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ADVERSE SELECTION: A STUDY OF SELECTED IMPACT FACTORS

Hannah Weskér
ABSTRACT

Recently, the increasing life expectancy witnesseaost industrialized coun-

tries has led to a greater demand by life insuraooepanies for possibilities to

hedge the risk inherent in annuities. In particutaving to a limited capacity of

reinsurance companies, the need for alternativé®dge against this risk has
steadily increased. One of these alternativesadrdmsfer of longevity risk to

the capital market by means of mortality contindeotds or other capital mar-
ket instruments. Previous analyses focus on aspactsas pricing, the impact
of basis risk, or calibration of the hedge. The aiinthis paper is to study the
effectiveness of mortality contingent bonds fofelént selected characteristics
of the bonds, including, e.g., its maturity, thedstment strategy, or the poli-
cyholders’ age under different assumptions conograidverse selection. To-
ward this end, we use the model of adverse seteqtitt forward by Gatzert

and Wesker (2011) and model a survivor bond asgsexb by Blake and Bur-

rows (2011), thereby focusing on two default riskasures for analyzing the
effectiveness of mortality contingent bonds. Owuits show that, although the
maturity of the bond should be sufficiently long feedging to be efficient, the

bond does not need to cover the complete maximuatida of the annuities.

1. INTRODUCTION

In many countries, the market for annuities andgte pensions has increased considerably in
recent years, partially owing to initiatives by govments to advocate private retirement sav-
ing.! At the same time, life expectancy in most indasized countries has risen substantially,
leading to higher than expected payouts for ameiitor insurance companies. These two
effects have led to an increasing demand by liRuriance companies for possibilities to
hedge the risk inherent in annuities. One possgibivhich has lately received greater atten-
tion, is the possibility to transfer longevity risi capital markets, for example by means of

Y Hannah Wesker is a doctoral student at the FdedXlexander-University (FAU) of Erlangen-Nuremper
Chair for Insurance Economics, Lange Gasse 20, d0Nfremberg, Germany, hannah.wesker@wiso.uni-
erlangen.de.

! In Germany, for example, the so called “Riestmhuity was introduced in 2001 to promote privateirsy
for retirement to complement the social pensiorg@am, whereby the government supports these preduct
through direct subsidies to the premium and tainggv(see, e.g. Kling, Russ, and Schmeiser (2006))



mortality contingent bonds (MCB) or standardizestinments such as g-forwards. Although
twelve (re-) insurance companies and banks havabwohted to found the Life & Longevity
Market Association (LLMA) with the aim to promoteliguid market for capital market in-
struments designed to hedge mortality and longeelgted risks, thus far, there have been
rather few successful transactions with respettatosferring longevity risk.One of the ob-
stacles for the creation of a successful and ligouédtket for mortality-linked securities is the
occurrence of basis risk, which arises if the dgwelent of mortality in the population under-
lying the hedge is not perfectly correlated witk ttevelopment of mortality within the insur-
er's portfolio. In hedging longevity risk, one impant source of basis risk is adverse selec-
tion, which here refers to the fact that due to talidy heterogeneity and information asym-
metries, mortality for annuitants is in general émthan for the population as a whdI8ince
the payout of MCBs is often linked to the developinaf mortality for the entire population,
adverse selection might substantially hamper thec#¥eness of these instruments. The aim
of this paper is therefore to study the impactiffecent selected characteristics of the MCB,
including e.g., the coupon payment and the matwofityre bond, and of the insurance compa-
ny, for example the riskiness of the asset podfadn the effectiveness of MCBs under ad-
verse selection. We thereby focus on the risk sgnaf an insurance company selling a port-
folio of annuities. Furthermore, following Gatzertd Wesker (2011) we analyze the impact
of mortality information in underwriting by considieg two assumptions differing in the abil-
ity of the insurance company to estimate and fateadverse selection.

For analyzing the impact of adverse selection, aanumortality has to be estimated and
forecasted. This can be achieved either by meamspeaxifying a model for the relationship
between annuitant and population mortality or byanseof a two population model. With
respect to modeling the relationship between pdipmaand annuitant mortality, Plat (2009)
focuses on the relative difference between annugéad population mortality, which is mod-
eled through an age and time dependent portfokaifip mortality factor. Ngai and Sherris
(2011) use a similar approach and assume a port$pkcific mortality factor, which is con-
stant over time and linear in age (this assumpisom line with Stevenson and Wilson
(2008)). Brouhns, Denuit, and Vermunt (2002a) iadtase a Brass-type relational model to
capture the difference between the central deatis far annuitants and the central death rates
for the population. A number of authors, includibigand Lee (2005), Jarner and Kryger
(2009), Li and Hardy (2011), Cairns et al. (2014nd Dowd et al. (2011), propose two-
population mortality models.

2 Although transactions for hedging longevity riskve been scarce, there have been several exawiftes
respect to hedging mortality risk (i.e., the rigkuoexpected high mortality), for example by Swhss

® See Gatzert and Wesker (2011) for a more detdikmlission of adverse selection and its impadahermisk
situation of an insurance company.



Concerning the effectiveness of MCBs (and otheesypf mortality-linked securities) under
adverse selection and the impact of the resultagjsbrisk, extensive research has been con-
ducted in recent years. The impact of basis riska®urvivor swap has been qualitatively
studied by Sweeting (2007) in a utility-maximizifiggmework. He concludes that in his
framework, basis risk is usually smaller than tis& premium that hedgers would be willing
to pay and consequently basis risk should not bebstacle to the creation of a market for
longevity risk. In line with his results, Ngai agherris (2011), who use a static framework
for quantifying basis risk, and Plat (2009), whads¢s a survivor swap, find that basis risk
does not significantly affect hedging effectivend3airns et al. (2011) aim to decompose the
hedging effectiveness of a longevity swap by commgaa customized and a standardized
longevity swap and find that the most importantdex affecting hedging effectiveness are
population basis risk, implemented through theediiffg mortality experience of Continuous
Mortality Investigation (CMI) data and mortalityrf@&ngland & Wales, and recalibration risk.
Coughlan et al. (2007) take another approach aedhistorical data to assess the hedging
effectiveness of g-forwards for hedging insure@siwhen the g-forward is based on popula-
tion mortality. They conclude that from a long-tepmrspective, the loss in efficiency is ra-
ther small. Furthermore, Coughlan et al. (201Inoshice a general framework for assessing
basis risk and find in an illustrative example lthega UK data that basis risk can be consider-
ably reduced by applying their framework. In thetext, Coughlan et al. (2011) define the
concept of population basis risk, which refers asib risk arising from a mismatch of demo-
graphic characteristics between the hedged andirtderlying population. They contribute
this to a mismatch of four factors, namely genége, country, and “subpopulation basis,”
the latter of which refers to hedging a subpopatativith mortality of the population as a
whole. The effect of “country” population basiskrisas been studied by Li and Hardy (2011),
wherein the underlying mortality is based on mdastah the US and the hedged population is
Canadian, and by Li and Luo (2011), who evaluageitimpact of basing a mortality forward
on the UK mortality for hedging mortality in Canadaance, and Scotland, respectivelp.
this context, Zhou, Li, and Tan (2011) analyzegheing of mortality-linked securities under
population basis risk, which is implemented as sphjation risk, i.e., the difference between
the UK and Scottish mortality as well as the deéfere between the mortality experience of
the UK and the mortality experience implied by @MI data.

We extend the analysis in Gatzert and Wesker (2@iriher and conduct a comprehensive
analysis of the impact of different selected chizmastics of the MCB, the investment strategy
and the policyholders’ age, on the hedge effecégsrof MCBs with respect to the risk situa-
tion of a life insurance company under differerguasptions concerning adverse selection.

4 Liand Luo (2011) present this study as an exaroplthe effect of basis risk on their proposedbeation

method for constructing efficient longevity hed@@sed on standardized mortality forwards.



We thereby consider the role of mortality inforroatiin underwriting by making different
assumptions concerning the ability of the insuracmmpany to estimate and price adverse
selection as conducted in Gatzert and Wesker (2@d\Merse selection is modeled based on
the extension of the Brass-type relational modeisgel by Brouhns, Denuit, and Vermunt
(2002a) and used by Gatzert and Wesker (2011),hnddlows a difference in the level and
trend of annuitant mortality as compared to popaatnortality. For risk management, we
model a survivor bond as introduced by Blake andd®us (2001), the payout of which is
based on the mortality of the population as a whBsis risk therefore arises due to adverse
selection effects, as the mortality of the popolatinderlying the hedge differs from the mor-
tality of the hedged population. For studying tffeciveness of the MCB in depth for differ-
ent contract characteristics, the impact of thegbeeffectiveness is analyzed under different
assumptions about the size of the coupon paymehthenmaturity of the bond. Furthermore,
we assess the impact of different characteristidheinsurance company and the insurance
portfolio, that is, the riskiness of the asset kasd the age of annuitants.

Our results show that the characteristics of theBM@n have a crucial impact on its effec-
tiveness with respect to decreasing the risk le¥&n insurance company. In particular, one
main result is that when considering the maturitthe bond, we find that the effectiveness of
MCBs increases for longer maturities, but the grglaincreases in the effectiveness of MCBs
can be achieved for shorter durations. Howevethéurincreases in the maturities of MCBs
of already relatively long durations yield almoggfigible increases in effectiveness. This
implies that MCBs can prove useful for hedging tls& inherent in annuities even if they do
not cover the entire duration of the annuity. Fenthore, we find that the investment strategy
has a considerable impact not only on the riskasitn of an insurance company but also on
the effectiveness of MCBs, whereby MCBs prove nefttctive for a rather conservative
asset strategy. Lastly, the impact of adverse seteand the resulting basis risk on the hedge
effectiveness of MCBs increases considerably fdeoannuitants.

The remainder of the paper is structured as folldBection 2 introduces the methods for
modeling and forecasting annuitant mortality aslaslthe model of the insurance company,
the life insurance contracts considered, and théBM&tudied. Section 3 contains results of
the numerical analyses and Section 4 presentsotiwusion.

2. MODEL FRAMEWORK

In this section, we first present the model foefmsting annuitant mortality and subsequently
introduce the model of the life insurance compang the MCB. Lastly, we present the risk



measures used to assess the hedge effectivene€3B#. The model framework presented in
this Section is based on the model introduced irz&tand Wesker (2011).

Modeling and forecasting annuitant mortality

For estimating and forecasting mortality of the plagion as a whole, we use the model pro-
posed by Brouhns, Denuit, and Vermunt (BDV) (2002&)ich is an extension of the Lee-
Carter (1992) model and was also used in the aisabysGatzert and Wesker (2021 this

model the Poisson-distributed realized number afttieat age and timer, D, ., is modeled
as
Dx,r ~ POiSSOl" ET U‘lx(r)) with U, (T) — eax+beIkr ’ (1)

where a, and b, are constant over time and represent the demoigrgint of the model,
while k. is varying over time and constitutes the timeesepart of the modé&lFurthermore,
E.. =(n.(r-1)+n(r))/2 is the risk exposure at ageand timer from which the Pois-

son-distributed number of deathk , arisesny(7) hereby denotes the number of persons aged
x still alive at the end of year(see Brouhns, Denuit, and Vermunt (2002b)).

For estimating the parameters of the BDV (2002afiehdlaximum-Likelihood estimation is
used whereby the maximization problem can be sobyedsing a uni-dimensional Newton
method as proposed by Goodman (1979). Given theasid parameters af, and b, , fore-
casts for the values of the time ind&x are needed to predict future population mortality
,ux(r). For forecastingk., Lee and Carter (1992) propose to fit an ARIMAgass of the
form

k., =@p+a, [k _+a,lk_,+.+a K  +0,[k _+0,lE _,+.+0,[F _ +¢&

T

> An important advantage of the model used by BnsulDenuit, and Vermunt (2002a) is that the retbidc

assumption of homoscedastic errors made in theQagter (1992) model is relaxed. Furthermore, this-Po
son distribution is well suited for modeling thenmuer of deaths (see Brillinger (1986)). The Leet&ar
(1992) model is one of the first models for stoticasortality and is still widely used. In receitetature,
however, alternative models have been proposeahwbepending on the respective country and padpualat
under consideration, might provide a better fithie data. For the following analysis, the mortatitpdel
mentioned above thus might be substituted withterastochastic mortality model, whereas here therex
sion of the Lee-Carter (1992) model by Brouhns, uierand Vermunt (2002a) is used as an example to
highlight the characteristics influencing the effeeness of MCBs.

For an interpretation of these parameters, seeGhtzert and Wesker (2011).

For simulation purposes, the above formula cameotised, since,(7) is not known. Following Brouhns,
Denuit, and Vermunt (2002b), the form@g, = - n(r -1) [, /In( p,) is therefore used instead, wheretpy
is the one year death probability of>agear old andp, the respective survival probability.



on the estimated values &f, where the ordep andq are chosen using methods from time
series analysise, is an error term withE (¢,) =0 and constant variance, amel is the drift
term. Forecasts df, are then obtained by replacing the coefficieptsa;, and J; with their
respective estimates and setting=0.

A general problem in insurance markets are asynieniaformation and the resulting adverse
selection effects. In the annuities market, adveedection effects arise from mortality heter-
ogeneity and the inability of the insurance company to asdhis information and thus to
distinguish between individuals with above or belaverage health. Furthermore, the indi-
vidual health situation, which is at least parnidthown to the individual himself, usually
influences insurance decisions (see FinkelsteinRatdrba (2002)) such that individuals with
above average health are more likely to buy aresiiflortality heterogeneity and asymmet-
ric information thus lead to adverse selection@§eyiving rise to differences in the level of
mortality rates and in their development over tioeéwveen annuitants and the general popula-
tion (see, e.g., Brouhns, Denuit, and Vermunt (200&atzert and Wesker (2011)). Although
the BDV (2002a) model can be used to predict mioytadr the population as a whole, a sepa-
rate model relating annuitant mortality to popwatmortality thus has to be specified to cap-
ture adverse selection effeétVe therefore use the extension of the brass-tgfmional
model by Gatzert and Wesker (2011), which is basedhe model proposed by Brouhns,
Denuit, and Vermunt (2002a), given by

In () = @+ 8,00 (10)+ B, 0 (1427 ) + €. - 2)

In this model annuitant mortality (marked by th@etscript ‘ann’) is specified as a function
of population mortality (marked by the superscfipopg’) and timer, .., whereby population
mortality can be forecasted using the BDV (2002apeh. As stated in Gatzert and Wesker
(2011), p1 reflects the improvement of annuitant mortalityatee to the improvement of
population mortality, whereg reflects the development of the speed of relativerove-
ment, which is incorporated by means of the intevacterm between mortality rates and a

time indexrnqex (See Gatzert and Wesker (2011)).

Based on the estimated coefficiersts 51, andf, and the forecasted population mortality
(12 (r) given by the BDV (2002a) model, annuitant monal;™(7) can be predicted

8 Mortality heterogeneity here refers to the fawittmortality rates are not identical for all inidivals of the

same age but differ depending, for example, on genetic medsition or life style (see Gatzert and Wesker
(2011)).
An alternative to this approach would be to use@population model for population and annuitartrtali-

ty.

9



whereby the normally distributed error terg, , which is assumed to have zero mean and
constant variance, is considered in forecastingntorporate random deviations from the
mean relationship between annuitant and populatmntality (see Gatzert and Wesker
(2011)). Given the force of mortalityzj‘"”(r), the Poisson-distributed number of deaths can
be simulated using Equation (1).

When studying the impact of selected charactesisifche MCB and the insurance company
on the effectiveness of MCBs under adverse selectve furthermore concentrate on the role
of mortality information in underwriting, which ©f special importance due to the scarceness
of data on annuitant mortality. Following Gatzemnda/Nesker (2011), we therefore consider
two additional scenarios for adverse selection.ti@none hand, we study a scenario that is
referred to as “adverse selection misestimated greitthe parameters of Equation (2) are
misestimated, such that only the difference inlével and not in the trend between popula-
tion and annuitant mortality is taken into accouwet,5; = 1,5», = 0, anda # 0. On the other
hand, we consider a scenario wherein the insuranegany has gained perfect information
about annuitant mortality, for example, by way wperience rating, and is consequently able
to estimate the parameters of Equation (2) cogrexatt to consider this information in pricing
and reserving (referred to as “adverse selectiofeqgity estimated”). Overall, we thus study
three different scenarios with respect to adveetecson as shown in Table 1 (see Gatzert
and Wesker (2011)Y.

Assuming a piecewise constant force of mortalify7), the death probability, (7), which
is the probability that ar-year old policyholder dies within the next yeaande calculated
as

q, (7) =1-exp(~4, (7))

(see Brouhns, Denuit, and Vermunt (2002a), p. 38é3ed on this,

n-1
nm=gmﬂ

is the probability that ar-year old male policyholder survives for the nextears.

% |n the following, the superscripafiri’ refers to realized annuitant mortality, wherehe superscript A”
refers to the annuitant mortality assumed by tker@nce company in pricing and reserving. Theseliftar
due to estimation errors by the insurance company.



Table 1. Annuitant mortality under different assumptiorecerning adverse selection (see
Gatzert and Wesker (2011))
Coefficients of | Estimated relationship between annuitant and ptipala

Equation (2) mortality

no adverse selection a=0, 8, =1, e (1) = > (1)

p2=0
adverse selection | a# 0,p,=1, In (,uﬁr) =a+In (,ux""r’p) +e,
misestimated p=0

adverse selection az0,p %1, |In (,ux‘fr) =g+ 0n (,ux"fr’p) + L, EQIn (,ux‘ffp) D‘index) +te,
perfectly estimated | g, # 0

Note: The superscript “A” refers to estimated artant mortality, whereas the superscript “pop”
refers to population mortality

Modeling a life insurance company

To gain insights into the effectiveness of MCBs emddverse selection with respect to the
risk situation of a life insurance company, we nidte life insurance company as a whole,
considering assets and liabilities. Table 2 thusasha simplified balance sheet of the life
insurance company at tinhe 0.

Table 2. Balance sheet of the insurance company at time0 (see Gatzert and Wesker
(2011))

Assets Liabilities
Sow(0) E(0)
Shigh(0) L(0)
Mpond(0)

We assume that the insurance company gl immediate annuities paying a yearly annui-
ty ain arrears each year as long as the insuredvs @ireturn for a single premiuBP paid

in the beginning of the contract (i.e.,tirr 0). On the liability sidel(t) denotes the value of
liabilities for the sold annuity products at timjavheread<s(t) is the value of equity of the in-
surance company at tinieE(0) is thereby given by the initial contribution Bizareholders,
while E(t) is the difference between assets and liabilitiesjt is determined residually. Thus,
E(t) can be expressed as

_ E(O) fort=0
(t) _{A(t)— L(t) fort=1,2,.T-1
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The insurance company hereby pays a fracti@i the earnings each year, given that they are
positive, as a dividend to shareholders (see Ganer\Wesker (2011)).

The asset side of the modeled insurance compéhygonsists of three elements. The value of
the mortality contingent bonMyon{t) and the capital base available for investmentthén
capital market SJ, wherebyS(t) is further divided into the market value of highd low risk
assetSign(t) andSeu(t) (see Gatzert and Wesker (2011)).

The initial capital bas&0) is given by
$(0) = E(0)+ n,(QUSR~ g,

wherena(0) is the number of annuities sofg, is the number of MCBs purchased dfgy is
the premium for the MCB with maturityl based on a population agedh the beginning of
the contract. Subsequent valuesj can be calculated by taking into account the ¢ksis
occurring each year, i.e.

S(9= S 1+ 5.0}~ n( Y& B0 X)E di), @

whereny(t) is the number of annuitants still alive at thel erfi yeart andX(t) is the coupon
payment from one MCB (see Gatzert and Wesker (30CDncerning the investment strate-
gy, we assume that the insurance company redistgslassets each year in such a way that a
constant fraction a is invested in low risk assets, i.eS,,(0)=a050) and
Sign (0) =(1-a) Y 0) (see Gatzert and Wesker (2011)). We assume thahaiieet value of
high and low risk asset§ (t) i =low, high follows a geometric Brownian motion with con-
stant drift z and volatility o, fori =low, high*

The total value of assets at timA(t) is then given by the sum of the capital b&and the
value of the MCBMondt) (see Gatzert and Wesker (2011)), i.e.

A(t)=S(9+ Mewa (9.

Valuation of insurance liabilities

Assuming independence between market and mortaky(see, e.g., Carriere (1999, p. 340))
and following Gatzert and Wesker (2011), the insaeacontracts can be evaluated using risk-
neutral valuation. Consequently, the value of liibs L(t) is calculated as

1 See Gatzert and Wesker (2011) for more detaithenlevelopment of the geometric Brownian motion.
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L) =y () el ol o+ 1)

with T denoting the maximum duration of the annuity ardknoting the risk-free rate. The
superscriptA in the survival probabilities refers to the assdna@nuitant mortality, which
depends on the assumptions concerning adverseiselas shown in Table *£.For calculat-
ing the annuitya the actuarial equivalence principle is used, st &xpected premium pay-
ments are equal to expected benefit paybleghich can be expressed in the following man-
ner:

iam piCfL+r)" = SP. (4)

Modeling and valuation of a simple mortality coggmt bond

As an example of an MCB, following Gatzert and Wag2011) we model a so-called survi-
vor bond as proposed by Blake and Burrows (200hjchvis a coupon-based MCB.The
insurance company hereby receives an annual cqugnonentX(t) at the end of each yebs

0, ..., M-1, which is proportional to the number of survivan a given reference population
Ner(t). In return for these coupon payments, a premiiyn is paid in advance, i.e. in= 0,
wherex denotes the age of the reference population oMG8 andM is the duration of the
bond. Furthermore, the insurance company can atéouthe value of the bonllpondt) on
the asset side of the balance sheet as shown préli®us Section.

Concerning the pricing of MCBs, an overview and panson of different pricing methods is
provided by, e.g., Bauer, Boérger, and Russ (20D{)erences in pricing approaches result,
for example, from different assumptions on the ulytdey processes for mortality and the
application of different valuation approaches. tistpaper, we follow Gatzert and Wesker
(2011) and apply the pricing approach of the EIBfBRaribas bond to determine the premi-
um of the MCB® The coupon payments are hereby discounted usengsk free rate mi-
nus a certain risk premiuvh (see Cairns et al. (2005)), so that the premiunafbond with

2 |n these formulas, the time subscripih the (age and time dependent) death and surpiadabilities has

been dropped for ease of illustration.

In pricing, we do not consider the probability aéfault since we assume that the insurance benefik

continue to be paid out in case of a default ($&® &.9., Gatzert and Kling (2007, p. 553)), feample, be-

cause these are guaranteed by a guaranty fund.

Blake, Cairns, and Dowd (2006), amongst othédifer @ comprehensive overview for MCBs and othgai-ca

tal market instruments.

> While the EIB/BNP Paribas bond was withdrawn thuack of interest, Blake et al. (2006) as welBasier,
Borger, and Russ (2010), attribute this failurevesaknesses in design rather than mispricing.

13
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durationM based on a reference population agedl inception that pays oX{(t) in yeart can
is given by

with ng being the number of MCBs purchased at time 0. Timaial paymenkK(t) is then giv-
en by

C, (5)

wheren,(0) is equal to an arbitrary numb€mye(t) is the number of survivors in the refer-
ence population at timig andC is the initial coupon payment set in the cont{aee Gatzert
and Wesker (2011)). Mortality in the reference dapan is equal to population mortality and
thus higher than annuitant mortality, so tha{t) is given by

nref (t) = nref (t_l) - dref (t) '
whered, (t) is the number of persons who died within yiegiven by

d (1)~ Poissof ] Gur( }) and 4™ (1) =€+,

where Eftf Is the exposure to risk of the reference poputatigee Gatzert and Wesker
(2011))}" Hence, basis risk arises in the longevity hedgeesannuitant mortality is equal to
2™ (7) and therefore different from the mortality undértythe hedge.

Turning now to the calculation of the value of thand at timd, Mpondt) is given by
X - ~(jt+)

Mbond(t):nsli Et(x( J))[ql'l' r_A) ,t=0,...,M—j.
j=t

i.e., the value of one MCB is determined as thecetgd present value of future cash flows
given the information available at timeTo calculateMpondt) this value is multiplied by the
number of MCBs purchased at time 0 () (see Gatzert and Wesker (2011)).

16 As the coupon payment is expressed in relativagethe value ofi.(0) does not affect the results.
" Here, E is given by ElY =—(n,, (t-1)C5f)/In( p’™) (see Brouhns, Denuit, and Vermunt (2002b)).
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Risk measurement

Following Gatzert and Wesker (2011), we focus om hledge effectiveness of MCBs with
respect to the risk situation of a life insurancenpany, which we measure through two
downside risk measures. Since we model the insareompany in a multi-period framework
dynamic default during the contract term is takemtoi account, whereby
T, = inf{t: A(t) < L(t)} represents the time of default. For risk measungéntee probability
of default (PD) is defined as

PD=P(T,<T),

(see, e.g., Kling, Richter, and Russ (2007), Gerset al. (2008), Gatzert and Wesker
(2011)), while the mean loss (ML) is given by

ML= E| (L(T,)- A(T))da+ )" T, < 1],

(see Gatzert and Wesker (2011)), i.e., the meanitoan LPM(1) at the time of default dis-
counted ta = 0, wherebyl{T, < T} denotes the indicator functichThus, while the proba-
bility of default takes only the frequency of sHalitinto account, the mean loss also consid-
ers the extent of defauf.

3. NUMERICAL ANALYSIS

Until otherwise stated, we will assume that the liisurance company sehg(0) = 10,000
annuities tax = 65 year old male policyholders in the year 2002 maximum age attainable
as implied by the BDV (2002a) model is 100 so thatmaximum duration of an annuityis

35 years’ Assuming a risk-free interest raterof 3% and a single premiusP= 10,000, the
fair annuity depends on the assumptions conceradhgrse selection. Concerning the in-
vestment opportunities, we assume a drift (votgjilof pow = 6% @iow = 8%) for the low-risk
assets anflnigh = 10% @high = 24%) for the high-risk assets as well as a ¢tatioe ofp = 0.1.
The initial equity is set t&(0) = 10 Mio and the percentage of earnings distei to share-
holders isre = 25%. Concerning the MCB, in the base case wenasshat the maturitil is
equal to the maximum duration of the anndityi.e. M = T, such that the longevity hedge

8 The indicator function is thereby equal to onghé condition in the brackets is satisfied and zgherwise.

19 See Gatzert and Wesker (2011) for a more detaitedpretation of the mean loss.

2 Assuming a maximum age of 100 might be considevedow. The scarcity of data especially at higies
nevertheless inhibits a reliable estimation of parters at these ages. In the software accomparlyeng
LifeMetrics index, for example, a maximum age of lyon89 is recommended (see
http://www.jpmorgan.com/pages/ jpmorgan/investbkrfsons/lifemetrics/software).
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covers the complete duration of the annuigy= na(0), i.e. the insurance company purchases
one MCB for each annuity it sells and an initialijpon paymen€C = 100. Following Gatzert
and Wesker (2011), we set the loading 0, since we do not assume any systematic mgrtali
risk. These parameters were chosen for illustragasons and are subject to robustness tests.

To evaluate the effectiveness of MCBs under diffeesssumptions concerning adverse selec-
tion, Monte-Carlo simulation is employed, wherebg simulate 100,000 paths for the asset
portfolio and the realized mortality. To improveetbkomparability of results, the same se-
quence of random numbers was used for each simmilath?* As illustrated above, the value
of the MCB at time depends on the information available at timnso that valuation is con-
ducted path-dependently for all 100,000 possibidizations ofn. (t)/n., (0) at each time.

The calculation oMpondt) is thereby based on 1,000 simulation runs ofr&utnortality, since
computational intensity restricts a higher numbksimulation runs; however, this is still
enough to ensure robust resdfts.

Estimation of annuitant mortality

The estimation of population mortality is basedtlbe central deaths rates for the UK from
1950 to 2009 available through the Human Mortdligtabase. The estimated parameters of
the BDV (2002a) model are displayed in Figure * &), whereby Figure 1 c) also displays
the forecasted values &, which are based on the estimated ARIMA procegneTseries
analysis indicates a Random Wajk%£ q = 0) as sufficient to describe the dynamic of the
mortality index. Subsequent residual analysis uBiag-Ljung test as well as ACF and PACF
analysis showed no significant residual autocotigiaThus, the forecasts shown below were
calculated using an ARIMA (0,1,0) process with tdgE -1.5403 (standard error 0.3056).

To estimate adverse selection and thus annuitartahty, data on the UK annuitant mortality
from the CMI from 1947 to 2000 is us&tDuring this period, five mortality tables were pub
lished in the years 1947, 1968, 1980, 1992 and ,2@&pectively. Applying the model for
adverse selection on these data points, the resyity a coefficienip; = 1.1618 (0.0123) and
a coefficient, = -0.0004(0.0002) (robust standard errors in parenthesig)s indicates a
faster improvement of annuitant mortality as coreddo the population as a whole; however,

2L Concerning the robustness of results, the resuéisstable with respect to different sequencesandom

numbers.

The standard error of Monte-Carlo simulation ttee value of the MCB at= 1 Mpon{1) is approximately

0.0322, whereas the expected valudMgf,{(1) is approximately 12 for an initial coupon payref C = 1.

The exact standard error depends on the path @resichnd the values for the standard error lie detw

0.0291 and 0.0354.

% This data is also used, for example, by Ngai &hdrris (2011) and Gatzert and Wesker (2011) tbredé
adverse selection.

22
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this overimprovement decreases over time as shgwhebnegative coefficient of the interac-
tion term between yearqexand population mortalitg..>* The estimated interceptis equal
to -0.0275 (0.0198) and the estimated standard efreesidualse, , is 0.1292, whereby the
residuals are also considered for each yead age in forecasting.

Figure 1. Parameter estimates for the BDV (2002a) model
a) b)

estimated exp(ay) estimated b,
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As shown in Table 1, three assumptions concerniivgrae selection are made. We first as-
sume no adverse selection, i.e. we assume annaianpopulation mortality to be identical.
Second, we differentiate between the ability of ittirance company to forecast and conse-
quently consider adverse selection in pricing.ime with Gatzert and Wesker (2011), these
analyses are intended to highlight the importarfceartality information in underwriting.
Table 3 shows the estimated respectively assumeffiagents of Equation (2) as well as the
implied remaining life expectancy of a 65-year-oldle annuitant in the year 2632nd the
fair annuity calculated according to Equation (4).

* Note thatr,, =1950-7, where 1950 is the first year for which mortatitgta is used andis the year under
consideration. )

?® The remaining life expectancy of anyear old in yeat e(t) is given bye, (1) =3[ r.;(t+ j) (see
Brouhns, Denuit, and Vermunt (2002b)). k=0 )=
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In the absence of adverse selection, populatioraanditant mortality is identical resulting in
a remaining life expectancy of 18.51 years for yéar-old annuitant and a fair annuityaof

= 748. When adverse selection is misestimateithe estimated intercept is equal to

a =-0.27789, resulting in an assumed remaining life expectarfc¥0.60 and a fair annuity
of a = 688, as shown in Table 3. Otherwise, when agsyirtiiat the insurance company is
perfectly able to estimate adverse selection, stienated parameters imply a remaining life
expectancy for a 65-year-old annuitant of 21.58 emsequently a fair annuity= 663. As
seen in Table 3, assumed and realized mortalifgrdibr the case when adverse selection is
misestimated. Assumed mortality is higher thanizedl mortality, which results in an ex-
pected life expectancy that is underestimated, sh@hon average, the insurance company
has to pay out approximately one annuity more thaected.

Table 3: Estimated parameters, remaining life expectaaag fair annuity under different
assumptions concerning adverse selection

Coefficients of | Assumed annuitant | Realized annuitant Fair an-
Equation (2) mortality g (life ex- | mortality ¢2™ (life nuity a
pectancyess(2012)) for | expectancyess(2012))
pricing and reserving | for risk measurement
without adverse | a=0,5=1," | gt =™ Q" = qgP*® 748
selection p=0 (18.51) (18.51)
adverse selection| a=-0.2779"", | g = g&™ @*0ATA=0 o = gt 688
misestimated p1=1,06,=0 (20.60) (21.58)
adverse selection| a=-0.0275 qr=qg™ Qg =™ 663
perf. estimated | §,=1.1618", | (21.58) (21.58)
B>=-0.0004

Note: *** ** and * denote values significant alté¢ 1%, 5% and 10% levels, respectively.

Effectiveness of MCBs for different contract chéeastics of the MCB

In this section, we study the impact of differeohtract characteristics of the MCB on the
effectiveness of MCBs with respect to the riskaiton of the insurance company under dif-
ferent assumptions concerning adverse selectionfodles on the effect of the initial coupon
paymentC and the maturity of the bordd. The impact of a differing maturity of the bohMl

on the effectiveness of MCBs under different assionp concerning adverse selection is
shown in Figure 2. Under these assumptions, tlkesitsation of the insurance company re-
mains constant if no MCB is purchased and is shomig for comparison. When comparing
the red line with crosses and the blue line witlingles, one can see that the risk of an insur-

% When aderverse selection is misestimated, ordydifference in the level and not in the trend ofi@itant
mortality is taken into account as described inrtinglel section, i.e8, = 1,8, =0, anda Z 0.
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ance company can be reduced considerably throwgghgé of MCBs but that the amount of
risk reduction achievable depends substantialljfhenassumptions about adverse selection
and the maturity of the MCBJ.

In general, when considering the risk level of @surance company, as measured through the
probability of default and the mean loss if no M{S8Burchased for risk management, the risk
level of the insurance company is higher when abreelection is present (see Figure 2, Part
b)) than under no adverse selection (Figure 2, ®rtwhereby a misestimation of adverse
selection further increases the risk level of asurance company as compared to the case
when adverse selection is perfectly estimated (€i@y Part b, i) and ii), respectiveff)Fur-
thermore, the relative risk reduction achievablemmgans of MCBs decreases under adverse
selection, whereby especially a mispriced advesecson hampers the effectiveness of
MCBs, as can be seen by the dashed line in Figundizh shows the relative risk reduction
achievable through the use of MCBs-or example, although the mean loss can be reduced
by 53.8% when no adverse selection is assumed tohasing a MCB with a maturity & =

20, the risk reduction that is achievable undereasky selection amounts to only 47.0% when
adverse selection is misestimated and to 51.8% \atearse selection is perfectly estimated.
These results are in line with those in Gatzert\MWegker (2011).

Concerning the impact of differing maturitids the results show that, in general, an increase
in the maturity of the MCBV comes along with a decrease in the risk levelnoingurance
company and thus with an increase in the effecéissrnf MCBS® When considering the
marginal increase in the effectiveness of the M@&yever, the results imply that the mar-
ginal increase in the effectiveness of MCBs is distiing, i.e. the greatest increase in the
effectiveness of MCBs can be achieved for the shaidrations studied ranging from about 5
to 20 years. For example, when increasing the ntyatof the MCB fromM =5 toM = 15
years when no adverse selection is present, thmpiidy of default can be reduced by 45.4%
for M = 15 as compared to 13.3% fdr= 5, which corresponds to a substantial redudtion
the probability of default from 0.53% when purcimgsMCBs with maturityM = 5 to 0.33%
when purchasing MCBs with maturib} = 15. Otherwise, when increasing the maturityhef t

" For a more comprehensive analysis of the impheiduerse selection on the risk situation of amiasce
company, see Gatzert and Wesker (2011).

% The relative difference is here deﬁned(a’sDWithout wee — PDuin MCB) / PDinout mce fOr the probability of default

and (ML\Nithout wes ™ ML i MCB)/ML without mce 1O the mean loss.

Please note that all analyses conducted in #pempareceteris paribusanalyses. Thus, they serve to identify

the impact of the change in one influence fact@pleg all other factors constant. It might be paolssio en-

hance the effectiveness of MCBs by combining défféifactors studied in this paper. For example gffexc-

tiveness of an MCB with a rather short duration mhige improved through increasing the cougbior

changing the investment strategy.

29
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MCB from M = 30 toM = 35 years, the reduction in the probability ofadét corresponds to
only 59.7% forM = 30 as compared to 60.2% fdr= 35 (corresponding to a reduction in the
probability of default from 0.25% favl = 30 to 0.24% foM = 35), whereby this increase is
almost negligible. The results thus imply that listmodel framework, under the stated as-
sumptions, the effectiveness of MCBs is not sultistiyy hampered if the duration of the
MCB does not cover the maximum duration of the #gnii the difference between the dura-
tion of the bondVl and the maximum duration of the annuitjs not too largé® However, if
the duration of the MCB is too short, the risk retthhn achievable by means of MCBs is re-
duced substantially.

Lastly, considering the impact of adverse selecliwrdifferent maturitiesM of the MCB, the
results imply that the loss in efficiency of MCBwdugh adverse selection and the resulting
basis risk decreases for a longer matuxityf the bond, which indicates that the impact of
basis risk brought along by adverse selection earetuced by increasing the duration of the
hedge. For example, when considering the relatifferdnce between the risk reduction
achievable through an MCB with adverse selectiosestimated and without adverse selec-
tion, the results show that this difference coroesls to approximately 15% for a maturity of
M = 5, whereas it amounts to only approximately ¥ag1 = 353 Overall, our results imply
that a longer duration of the MCB leads, on the baed, to an increase in the efficiency of
MCBs in general, and on the other hand, decredsestpact of adverse selection and the
resulting basis risk. When hedging the risk inheianannuities, the maturity of the MCB
should thus be sufficiently great for longevity bety to be efficient.

%0 These results thus imply that the duration of BiNP Paribas bond, which amounted to 25 years laet
fore did not cover the maximum duration of the aties, might not have resulted in a considerabgs lim
efficiency.

I This difference is defined a@relggadvefsese'm”— rel,goverse setecton mim") / rel s 2dveseseect for the example of
the probability of default withrel,; = (PDWithout wee~ PDuin MCB) / PD inoumce @S the relative risk reduction
achievable by means of MCBs defined as above.
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Figure 2: The impact of risk management using mortalitytoayent bonds (MCBs) on an
insurer’s risk situation under different assumpgi@woncerning adverse selection for different
maturityM of the MCB
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Turning now to the impact of the initial coup@ Figure 3 shows the relative risk reduction
achievable by means of MCBs under different assiomptconcerning adverse selection for
different values of the initial coupa@. While a higher value of the initial coup@comes
along with higher payments to the insurance compghming the contract term (see Equation
5), it also leads to a higher premium for the MCBiak has to be paid ih= 0. Thus, there
exists a trade-off between higher coupon paymemisaahigher premium. The results show
that in this model framework under the stated aggioms generally in the considered range,
a higher initial couporC ceteris paribudeads to a greater reduction in the risk levehof
insurance company. However, for the probabilitydefault, the maximum risk reduction is,
under the stated assumptions for the consideredetiesvalues, reached at approximately 200
to 250, depending on the assumption about advesieetion, whereas the risk reduction
achievable through the use of MCBs decreases @iivenivalues o€. This might be owing to
the higher premium, which has to be paid in thdarbegg of the contract, associated with the
higher coupon payment, which decreases the assetdpa thus the amount of money availa-
ble for investment in the capital market, therebggibly leading to a higher default probabil-
ity. For the mean loss, the results show thatyéndonsidered range, a higher coupon payment
C leads to a higher risk reduction, but that, theeixbf the efficiency increase decreases for
higher coupon payments. For example, although ene@se in the initial coupdd from 50 to
100 leads to an increase in the relative risk redndrom 49.7% foiC = 50 to 71.6% foC =
100 (which corresponds to a decrease in the mesnflom 351 foIC = 50 to 198 forC =
100), an increase fro@ = 250 toC = 300 implies a relative risk reduction of 90.266 € =
250 as compared to 91.5% f6r= 300 (corresponding to a decrease in the meafios 68

for C = 250 to 59 folC = 300), whereby this increase is substantiallylena

Although the direction of effects is identical falf three assumptions concerning adverse se-
lection, the maximum relative risk reduction aclaiele for the probability of default through
the use of MCBs is reached for lower coupon paymeiiten no adverse selection is present
than under perfectly estimated adverse selectibis implies that for relatively high coupon
payments, the risk reduction achievable by meand@Bs is slightly higher under perfectly
forecasted adverse selection as compared to nosadselection. This effect might be due to
very high coupon payments from the MCBs in theahitontract years, in which a high per-
centage of the reference population is still alivethese years, the payouts for annuities are
smaller when adverse selection is perfectly forethas compared to the case when no ad-
verse selection is present, owing to the lower &inuitya (see Table 3). Under perfectly
forecasted adverse selection, the insurance commpagiyt be able to build up sufficient re-
serves in the early policy-years to outbalance ltiveer coupon payments in later policy-
years.
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Concerning the case where adverse selection isstimsded, the risk reduction achievable

through the use of MCBs is considerably lower thader perfectly estimated adverse selec-
tion as found in the previous analysis as welhahe analyses by Gatzert and Wesker (2011).
When considering the impact of a higher coupon pmayirthe effects are almost identical to

the case where no adverse selection was assumedx&ople, the results show that for the

probability of default the trade-off between thgher premium and the higher coupon pay-

ments, leads to a reduction in the effectivenedd©Bs for a relatively high initial coupa@.

For the mean loss otherwise, the effectivenes$i®MCB increases steadily in the consid-

ered range.

Figure 3. The impact of risk management using mortalitytoayent bonds (MCBs) on an
insurer’s risk situation under different assumpgi@oncerning adverse selection for different
values of the initial coupo@
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Summing up, our results indicate that MCBs are \edfgctive for rather low initial coupon
paymentsC, while very high initial coupons might even redube hedge effectiveness of
MCBs. Furthermore, for very high coupon paymerits,itnpact of adverse selection and the
resulting basis risk vanishes if adverse seleatem be perfectly forecasted, which might be
owing to the complex interaction between assetsliabdities and the time structure of cash
flows, which differ for the varying assumptions ceming adverse selection.

Effectiveness of MCBs under different charactersstf the insurance company and the in-
surance portfolio

Beside the characteristics of the MCB itself, tharacteristics of the insurance company, for
example, its investment strategy or the charatiesisf the hedged insurance portfolio, e.g.,
the policyholders’ age, might influence the effeetiess of MCBs for reducing the risk level
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of an insurance company. Therefore, in this sectimanalyze the impact of different asset
allocations and the influence of the policyholdexge on the effectiveness of MCBs and the
impact of different types of adverse selectionlendffectiveness of MCBs.

Figure 4 shows the risk of an insurance companydoying investment strategies as reflect-
ed in different fractions. of low risk assets with and without purchasingM@B based on
different assumptions concerning adverse selecfitre results show that the investment
strategy has a substantial impact on the risk leffah insurance company, whereby a higher
fraction of low risk assets in general leads to lower risk, except éior 100%, for which the
risk level increases. This effect might be duehi ¢ffect of the expected return, as a more
conservative asset strategy, i.e. a higher fraafdaw risk assets, while coming along with
lower risk as reflected in lower volatility, alsmplies a lower expected return. For an invest-
ment in only low risk assets, the effect of the dowexpected return appears to outweigh the
impact of the lower volatility, which leads to arcrease in both the probability of default and
the mean loss, whereas for a lower fraction of lek assets, the effect is reversed and a
higher volatility implies a higher probability ofethult and mean loss despite a higher ex-
pected return. Under the stated assumptions focdhsidered discrete values, the risk level
of the insurance company, as measured by bothrtability of default and the mean loss, is
thus minimal for approximately = 90% ora = 80% for all assumptions concerning adverse
selection.

Concerning the effectiveness of MCBs for differemtestment strategies, the results imply
that the investment strategy has a substantialdbmpathe relative risk reduction achievable
by means of MCBs as reflected in the black dasmedih Figure 4. When no adverse selec-
tion is present or when adverse selection can bieqtly forecasted, the highest risk reduc-
tion is achieved when the insurance company invaggbsoximatelyo. = 90% in low risk as-
sets, that is, for the investment strategy comloggwith the lowest risk level. Under imper-
fectly estimated adverse selection, the risk radncachievable for both the probability of
default and the mean loss is slightly higher fdragtion of low risk assete = 80%. Other-
wise, in the considered range for the chosen dse@ues, the relative risk reduction reaches
its minimum fora = 50%, at the highest risk level in the analyzaage. The results thus in-
dicate that MCBs can prove especially efficient #oconservative investment strategy and
consequently an insurance company with a low le¥alefault risk, since the relative risk
reduction achievable through the use of MCBs i©ié&ég for a rather conservative investment
strategy.
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Figure 4. The impact of risk management using mortalitytoayent bonds (MCBs) on an

insurer’s risk situation under different assumpgi@woncerning adverse selection for different
asset allocation
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When studying the impact of adverse selection @ndffectiveness of MCBs for different
investment strategies, one can see that the dewelupof the relative risk reduction is almost
identical for all assumptions concerning adverdecsien, i.e. a higher fraction of low risk
assetsn leads to a greater effectiveness of MCBs till dhoe 80% ora = 90%, while in-
creasingu further lowers the risk reduction achievable tiylotCBs>?

Lastly, the impact of the policyholders’ ageon the effectiveness of MCBs is studied. We
vary the age of the annuitant from 60 to 80 yéafEhe effectiveness of MCBs for varying
age x under different assumptions concerning adversecseh is illustrated in Figure 5,
which shows the relative reduction in the prob&pitif default and the mean loss achievable
through the purchase of MCBs. The results showithgeneral under the stated assumptions
for the considered range, the effectiveness of M@&geases with increasing age of policy-
holders. Without adverse selection, for example, ghobability of default can be decreased
by approximately 65% for a portfolio of annuitarigedx = 60, whereas the risk reduction
effect amounts to only 39% for a portfolio of artanis agec = 80. One reason for this ef-
fect might be the shorter duration of the MCB andsequently the fewer coupon payments
for older annuitants.

Concerning the impact of adverse selection anddselting basis risk on the effectiveness of
MCBs for varying ages of policyholders, the impatadverse selection even if it is perfectly
estimated increases for older annuitants as caseée by the slightly greater difference be-
tween the red line with crosses and the greenwitie triangles in Figure 5. This reflects the
risk reduction achievable through MCBs without agdeeselection and with perfectly esti-
mated adverse selection, respectively. For exangplesidering again the relative difference
between the risk reduction achievable through arBM\ith adverse selection perfectly esti-
mated and without adverse selection, this diffegerarresponds to a probability of default of
about 2.5% fox = 60 year old annuitants, whereas it amounts pragmately 11% fox =

80 year old annuitants. For the mean loss, thdtsemte very similar.

%2 However, when considering the amount of risk otidn achievable through the use of MCBs, the ¢ffee
ness of MCBs varies substantially for the diffee@ssumptions concerning adverse selection, a.g. fo
90% the probability of default can be reduced byual60.4% when no adverse selection is assumede whi
the risk reduction achievable through the use ofBd@mounts to only 52.9% when adverse selection is
misestimated. This difference is in line with tlesults found in the previous analyses as well #s te re-
sults by Gatzert and Wesker (2011).

As stated previously, we assuiMe= T. Thus, varying the age of policyholders also iefloes the maturity
of the MCBM as the maximum duration of the contractwvhich is given by the difference between the in-
ception of the contract and the maximum age asiéudly the model (here: 100 years), changes. Famex
ple, forx = 60 year old annuitants the maturity of the MERas well as the maximum duration of the annui-
ty T) is equal to 40 years, while far= 80 the maturity of the MCB amounts to only 2@nge

33
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When considering the impact of a misestimated adveelection, the results show that the
difference between the two studied assumptions ety selection misestimated” and “ad-
verse selection perfectly estimated”, decreases. difect might be due to the shorter dura-
tion of both — the annuity as well as the MCB —tstiat the impact of the misestimated trend
between annuitant and population mortality decrease

Figure 5. The impact of risk management using mortalitytoayent bonds (MCBs) on an

insurer’s risk situation under different assumpgi@oncerning adverse selection for annui-
tants agea
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Overall, the effectiveness of MCBs in general dases for older annuitants. In addition, the
impact of perfectly estimated adverse selectionthedesulting basis risk increases consider-

ably, so that especially for older annuitants anthe presence of adverse selection, the effec-
tiveness of MCBs is considerably reduced.

4, SUMMARY

In this paper, we examine the impact of certainratiaristics of the mortality contingent
bond, namely the maturity and the initial couporymant, insurance company (i.e., the in-
vestment strategy), and insurance portfolio (ihee,age of annuitants) as well as the impact of
adverse selection and the resulting basis riskhernedge efficiency of an MCB under differ-
ent assumptions concerning adverse selection. \&teftre explicitly model adverse selec-
tion using the extension of the Brass-type relaionodel initially put forward by Brouhns,
Denuit, and Vermunt (2002a) and used by Gatzertvdasgker (2011) to estimate the relation-
ship between population and annuitant mortalityedasn the UK annuitant mortality data by
CMI and population mortality for the UK from the khan Mortality Database. To estimate
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population mortality, the extension of the Lee-€a(tL992) model by Brouhns, Denuit, and
Vermunt (2002a) is used. Following Gatzert and VéegR011), to highlight the importance
of mortality information in underwriting, we studwo different assumptions about adverse
selection and the ability of the insurance compangstimate and forecast annuitant mortali-
ty. We first assume that the insurance company stilmates adverse selection, for example
due to lack of data on annuitant mortality. We tlassume that the insurance company has
gained perfect information about annuitant motakio that this information can be consid-
ered in pricing and reserving. To analyze the ¢ffeness of MCBs, we model the insurance
company holistically, considering assets and liaed and focusing on two default risk
measures, hamely the probability of default andlean loss.

One main result is that the maturity of the MCRBusimportant determinant of the risk reduc-
tion effect of the MCB, whereby generally a longeration leads to a higher risk reduction.
In our model, under the stated assumptions, theekigisk reduction effect is achieved when
the duration of the bond is equal to the maximumation of the annuity. However, the mar-
ginal increase in the effectiveness of the MCBiminishing, i.e. for very long durations of
the bond the increase in the risk reduction in@asp to an increasing duration of the bond is
almost negligible. For example, féd = 30 the probability of default can be reduced by
59.7%, while forM = 35 the risk reduction achievable amounts to %0f@ the case without
adverse selection. On the other hand, a subsigngaluced maturity leads to a considerable
loss in efficiency. For example, although the miems can be reduced by 71.2% when pur-
chasing a MCB with a duration M = 30 years, the risk reduction effect correspdodsnly
41.1% forM = 10 and to only 17.5% fdvl = 5 years again for the case without adverse selec-
tion. Considering the effect of adverse selectar, results show that the impact of adverse
selection and the resulting basis risk can be mdllny increasing the maturity of the MCB.
For example, the relative difference between thk reduction achievable through an MCB
without adverse selection and with misestimatedeesis selection decreases from approxi-
mately 15% forM = 5 to approximately 11% fdvl = 35. Our results thus indicate that for
hedging to be efficient, the maturity of the MCBsha be sufficiently long, especially under
adverse selection. In our model framework undeistated assumptions, however, the loss in
efficiency is rather small if the hedge does natptetely cover the maximum duration of the
annuity. This indicates that a fixed maturity oé thond rather than a stochastic maturity that
covers the complete duration of the annuity pafahtil the last annuitant dies, might result
in a rather small loss in efficiency from the pe&sjve of the insurance company.

Concerning the impact of the characteristics ofittseirance company, we found that the in-
vestment strategy has a substantial impact on ffleetigeness of MCBs, whereby MCBs
prove most useful for a rather conservative invesinstrategy that comes along with a low
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level of default risk, whereas the impact of adeesslection and the resulting basis risk does
not change considerably for a varying investmenaitasgly. For the stated assumptions and the
considered discrete values, for example, the maximsk reduction of 72.6% is achieved for
a fraction of low risk assets= 90% for the mean loss and the case without advazlection,
whereas a riskier investment strategy with a feactf low risk asseta = 50% yields a risk
reduction effect of only 57.1%.

Lastly, we found that the age of annuitants sulbstiyninfluences the impact of adverse se-
lection and the resulting basis risk, whereby th#emothe annuitants in the portfolio, the
greater the loss in efficiency due to adverse selecFor example, when hedging a portfolio
for x = 65 year old annuitants, the relative differebheeveen the risk reduction effect without
adverse selection and with perfectly estimated s#veelection amounts to approximately
3% for both the probability of default and the méass, whereas this difference increases to
approximately 10% or 11% for the probability of @t and the mean loss, respectively, for
x = 80.

Overall, our results indicate that when purchas@Bs for risk management, attention has
to be paid to the characteristics of the insuraimapany and the insurance portfolio in order
to be able to forecast the risk reduction achievdhtough the purchase of MCBs correctly.
The characteristics of the MCB also have to be idensd carefully. Our results indicate that
from the perspective of the insurance companyxedfmaturity might result in a rather small
loss in efficiency, whereby the fixed maturity wdule rather positive for potential investors
in MCBs.
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