurance company has gained perfect information 

about annuitant mortality, for example, by way of experience rating, and is consequently able 

to estimate the parameters of Equation (2) correctly and to consider this information in pricing 

and reserving (referred to as “adverse selection perfectly estimated”). Overall, we thus study 

three different scenarios with respect to adverse selection as shown in Table 1 (see Gatzert 

and Wesker (2011)).10 
 
Assuming a piecewise constant force of mortality ( )xµ τ , the death probability ( )xq τ , which 

is the probability that an x-year old policyholder dies within the next year, can be calculated 

as  

 

( ) ( )( )1 expx xq τ µ τ= − −  

 

(see Brouhns, Denuit, and Vermunt (2002a), p. 376). Based on this,  

 
1

0

n

n x x i
i

p p
−

+
=

= ∏
  

 is the probability that an x-year old male policyholder survives for the next n years. 

 
  

                                              
10  In the following, the superscript “ann” refers to realized annuitant mortality, whereas the superscript “A” 

refers to the annuitant mortality assumed by the insurance company in pricing and reserving. These can differ 

due to estimation errors by the insurance company. 



 9

Table 1: Annuitant mortality under different assumptions concerning adverse selection (see 

Gatzert and Wesker (2011)) 

 Coefficients of 

Equation (2) 

Estimated relationship between annuitant and population 

mortality 

no adverse selection α = 0, β1 = 1,  

β2 = 0 

( ) ( )A pop
x xµ τ µ τ=  

adverse selection 

misestimated 

α ≠  0, β1 = 1,  

β2 = 0 

( ) ( ), , ,ln lnA pop
x x xeτ τ τµ α µ= + +  

adverse selection 

perfectly estimated 

α ≠  0, β1 ≠  1,  

β2 ≠  0 

( ) ( ) ( )( ), 1 , 2 , ,ln ln lnA pop pop
x x x index xeτ τ τ τµ α β µ β µ τ= + ⋅ + ⋅ ⋅ +  

Note: The superscript “A” refers to estimated annuitant mortality, whereas the superscript “pop” 

refers to population mortality  

 

Modeling a life insurance company 

To gain insights into the effectiveness of MCBs under adverse selection with respect to the 

risk situation of a life insurance company, we model the life insurance company as a whole, 

considering assets and liabilities. Table 2 thus shows a simplified balance sheet of the life 

insurance company at time t = 0.  

 

Table 2: Balance sheet of the insurance company at time t = 0 (see Gatzert and Wesker 

(2011)) 

 

Assets  Liabilities 

Slow(0) E(0) 

Shigh(0) L(0) 

Mbond(0)  

 

We assume that the insurance company sells nA(0) immediate annuities paying a yearly annui-

ty a in arrears each year as long as the insured is alive in return for a single premium SP paid 

in the beginning of the contract (i.e., in t = 0). On the liability side, L(t) denotes the value of 

liabilities for the sold annuity products at time t, whereas E(t) is the value of equity of the in-

surance company at time t. E(0) is thereby given by the initial contribution by shareholders, 

while E(t) is the difference between assets and liabilities, i.e. it is determined residually. Thus, 

E(t) can be expressed as 

 

( ) ( )
( ) ( )

0 0

1,2,..., 1

E for t
E t

A t L t for t T

 ==  − = −
. 
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The insurance company hereby pays a fraction re of the earnings each year, given that they are 

positive, as a dividend to shareholders (see Gatzert and Wesker (2011)). 

 

The asset side of the modeled insurance company A(t) consists of three elements. The value of 

the mortality contingent bond Mbond(t) and the capital base available for investments in the 

capital market S(t), whereby S(t) is further divided into the market value of high and low risk 

assets Shigh(t) and Slow(t) (see Gatzert and Wesker (2011)). 

 

The initial capital base S(0) is given by  

 

( ) ( ) ( ) ,0 0 0A A B x MS E n SP n= + ⋅ − ⋅Π , 

 

where nA(0) is the number of annuities sold, nB is the number of MCBs purchased and Πx,M is 

the premium for the MCB with maturity M based on a population aged x in the beginning of 

the contract. Subsequent values of S(t) can be calculated by taking into account the cash-flows 

occurring each year, i.e.  

 

( ) ( ) ( ) ( ) ( ) ( )high low A BS t S t S t n t a n X t div t= + − ⋅ + ⋅ − , (3) 

 

where nA(t) is the number of annuitants still alive at the end of year t and X(t) is the coupon 

payment from one MCB (see Gatzert and Wesker (2011)). Concerning the investment strate-

gy, we assume that the insurance company redistributes assets each year in such a way that a 

constant fraction α is invested in low risk assets, i.e. ( ) ( )0 0lowS Sα= ⋅  and 

( ) ( ) ( )0 1 0highS Sα= − ⋅ (see Gatzert and Wesker (2011)). We assume that the market value of 

high and low risk assets, ( )iS t , i = low, high, follows a geometric Brownian motion with con-

stant drift iµ  and volatility iσ  for i = low, high.11  

 

The total value of assets at time t A(t) is then given by the sum of the capital base S(t) and the 

value of the MCB Mbond(t) (see Gatzert and Wesker (2011)), i.e. 

 

( ) ( ) ( )bondA t S t M t= + . 

 

Valuation of insurance liabilities 

Assuming independence between market and mortality risk (see, e.g., Carriere (1999, p. 340)) 

and following Gatzert and Wesker (2011), the insurance contracts can be evaluated using risk-

neutral valuation. Consequently, the value of liabilities L(t) is calculated as 

 

                                              
11  See Gatzert and Wesker (2011) for more details on the development of the geometric Brownian motion. 



 11

( ) ( ) ( )
1

1
T t

sA
A s x t

s

L t n t a p r
−

−
+

=

= ⋅ ⋅ ⋅ +∑ , 

 

with T denoting the maximum duration of the annuity and r denoting the risk-free rate. The 

superscript A in the survival probabilities refers to the assumed annuitant mortality, which 

depends on the assumptions concerning adverse selection as shown in Table 1.12 For calculat-

ing the annuity a the actuarial equivalence principle is used, so that expected premium pay-

ments are equal to expected benefit payouts,13 which can be expressed in the following man-

ner: 

 

( )
1

1
T

tA
t x

t

a p r SP
−

=

⋅ ⋅ + =∑ . (4) 

 

Modeling and valuation of a simple mortality contingent bond 

As an example of an MCB, following Gatzert and Wesker (2011) we model a so-called survi-

vor bond as proposed by Blake and Burrows (2001), which is a coupon-based MCB.14 The 

insurance company hereby receives an annual coupon payment X(t) at the end of each year t = 

0, …, M-1, which is proportional to the number of survivors in a given reference population 

nref(t). In return for these coupon payments, a premium Πx,M is paid in advance, i.e. in t = 0, 

where x denotes the age of the reference population of the MCB and M is the duration of the 

bond. Furthermore, the insurance company can account for the value of the bond Mbond(t) on 

the asset side of the balance sheet as shown in the previous Section. 

 

Concerning the pricing of MCBs, an overview and comparison of different pricing methods is 

provided by, e.g., Bauer, Börger, and Russ (2010). Differences in pricing approaches result, 

for example, from different assumptions on the underlying processes for mortality and the 

application of different valuation approaches. In this paper, we follow Gatzert and Wesker 

(2011) and apply the pricing approach of the EIB/BNP Paribas bond to determine the premi-

um of the MCB.15 The coupon payments are hereby discounted using the risk free rate r mi-

nus a certain risk premium λ (see Cairns et al. (2005)), so that the premium for a bond with 

                                              
12  In these formulas, the time subscript τ in the (age and time dependent) death and survival probabilities has 

been dropped for ease of illustration. 
13  In pricing, we do not consider the probability of default since we assume that the insurance benefits will 

continue to be paid out in case of a default (see also, e.g., Gatzert and Kling (2007, p. 553)), for example, be-

cause these are guaranteed by a guaranty fund. 
14  Blake, Cairns, and Dowd (2006), amongst others, offer a comprehensive overview for MCBs and other capi-

tal market instruments. 
15  While the EIB/BNP Paribas bond was withdrawn due to lack of interest, Blake et al. (2006) as well as Bauer, 

Börger, and Russ (2010), attribute this failure to weaknesses in design rather than mispricing. 



 12

duration M based on a reference population aged x at inception that pays out X(t) in year t can 

is given by 

 

( )( ) ( ) ( )1
1

,
0

1
M

t

x M
t

E X t r λ
−

− +

=

Π = ⋅ + −∑ , 

 

with nB being the number of MCBs purchased at time 0. The annual payment X(t) is then giv-

en by 

 

( ) ( )
( )0

ref

ref

n t
X t C

n
= ⋅ , (5) 

 

where nref(0) is equal to an arbitrary number,16 nref(t) is the number of survivors in the refer-

ence population at time t, and C is the initial coupon payment set in the contract (see Gatzert 

and Wesker (2011)). Mortality in the reference population is equal to population mortality and 

thus higher than annuitant mortality, so that nref(t) is given by 

 

( ) ( ) ( )1ref ref refn t n t d t= − − , 

 

where ( )refd t  is the number of persons who died within year t given by 

 

( ) ( )( ),~ ref pop
ref x t xd t Poisson E tµ⋅

 
and ( ) x x ta b kpop

x t eµ + ⋅= , 

 

where ,
ref
x tE  is the exposure to risk of the reference population (see Gatzert and Wesker 

(2011)).17 Hence, basis risk arises in the longevity hedge since annuitant mortality is equal to 

( )ann
xµ τ  and therefore different from the mortality underlying the hedge. 

 

Turning now to the calculation of the value of the bond at time t, Mbond(t) is given by  

 

( ) ( )( ) ( )
1

( 1)
1 , 0,..., 1

M
j t

bond B t
j t

M t n E X j r t Mλ
−

− − +

=

= ⋅ ⋅ + − = −∑ . 

 

i.e., the value of one MCB is determined as the expected present value of future cash flows 

given the information available at time t. To calculate Mbond(t) this value is multiplied by the 

number of MCBs purchased at time t = 0 (nB) (see Gatzert and Wesker (2011)). 

 

                                              
16  As the coupon payment is expressed in relative terms, the value of nref(0) does not affect the results. 
17  Here, ,

ref
x tE  is given by ( )( ) ( ), 1 / lnref pop pop

x t ref x xE n t q p= − − ⋅  (see Brouhns, Denuit, and Vermunt (2002b)). 
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Risk measurement 

Following Gatzert and Wesker (2011), we focus on the hedge effectiveness of MCBs with 

respect to the risk situation of a life insurance company, which we measure through two 

downside risk measures. Since we model the insurance company in a multi-period framework 

dynamic default during the contract term is taken into account, whereby 

( ) ( ){ }inf :dT t A t L t= <  represents the time of default. For risk measurement, the probability 

of default (PD) is defined as 

 

( )dPD P T T= ≤ , 

 

(see, e.g., Kling, Richter, and Russ (2007), Gerstner et al. (2008), Gatzert and Wesker 

(2011)), while the mean loss (ML) is given by  

 

( ) ( )( ) ( ) { }1 1dT

d d dML E L T A T r T T
− = − ⋅ + ⋅ ≤

 
, 

 

(see Gatzert and Wesker (2011)), i.e., the mean loss is an LPM(1) at the time of default dis-

counted to t = 0, whereby { }1 dT T≤  denotes the indicator function.18 Thus, while the proba-

bility of default takes only the frequency of shortfall into account, the mean loss also consid-

ers the extent of default.19 

 

3. NUMERICAL ANALYSIS 

 

Until otherwise stated, we will assume that the life insurance company sells nA(0) = 10,000 

annuities to x = 65 year old male policyholders in the year 2012. The maximum age attainable 

as implied by the BDV (2002a) model is 100 so that the maximum duration of an annuity T is 

35 years.20 Assuming a risk-free interest rate of r = 3% and a single premium SP = 10,000, the 

fair annuity depends on the assumptions concerning adverse selection. Concerning the in-

vestment opportunities, we assume a drift (volatility) of µlow = 6% (σlow = 8%) for the low-risk 

assets and µhigh = 10% (σhigh = 24%) for the high-risk assets as well as a correlation of ρ = 0.1. 

The initial equity is set to E(0) = 10 Mio and the percentage of earnings distributed to share-

holders is re = 25%. Concerning the MCB, in the base case we assume that the maturity M is 

equal to the maximum duration of the annuity T, i.e. M = T, such that the longevity hedge 

                                              
18  The indicator function is thereby equal to one if the condition in the brackets is satisfied and zero otherwise. 
19  See Gatzert and Wesker (2011) for a more detailed interpretation of the mean loss. 
20  Assuming a maximum age of 100 might be considered too low. The scarcity of data especially at high ages 

nevertheless inhibits a reliable estimation of parameters at these ages. In the software accompanying the 

LifeMetrics index, for example, a maximum age of only 89 is recommended (see 

http://www.jpmorgan.com/pages/ jpmorgan/investbk/solutions/lifemetrics/software). 
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covers the complete duration of the annuity, nB = nA(0), i.e. the insurance company purchases 

one MCB for each annuity it sells and an initial coupon payment C = 100. Following Gatzert 

and Wesker (2011), we set the loading λ = 0, since we do not assume any systematic mortality 

risk. These parameters were chosen for illustrative reasons and are subject to robustness tests. 

 

To evaluate the effectiveness of MCBs under different assumptions concerning adverse selec-

tion, Monte-Carlo simulation is employed, whereby we simulate 100,000 paths for the asset 

portfolio and the realized mortality. To improve the comparability of results, the same se-

quence of random numbers was used for each simulation run.21 As illustrated above, the value 

of the MCB at time t depends on the information available at time t, so that valuation is con-

ducted path-dependently for all 100,000 possible realizations of ( ) ( )0ref refn t n  at each time t. 

The calculation of Mbond(t) is thereby based on 1,000 simulation runs of future mortality, since 

computational intensity restricts a higher number of simulation runs; however, this is still 

enough to ensure robust results.22 

 

Estimation of annuitant mortality  

The estimation of population mortality is based on the central deaths rates for the UK from 

1950 to 2009 available through the Human Mortality Database. The estimated parameters of 

the BDV (2002a) model are displayed in Figure 1 a) – c), whereby Figure 1 c) also displays 

the forecasted values of kτ , which are based on the estimated ARIMA process. Time series 

analysis indicates a Random Walk (p = q = 0) as sufficient to describe the dynamic of the 

mortality index. Subsequent residual analysis using Box-Ljung test as well as ACF and PACF 

analysis showed no significant residual autocorrelation. Thus, the forecasts shown below were 

calculated using an ARIMA (0,1,0) process with drift φ = -1.5403 (standard error 0.3056). 

 

To estimate adverse selection and thus annuitant mortality, data on the UK annuitant mortality 

from the CMI from 1947 to 2000 is used.23 During this period, five mortality tables were pub-

lished in the years 1947, 1968, 1980, 1992 and 2000, respectively. Applying the model for 

adverse selection on these data points, the results imply a coefficient β1 = 1.1618 (0.0123) and 

a coefficient β2 = -0.0004 (0.0002) (robust standard errors in parenthesis). This indicates a 

faster improvement of annuitant mortality as compared to the population as a whole; however, 

                                              
21  Concerning the robustness of results, the results are stable with respect to different sequences of random 

numbers. 
22  The standard error of Monte-Carlo simulation for the value of the MCB at t = 1 Mbond(1) is approximately 

0.0322, whereas the expected value of Mbond(1) is approximately 12 for an initial coupon payment of C = 1. 

The exact standard error depends on the path considered and the values for the standard error lie between 

0.0291 and 0.0354.  
23  This data is also used, for example, by Ngai and Sherris (2011) and Gatzert and Wesker (2011) to calibrate 

adverse selection. 
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this overimprovement decreases over time as shown by the negative coefficient of the interac-

tion term between year τindex and population mortality β2.
24 The estimated intercept α is equal 

to -0.0275 (0.0198) and the estimated standard error of residuals ,x te  is 0.1292, whereby the 

residuals are also considered for each year t and age x in forecasting.  

 

Figure 1: Parameter estimates for the BDV (2002a) model 
a)  b)  

c)  

 

As shown in Table 1, three assumptions concerning adverse selection are made. We first as-

sume no adverse selection, i.e. we assume annuitant and population mortality to be identical. 

Second, we differentiate between the ability of the insurance company to forecast and conse-

quently consider adverse selection in pricing. In line with Gatzert and Wesker (2011), these 

analyses are intended to highlight the importance of mortality information in underwriting. 

Table 3 shows the estimated respectively assumed coefficients of Equation (2) as well as the 

implied remaining life expectancy of a 65-year-old male annuitant in the year 201225 and the 

fair annuity calculated according to Equation (4). 

 

                                              
24  Note that 1950

index
τ τ= − , where 1950 is the first year for which mortality data is used and τ is the year under 

consideration. 
25  The remaining life expectancy of an x year old in year t ex(t) is given by ( ) ( )

0 0

k

x x j
k j

e t p t j+
≥ =

= +∑∏  (see 

Brouhns, Denuit, and Vermunt (2002b)). 
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In the absence of adverse selection, population and annuitant mortality is identical resulting in 

a remaining life expectancy of 18.51 years for a 65-year-old annuitant and a fair annuity of a 

= 748. When adverse selection is misestimated,26 the estimated intercept α is equal to 

-0.2779α = , resulting in an assumed remaining life expectancy of 20.60 and a fair annuity 

of a = 688, as shown in Table 3. Otherwise, when assuming that the insurance company is 

perfectly able to estimate adverse selection, the estimated parameters imply a remaining life 

expectancy for a 65-year-old annuitant of 21.58 and consequently a fair annuity a = 663. As 

seen in Table 3, assumed and realized mortality differ for the case when adverse selection is 

misestimated. Assumed mortality is higher than realized mortality, which results in an ex-

pected life expectancy that is underestimated, such that on average, the insurance company 

has to pay out approximately one annuity more than expected. 

 

Table 3: Estimated parameters, remaining life expectancy, and fair annuity under different 

assumptions concerning adverse selection 

 Coefficients of 

Equation (2) 

Assumed annuitant 

mortality A
xq  (life ex-

pectancy e65(2012)) for 

pricing and reserving 

Realized annuitant 

mortality ann
xq  (life 

expectancy e65(2012)) 

for risk measurement 

Fair an-

nuity a 

without adverse 

selection 

α = 0, β1 = 1, ` 

β2 = 0 

A pop
x xq q=  

(18.51) 

ann pop
x xq q=  

(18.51) 

748 

adverse selection 

misestimated 

α = −0.2779∗∗∗, 

β1 = 1, β2 = 0 

*
1 2, 0, 1, 0annA

x xq q α β β≠ = ==  

(20.60) 

ann ann
x xq q=  

(21.58) 

688 

adverse selection 

perf. estimated 

α = -0.0275,  

β1 = 1.1618*** , 

β2 = -0.0004**  

A ann
x xq q=  

(21.58) 

ann ann
x xq q=  

(21.58) 

663 

Note: ***, **, and * denote values significant at the 1%, 5% and 10% levels, respectively. 

 

Effectiveness of MCBs for different contract characteristics of the MCB 

In this section, we study the impact of different contract characteristics of the MCB on the 

effectiveness of MCBs with respect to the risk situation of the insurance company under dif-

ferent assumptions concerning adverse selection. We focus on the effect of the initial coupon 

payment C and the maturity of the bond M. The impact of a differing maturity of the bond M 

on the effectiveness of MCBs under different assumptions concerning adverse selection is 

shown in Figure 2. Under these assumptions, the risk situation of the insurance company re-

mains constant if no MCB is purchased and is shown only for comparison. When comparing 

the red line with crosses and the blue line with triangles, one can see that the risk of an insur-

                                              
26  When aderverse selection is misestimated, only the difference in the level and not in the trend of annuitant 

mortality is taken into account as described in the model section, i.e. β1 = 1, β2 = 0, and α ≠  0. 
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ance company can be reduced considerably through the use of MCBs but that the amount of 

risk reduction achievable depends substantially on the assumptions about adverse selection 

and the maturity of the MCB, M. 

 

In general, when considering the risk level of an insurance company, as measured through the 

probability of default and the mean loss if no MCB is purchased for risk management, the risk 

level of the insurance company is higher when adverse selection is present (see Figure 2, Part 

b)) than under no adverse selection (Figure 2, Part a)), whereby a misestimation of adverse 

selection further increases the risk level of an insurance company as compared to the case 

when adverse selection is perfectly estimated (Figure 2, Part b, i) and ii), respectively).27 Fur-

thermore, the relative risk reduction achievable by means of MCBs decreases under adverse 

selection, whereby especially a mispriced adverse selection hampers the effectiveness of 

MCBs, as can be seen by the dashed line in Figure 2, which shows the relative risk reduction 

achievable through the use of MCBs.28 For example, although the mean loss can be reduced 

by 53.8% when no adverse selection is assumed by purchasing a MCB with a maturity of M = 

20, the risk reduction that is achievable under adverse selection amounts to only 47.0% when 

adverse selection is misestimated and to 51.8% when adverse selection is perfectly estimated. 

These results are in line with those in Gatzert and Wesker (2011).  

 

Concerning the impact of differing maturities M, the results show that, in general, an increase 

in the maturity of the MCB M comes along with a decrease in the risk level of an insurance 

company and thus with an increase in the effectiveness of MCBs.29 When considering the 

marginal increase in the effectiveness of the MCB, however, the results imply that the mar-

ginal increase in the effectiveness of MCBs is diminishing, i.e. the greatest increase in the 

effectiveness of MCBs can be achieved for the shorter durations studied ranging from about 5 

to 20 years. For example, when increasing the maturity of the MCB from M = 5 to M = 15 

years when no adverse selection is present, the probability of default can be reduced by 45.4% 

for M = 15 as compared to 13.3% for M = 5, which corresponds to a substantial reduction in 

the probability of default from 0.53% when purchasing MCBs with maturity M = 5 to 0.33% 

when purchasing MCBs with maturity M = 15. Otherwise, when increasing the maturity of the 

                                              
27  For a more comprehensive analysis of the impact of adverse selection on the risk situation of an insurance 

company, see Gatzert and Wesker (2011). 
28  The relative difference is here defined as ( )without MCB with MCB without MCBPD PD PD−  for the probability of default 

and ( )without MCB with MCB without MCBML ML ML−  for the mean loss. 
29  Please note that all analyses conducted in this paper are ceteris paribus analyses. Thus, they serve to identify 

the impact of the change in one influence factor keeping all other factors constant. It might be possible to en-

hance the effectiveness of MCBs by combining different factors studied in this paper. For example, the effec-

tiveness of an MCB with a rather short duration might be improved through increasing the coupon C or 

changing the investment strategy.  
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MCB from M = 30 to M = 35 years, the reduction in the probability of default corresponds to 

only 59.7% for M = 30 as compared to 60.2% for M = 35 (corresponding to a reduction in the 

probability of default from 0.25% for M = 30 to 0.24% for M = 35), whereby this increase is 

almost negligible. The results thus imply that in this model framework, under the stated as-

sumptions, the effectiveness of MCBs is not substantially hampered if the duration of the 

MCB does not cover the maximum duration of the annuity, if the difference between the dura-

tion of the bond M and the maximum duration of the annuity T is not too large.30 However, if 

the duration of the MCB is too short, the risk reduction achievable by means of MCBs is re-

duced substantially. 

 

Lastly, considering the impact of adverse selection for different maturities M of the MCB, the 

results imply that the loss in efficiency of MCBs through adverse selection and the resulting 

basis risk decreases for a longer maturity M of the bond, which indicates that the impact of 

basis risk brought along by adverse selection can be reduced by increasing the duration of the 

hedge. For example, when considering the relative difference between the risk reduction 

achievable through an MCB with adverse selection misestimated and without adverse selec-

tion, the results show that this difference corresponds to approximately 15% for a maturity of 

M = 5, whereas it amounts to only approximately 11% for M = 35.31 Overall, our results imply 

that a longer duration of the MCB leads, on the one hand, to an increase in the efficiency of 

MCBs in general, and on the other hand, decreases the impact of adverse selection and the 

resulting basis risk. When hedging the risk inherent in annuities, the maturity of the MCB 

should thus be sufficiently great for longevity hedging to be efficient. 

  

                                              
30  These results thus imply that the duration of the BNP Paribas bond, which amounted to 25 years and there-

fore did not cover the maximum duration of the annuities, might not have resulted in a considerable loss in 

efficiency.  
31  This difference is defined as ( )no adverse selection adverse selection misestimated no adverse selection

PD PD PDrel rel rel−  for the example of 

the probability of default with ( )PD without MCB with MCB without MCBrel PD PD PD= −  as the relative risk reduction 

achievable by means of MCBs defined as above.  
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Figure 2: The impact of risk management using mortality contingent bonds (MCBs) on an 

insurer’s risk situation under different assumptions concerning adverse selection for different 

maturity M of the MCB 
a) Without adverse selection 

 
b) With adverse selection 
i.) Adverse selection misestimated 

 
ii.) Adverse selection perfectly estimtated 
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Turning now to the impact of the initial coupon C, Figure 3 shows the relative risk reduction 

achievable by means of MCBs under different assumptions concerning adverse selection for 

different values of the initial coupon C. While a higher value of the initial coupon C comes 

along with higher payments to the insurance company during the contract term (see Equation 

5), it also leads to a higher premium for the MCB which has to be paid in t = 0. Thus, there 

exists a trade-off between higher coupon payments and a higher premium. The results show 

that in this model framework under the stated assumptions generally in the considered range, 

a higher initial coupon C ceteris paribus leads to a greater reduction in the risk level of an 

insurance company. However, for the probability of default, the maximum risk reduction is, 

under the stated assumptions for the considered discrete values, reached at approximately 200 

to 250, depending on the assumption about adverse selection, whereas the risk reduction 

achievable through the use of MCBs decreases for higher values of C. This might be owing to 

the higher premium, which has to be paid in the beginning of the contract, associated with the 

higher coupon payment, which decreases the asset base and thus the amount of money availa-

ble for investment in the capital market, thereby possibly leading to a higher default probabil-

ity. For the mean loss, the results show that, in the considered range, a higher coupon payment 

C leads to a higher risk reduction, but that, the extent of the efficiency increase decreases for 

higher coupon payments. For example, although an increase in the initial coupon C from 50 to 

100 leads to an increase in the relative risk reduction from 49.7% for C = 50 to 71.6% for C = 

100 (which corresponds to a decrease in the mean loss from 351 for C = 50 to 198 for C = 

100), an increase from C = 250 to C = 300 implies a relative risk reduction of 90.2% for C = 

250 as compared to 91.5% for C = 300 (corresponding to a decrease in the mean loss from 68 

for C = 250 to 59 for C = 300), whereby this increase is substantially smaller.  

 

Although the direction of effects is identical for all three assumptions concerning adverse se-

lection, the maximum relative risk reduction achievable for the probability of default through 

the use of MCBs is reached for lower coupon payments when no adverse selection is present 

than under perfectly estimated adverse selection. This implies that for relatively high coupon 

payments, the risk reduction achievable by means of MCBs is slightly higher under perfectly 

forecasted adverse selection as compared to no adverse selection. This effect might be due to 

very high coupon payments from the MCBs in the initial contract years, in which a high per-

centage of the reference population is still alive. In these years, the payouts for annuities are 

smaller when adverse selection is perfectly forecasted as compared to the case when no ad-

verse selection is present, owing to the lower fair annuity a (see Table 3). Under perfectly 

forecasted adverse selection, the insurance company might be able to build up sufficient re-

serves in the early policy-years to outbalance the lower coupon payments in later policy-

years.  
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Concerning the case where adverse selection is misestimated, the risk reduction achievable 

through the use of MCBs is considerably lower than under perfectly estimated adverse selec-

tion as found in the previous analysis as well as in the analyses by Gatzert and Wesker (2011). 

When considering the impact of a higher coupon payment, the effects are almost identical to 

the case where no adverse selection was assumed. For example, the results show that for the 

probability of default the trade-off between the higher premium and the higher coupon pay-

ments, leads to a reduction in the effectiveness of MCBs for a relatively high initial coupon C. 

For the mean loss otherwise, the effectiveness of the MCB increases steadily in the consid-

ered range. 

 

Figure 3: The impact of risk management using mortality contingent bonds (MCBs) on an 

insurer’s risk situation under different assumptions concerning adverse selection for different 

values of the initial coupon C 

 

 
 

Summing up, our results indicate that MCBs are very effective for rather low initial coupon 

payments C, while very high initial coupons might even reduce the hedge effectiveness of 

MCBs. Furthermore, for very high coupon payments, the impact of adverse selection and the 

resulting basis risk vanishes if adverse selection can be perfectly forecasted, which might be 

owing to the complex interaction between assets and liabilities and the time structure of cash 

flows, which differ for the varying assumptions concerning adverse selection. 
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of an insurance company. Therefore, in this section, we analyze the impact of different asset 

allocations and the influence of the policyholders’ age on the effectiveness of MCBs and the 

impact of different types of adverse selection on the effectiveness of MCBs. 

 

Figure 4 shows the risk of an insurance company for varying investment strategies as reflect-

ed in different fractions α of low risk assets with and without purchasing an MCB based on 

different assumptions concerning adverse selection. The results show that the investment 

strategy has a substantial impact on the risk level of an insurance company, whereby a higher 

fraction of low risk assets α in general leads to lower risk, except for α = 100%, for which the 

risk level increases. This effect might be due to the effect of the expected return, as a more 

conservative asset strategy, i.e. a higher fraction of low risk assets α, while coming along with 

lower risk as reflected in lower volatility, also implies a lower expected return. For an invest-

ment in only low risk assets, the effect of the lower expected return appears to outweigh the 

impact of the lower volatility, which leads to an increase in both the probability of default and 

the mean loss, whereas for a lower fraction of low risk assets, the effect is reversed and a 

higher volatility implies a higher probability of default and mean loss despite a higher ex-

pected return. Under the stated assumptions for the considered discrete values, the risk level 

of the insurance company, as measured by both the probability of default and the mean loss, is 

thus minimal for approximately α = 90% or α = 80% for all assumptions concerning adverse 

selection. 

 

Concerning the effectiveness of MCBs for different investment strategies, the results imply 

that the investment strategy has a substantial impact on the relative risk reduction achievable 

by means of MCBs as reflected in the black dashed line in Figure 4. When no adverse selec-

tion is present or when adverse selection can be perfectly forecasted, the highest risk reduc-

tion is achieved when the insurance company invests approximately α = 90% in low risk as-

sets, that is, for the investment strategy coming along with the lowest risk level. Under imper-

fectly estimated adverse selection, the risk reduction achievable for both the probability of 

default and the mean loss is slightly higher for a fraction of low risk assets α = 80%. Other-

wise, in the considered range for the chosen discrete values, the relative risk reduction reaches 

its minimum for α = 50%, at the highest risk level in the analyzed range. The results thus in-

dicate that MCBs can prove especially efficient for a conservative investment strategy and 

consequently an insurance company with a low level of default risk, since the relative risk 

reduction achievable through the use of MCBs is highest for a rather conservative investment 

strategy.  
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Figure 4: The impact of risk management using mortality contingent bonds (MCBs) on an 

insurer’s risk situation under different assumptions concerning adverse selection for different 

asset allocation 
a) Without adverse selection 

 
b) With adverse selection 
i.) Adverse selection misestimated 

 
ii.) Adverse selection perfectly estimtated 
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When studying the impact of adverse selection on the effectiveness of MCBs for different 

investment strategies, one can see that the development of the relative risk reduction is almost 

identical for all assumptions concerning adverse selection, i.e. a higher fraction of low risk 

assets α leads to a greater effectiveness of MCBs till about α = 80% or α = 90%, while in-

creasing α further lowers the risk reduction achievable through MCBs.32  

 

Lastly, the impact of the policyholders’ age x on the effectiveness of MCBs is studied. We 

vary the age of the annuitant from 60 to 80 years.33 The effectiveness of MCBs for varying 

age x under different assumptions concerning adverse selection is illustrated in Figure 5, 

which shows the relative reduction in the probability of default and the mean loss achievable 

through the purchase of MCBs. The results show that in general under the stated assumptions 

for the considered range, the effectiveness of MCBs decreases with increasing age of policy-

holders. Without adverse selection, for example, the probability of default can be decreased 

by approximately 65% for a portfolio of annuitants aged x = 60, whereas the risk reduction 

effect amounts to only 39% for a portfolio of annuitants aged x = 80. One reason for this ef-

fect might be the shorter duration of the MCB and consequently the fewer coupon payments 

for older annuitants. 

 

Concerning the impact of adverse selection and the resulting basis risk on the effectiveness of 

MCBs for varying ages of policyholders, the impact of adverse selection even if it is perfectly 

estimated increases for older annuitants as can be seen by the slightly greater difference be-

tween the red line with crosses and the green line with triangles in Figure 5. This reflects the 

risk reduction achievable through MCBs without adverse selection and with perfectly esti-

mated adverse selection, respectively. For example, considering again the relative difference 

between the risk reduction achievable through an MCB with adverse selection perfectly esti-

mated and without adverse selection, this difference corresponds to a probability of default of 

about 2.5% for x = 60 year old annuitants, whereas it amounts to approximately 11% for x = 

80 year old annuitants. For the mean loss, the results are very similar.  

 

                                              
32  However, when considering the amount of risk reduction achievable through the use of MCBs, the effective-

ness of MCBs varies substantially for the difference assumptions concerning adverse selection, e.g. for α = 

90% the probability of default can be reduced by about 60.4% when no adverse selection is assumed, while 

the risk reduction achievable through the use of MCBs amounts to only 52.9% when adverse selection is 

misestimated. This difference is in line with the results found in the previous analyses as well as with the re-

sults by Gatzert and Wesker (2011). 
33  As stated previously, we assume M = T. Thus, varying the age of policyholders also influences the maturity 

of the MCB M as the maximum duration of the contract T, which is given by the difference between the in-

ception of the contract and the maximum age as implied by the model (here: 100 years), changes. For exam-

ple, for x = 60 year old annuitants the maturity of the MCB M (as well as the maximum duration of the annui-

ty T) is equal to 40 years, while for x = 80 the maturity of the MCB amounts to only 20 years. 
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When considering the impact of a misestimated adverse selection, the results show that the 

difference between the two studied assumptions “adverse selection misestimated” and “ad-

verse selection perfectly estimated”, decreases. This effect might be due to the shorter dura-

tion of both – the annuity as well as the MCB – such that the impact of the misestimated trend 

between annuitant and population mortality decreases. 

 

Figure 5: The impact of risk management using mortality contingent bonds (MCBs) on an 

insurer’s risk situation under different assumptions concerning adverse selection for annui-

tants aged x 

 

 
 

Overall, the effectiveness of MCBs in general decreases for older annuitants. In addition, the 

impact of perfectly estimated adverse selection and the resulting basis risk increases consider-

ably, so that especially for older annuitants and in the presence of adverse selection, the effec-

tiveness of MCBs is considerably reduced. 

 

4. SUMMARY 

 

In this paper, we examine the impact of certain characteristics of the mortality contingent 

bond, namely the maturity and the initial coupon payment, insurance company (i.e., the in-

vestment strategy), and insurance portfolio (i.e., the age of annuitants) as well as the impact of 

adverse selection and the resulting basis risk on the hedge efficiency of an MCB under differ-

ent assumptions concerning adverse selection. We therefore explicitly model adverse selec-

tion using the extension of the Brass-type relational model initially put forward by Brouhns, 

Denuit, and Vermunt (2002a) and used by Gatzert and Wesker (2011) to estimate the relation-

ship between population and annuitant mortality based on the UK annuitant mortality data by 

CMI and population mortality for the UK from the Human Mortality Database. To estimate 
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population mortality, the extension of the Lee-Carter (1992) model by Brouhns, Denuit, and 

Vermunt (2002a) is used. Following Gatzert and Wesker (2011), to highlight the importance 

of mortality information in underwriting, we study two different assumptions about adverse 

selection and the ability of the insurance company to estimate and forecast annuitant mortali-

ty. We first assume that the insurance company misestimates adverse selection, for example 

due to lack of data on annuitant mortality. We then assume that the insurance company has 

gained perfect information about annuitant mortality, so that this information can be consid-

ered in pricing and reserving. To analyze the effectiveness of MCBs, we model the insurance 

company holistically, considering assets and liabilities and focusing on two default risk 

measures, namely the probability of default and the mean loss. 

 

One main result is that the maturity of the MCB is an important determinant of the risk reduc-

tion effect of the MCB, whereby generally a longer duration leads to a higher risk reduction. 

In our model, under the stated assumptions, the highest risk reduction effect is achieved when 

the duration of the bond is equal to the maximum duration of the annuity. However, the mar-

ginal increase in the effectiveness of the MCB is diminishing, i.e. for very long durations of 

the bond the increase in the risk reduction in response to an increasing duration of the bond is 

almost negligible. For example, for M = 30 the probability of default can be reduced by 

59.7%, while for M = 35 the risk reduction achievable amounts to 60.2% for the case without 

adverse selection. On the other hand, a substantially reduced maturity leads to a considerable 

loss in efficiency. For example, although the mean loss can be reduced by 71.2% when pur-

chasing a MCB with a duration of M = 30 years, the risk reduction effect corresponds to only 

41.1% for M = 10 and to only 17.5% for M = 5 years again for the case without adverse selec-

tion. Considering the effect of adverse selection, our results show that the impact of adverse 

selection and the resulting basis risk can be reduced by increasing the maturity of the MCB. 

For example, the relative difference between the risk reduction achievable through an MCB 

without adverse selection and with misestimated adverse selection decreases from approxi-

mately 15% for M = 5 to approximately 11% for M = 35. Our results thus indicate that for 

hedging to be efficient, the maturity of the MCB has to be sufficiently long, especially under 

adverse selection. In our model framework under the stated assumptions, however, the loss in 

efficiency is rather small if the hedge does not completely cover the maximum duration of the 

annuity. This indicates that a fixed maturity of the bond rather than a stochastic maturity that 

covers the complete duration of the annuity portfolio until the last annuitant dies, might result 

in a rather small loss in efficiency from the perspective of the insurance company. 

 

Concerning the impact of the characteristics of the insurance company, we found that the in-

vestment strategy has a substantial impact on the effectiveness of MCBs, whereby MCBs 

prove most useful for a rather conservative investment strategy that comes along with a low 
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level of default risk, whereas the impact of adverse selection and the resulting basis risk does 

not change considerably for a varying investment strategy. For the stated assumptions and the 

considered discrete values, for example, the maximum risk reduction of 72.6% is achieved for 

a fraction of low risk assets α = 90% for the mean loss and the case without adverse selection, 

whereas a riskier investment strategy with a fraction of low risk assets α = 50% yields a risk 

reduction effect of only 57.1%.  

 

Lastly, we found that the age of annuitants substantially influences the impact of adverse se-

lection and the resulting basis risk, whereby the older the annuitants in the portfolio, the 

greater the loss in efficiency due to adverse selection. For example, when hedging a portfolio 

for x = 65 year old annuitants, the relative difference between the risk reduction effect without 

adverse selection and with perfectly estimated adverse selection amounts to approximately 

3% for both the probability of default and the mean loss, whereas this difference increases to 

approximately 10% or 11% for the probability of default and the mean loss, respectively, for 

x = 80.  

 

Overall, our results indicate that when purchasing MCBs for risk management, attention has 

to be paid to the characteristics of the insurance company and the insurance portfolio in order 

to be able to forecast the risk reduction achievable through the purchase of MCBs correctly. 

The characteristics of the MCB also have to be considered carefully. Our results indicate that 

from the perspective of the insurance company, a fixed maturity might result in a rather small 

loss in efficiency, whereby the fixed maturity would be rather positive for potential investors 

in MCBs.  
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