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MORTALITY RISK AND ITS EFFECT ON SHORTFALL AND RISK
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ABSTRACT

Mortality risk is a key risk factor for life insunae companies and can have a crucial
impact on its risk situation. In general, mortalitgk can be divided into different sub-
categories, among them unsystematic risk, advesieeton, and systematic risk. In
addition, basis risk may arise in case of hedging,, longevity risk. The aim of this
paper is to holistically analyze the impact of thel#ferent types of mortality risk on
the risk situation and the risk management ofeaifisurer. Toward this end, we extend
previous models of adverse selection, empiricadllfocate mortality rates, and study
the interaction among the mortality risk componentthe case of an insurer holding a
portfolio of annuities and term life insurance gants. For risk management, we ex-
amine natural hedging and mortality contingent lsor@ur results show that particu-
larly adverse selection and basis risk can haveiarimpact not only on the effective-
ness of mortality contingent bonds, but also onilsarer’s risk level, especially when
a portfolio consists of several types of products.

Keywords Longevity risk, mortality contingent bonds, natuhedging, life insurance, risk man-
agement
JEL ClassificationG22, G23, G32, J11

1.INTRODUCTION

Recently, there has been a growing interest inahtytrisk and its management in the scientific
literature as well as in practice, especially duéhe demographic development in most industri-
alized countries. The increasing life expectancyegoserious problems to life insurance compa-
nies selling annuities and to pension funds. Theeblems are especially severe because of a
scarcity of possibilities to hedge against thik.rlBue to the limited capacity of reinsurance, sev-
eral alternative instruments for managing demograpsk, e.g., by transferring mortality risk to
the capital market or the use of natural hedgimyehbeen discussed in the scientific literature
and by practitioners. However, mortality heteroggnas well as information asymmetries be-
tween the insurance company and the insured abese tdifferent mortality experiences of indi-
viduals can lead to adverse selection. In particidanuitants generally have a systematically

“ Nadine Gatzert and Hannah Wesker are at the riaiedlexander-University (FAU) of Erlangen-Nurembe
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lower mortality than the population as a whblortality heterogeneity and information asym-
metries can thus severely limit the usefulneshie$e risk management tools. Therefore, the aim
of this paper is to study the interaction amonded#nt types of mortality risk — unsystematic
mortality risk, basis risk, adverse selection, apstematic mortality risk — with respect to theris
situation of an insurance company. Furthermoreamadyze the impact of mortality risk compo-
nents on the effectiveness of two risk managenamisit1l) a natural hedging strategy, using the
opposed reaction towards changes in mortality iwh tfe insurance and annuities for eliminat-
ing the impact of systematic mortality risk, anda2portality contingent bond (MCB) for trans-
ferring mortality risk to the capital market.

In the literature, mortality risk is generally di@d into different subcategories: 1) unsystematic
mortality risk that the individual time of deathagsandom variable with a certain probability dis-
tribution (see Biffis, Denuit, and Devolder (20Q9) systematic mortality risk, which is the risk
of unexpected changes in the underlying populatnamtality, e.g. due to common factors im-
pacting the mortality of the population as a whelbjch causes dependencies between lives and
is thus not diversifiable through enlarging thetfmdio (see Wills and Sherris (2010)), and 3)
adverse selection, which refers to the fact thatpobability distribution differs in the level and
trend over age for different populations of insyrid example, for life insurance holders and
annuitants (see, e.g., Brouhns, Denuit, and Vermunt (200Z&)jthermore, adverse selection,
which is due to the mortality heterogeneity of induals and information asymmetries between
the insurance company and the insured, is one tamosource of basis risk when hedging lon-
gevity risk through mortality contingent bonds dher capital market instruments (see Sweeting
(2007)). Basis risk arises if the population matyalnderlying the hedge and the hedged portfo-
lio mortality do not coincide. Thus, the differesda the mortality of the population and the mor-
tality of the insured annuitants caused by advsesection imply basis risk in longevity hedges.
In this analysis, we solely consider the basis inislongevity hedge’sand model all types of mor-
tality risk explicitly in order to analyze their pact on a life insurer’s risk situation.

Adverse selection (and basis risk) is modeled whffdy in the literature. Plat (2009) proposes to
model the difference in mortality rates for annoisaand the population through an age and time

See Finkelstein and Poterba (2002), Cohen argkBiann (2010).

In general, adverse selection refers to inforomatisymmetry and hidden characteristics. In thigepave follow
Brouhns, Denuit, and Vermunt (2002a) and referdeease selection as the observation that, due ttalitp
heterogeneity and asymmetric information, annustaaxperience a lower mortality than the averageaujation
and therefore have a higher life expectancy. Oplapers (e.g., Coughlan et al. (2009)) refer todkibasis risk.
In the following analysis, we consider two casestider to highlight the importance of mortality anfation in
underwriting, one where the insurer is not fulljormed about the mortality of its annuitants, ané case where
adverse selection can be fully addressed.

Other potential sources of basis risk in longetiédges are stated, e.g. by Sweeting (2007) ogi@an et al.
(2007) and include age mismatch or geographic reiffees.
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dependent portfolio-specific mortality factor, whieflects the relative difference between annu-
itant mortality and population mortality. Ngai afherris (2011) also use a portfolio specific
mortality factor and, following Stevenson and Wig@008),assume a linear and constant effect
of age as the only impact factor. Brouhns, Derant] Vermunt (2002a) choose a different ap-
proach and model annuitant mortality through a 8itgpe relational model for the central death
rates. Concerning the effectiveness of mortalityticgent bonds (or other instruments for trans-
ferring mortality risk to capital markets) understzarisk resulting from adverse selection, other
certain aspects have already been discussed litetsgure. Sweeting (2007) discusses the influ-
ence of basis risk when using a survivor swap tatalely in a utility-maximizing framework
and concludes that basis risk is comparatively sarad thus will not hinder the occurrence of
hedging transactions. In terms of the effectiveméssforwardé based on the population mortal-
ity for hedging insured lives, Coughlan et al. (2PQse historical data and conclude that the loss
in efficiency is small from a long-term perspectigai and Sherris (2011) quantify the impact
of basis risk in longevity bonds and g-forwardsiistatic framework and find that basis risk does
not significantly affect the hedging effectivene§€oughlan et al. (2010) introduce a general
framework for assessing basis risk in longevitygesdand conclude that it can be reduced con-
siderably by applying their framework for calibregithe hedge. A more general concept in this
context, the so-called population basis risk, dbssrthe risk of basing the payout of the risk
management instrument on a different populdtamd is discussed by Li and Hardy (2009) and
Coughlan et al. (2007). Thus, to date, resultheliterature suggest that basis risk in longevity
hedges overall has a minor impact on the effecassrof the hedge.

The second risk management instrument, naturalihgdgas also been studied in the literature.
Cox and Lin (2007) as well as Bayraktar and Yow2@0{) examine the impact of natural hedg-
ing on pricing. Grindl, Post, and Schulze (2006) Bfanewald, Post, and Grindl (2011) com-
pare the effects of different risk management esgias on shareholder value, concluding that
natural hedging is the preferred risk managemeol tout only under certain circumstances.
Wang et al. (2010) apply the concept of duratiomtwtality and derive an optimal liability mix,
which is characterized by a portfolio-mortality-dtion of zero, while Wetzel and Zwiesler
(2008) show that the mortality variance, i.e. tlagiance due to fluctuations in mortality, can be
reduced by more than 99% through portfolio compmsitGatzert and Wesker (2010) consider
the insurer as a whole and show how to immunizerengisk level by simultaneously consider-
ing the investment and insurance portfolio.

* A g-forward is a standardized mortality contingewap, based on the LifeMetrics index by J.P. Margrhe

LifeMetrics index is distinguished by gender ane &gy the population of U.S., England and Wales,Nlether-
lands and Germany (for more information and currentindex data see
http://www.jpmorgan.com/pages/jpmorgan/investbkitohs/lifemetrics).

® Potential sources of population mismatch incldifferences in geographic location, age, socidlstatc.



Despite a fair amount of research on mortality,rible impact of all three mortality risk compo-
nents (separately and combined) and basis rishtiresfrom adverse selection on the risk level
of a life insurance company and on the effectiversdglifferent risk management strategies with
respect to reaching a desired risk level as wellemigjing against unexpected changes in mortali-
ty has not been systematically studied. Hencehim gaper, mortality risk is modeled compre-
hensively to gain deeper insight into the inte@ttimong the different types of risk, incorporat-
ing unsystematic mortality risk, adverse select®ystematic mortality risk, and basis risk with
respect to the risk management instruments. Basddi® model, the impact of mortality risk on
the risk level of a two-product life insurance canp and for hedging longevity risk is analyzed.
Population mortality is forecasted using the extem®f the Lee-Carter (1992) model proposed
by Brouhns, Denuit, and Vermunt (2008 dverse selection is modeled based on an extension
of the Brass-type relational model by Brouhns, Dgmund Vermunt (2002a) and estimated based
on data from the Continuous Mortality Investigat({@MI).

Furthermore, in contrast to previous literature, specifically study the impact of information
asymmetries concerning mortality heterogeneity tedresulting adverse selection on an insur-
er's risk situation and the effectiveness of risknagement. If the insurance company cannot
observe the insured’s individual mortality or ifetke is insufficient data on average annuitant
mortality, adverse selection may lead to a misesion of mortality experience for annuitants
and thus to a difference between actual mortality expected mortality, which is used in, e.qg.
pricing and reserving. Therefore, to examine thpaot of mortality information, we first look at
adverse selection under information asymmetry, yimgla misestimation of annuitant mortality
experience. Second, we examine the impact of ae\ssigction when the insurance company has
gained perfect information about the mortality engrece within the annuitant portfolio, e.g. by
way of experience rating.

This consideration of adverse selection extendsvitré of Ngai and Sherris (2011) and Cough-
lan et al. (2007) and is intended to offer addsilorentral insight regarding the effect of adverse
selection and basis risk. In particular, our resghow that adverse selection and the resulting
basis risk in longevity hedges can in fact havedigqularly strong impact on both an insurer’s
risk level and on the effectiveness of MCBs in i@dg the level of risk, if the true mortality ex-
perience is partly hidden from the insurer. Thiass effect should be taken into account when
determining the amount of risk management neededligeve a certain desired risk level. This is
also true when determining the optimal MCB volunmel gortfolio composition to reduce the
impact of systematic mortality risk. In this conteanother contribution to previous literature,

®  This mortality model is taken as an example amlas well be replaced by other stochastic moytaiidels that

provide a good fit depending on the concrete appba (and the respective country).



including Coughlan et al. (2007), Ngai and Shg2i11), and Sweeting (2007), is the considera-

tion of systematic mortality risk in addition tods risk as well as the analysis of natural hedg-

ing. In addition, the explicit inclusion of adverselection and the model of systematic mortality

risk in the analysis of natural hedging extend mes studies such as Grundl, Post, and Schulze
(2006) and Gatzert and Wesker (2010), where facusti laid on adverse selection.

The remainder of the paper is structured as folldgextion 2 introduces methods for modeling
and forecasting population mortality. Furthermdree model of the insurer and the MCB are
presented. Section 3 contains results of the neadeanalyses and Section 4 concludes.

2.MODEL FRAMEWORK
2.1 Modeling and forecasting mortality risk

Modeling unsystematic mortality risk

One of the most frequently used models for moxtaditthe Lee-Carter (1992) model, which con-
sists of a demographic and a time series parhignftamework, the central death rate or force of
mortality 1, (7) is modeled through

In[yx(r)]:ax+bx[k[+g” it :ux(r) = é’lx+bek,+£xl,’

where &, and Q are time constant parameters indicating the gésbege of mortality over age
and the sensitivity of the mortality rate at ageo changes irk_, respectively, wher&k_ is a
time-varying index and shows the general develogroemortality over time, and, , is an error
term with mean 0 and constant variance. Lee andeC&r992) propose to fit an appropriate
ARIMA process on the estimated time serieXpf

k. =¢g+a, K +a,lk ,+.+a, [k  +9,[F_+0,F_,+.+90,[ _,+& =Kk +¢

kT

using Box-Jenkins time series analysis techniqués g ~ N (0,02), where g’ is assumed to
be constant over time. A more recent variatiorhefltee-Carter (1992) model is the extension by
Brouhns, Denuit, and Vermunt (BDV) (2002a), whoseppsed modification results in slightly
more attractive theoretical properties. They mdidelrealized number of deaths at agand time

, D ., as

X,T 1

D,, ~ Poissor{ E, [,(r)) with 44 (7) =€~"™%,



Wherelzr is the forecasted realization of the time inde&dum BDV (2002a) for simulating ran-
dom numbers of death, thus reflecting the unsydiemeortality risk andE, ; is the risk expo-
sure at age and time7 , defined asE,, =(n,., (7 -1) + n (7)) /2,wheren(z) is the number of
persons (i.e., the population size) still alivegéx and the end of year’ The advantages of the
BDV (2002a) model are that the restrictive assuamptif homoscedastic errors made in the Lee-
Carter (1992) model is given up and that the rasulPoisson distribution is well suited for a
counting variable such as the number of dekths.

Modeling adverse selection and basis risk

Mortality heterogeneity refers to the fact that tabty rates are not identical for all individuads

the same age but differ depending on, e.g., genetic predispositir behavior. Individuals are
usually able to gain some information about thedividual mortality, for example through fami-
ly history or their general health situation, whigtay influence their insurance decisions (see
Finkelstein and Poterba (2002)). For instance,ragmeestimating its own mortality to be below
average will be more likely to purchase an annthgn a person with below average mortality.
Insurance companies generally do not have acced®se information and thus cannot directly
distinguish between individuals with above or belaverage health. These circumstances give
rise to information asymmetries and thus the probté adverse selection, as both the level of
mortality rates as well as their development oweetdiffer between annuitants and the general
population. At the same time, adverse selection iafplies basis risk when hedging against lon-
gevity risk due to the difference between the nmibytaates of the reference population used as
an underlying for the hedge and the annuitants’tafity rates. Hence, basis risk arises because
the underlying and the hedged population are ndepity dependent and can thus reduce the
hedging effectivenessin the following, adverse selection is modeledtiyh an extension of the
brass-type relational model used by, among otlBFmjhns, Denuit, and Vermunt (2002a),

In(££7) = a+ B, 2) + B, fIn (145 o) ., (1)

which relates the mortality of annuitants (denobgdsuperscript &nr’) to that of a reference
population (denoted by superscripiof’). In this context, the parametgr can be interpreted as
the speed of improvement of annuitant mortalitg@sipared to population mortality, where val-

For simulation purposeg;® = -n,, (t-1) [ /In( pf*) is used instead (see BDV (2002b)).

Depending on the respective country and apptinatbther mortality models may be more appropriatade-

quately forecast mortality rates of the populatisee, e.g., Cairns et al. (2009)).

Here, adverse selection and basis risk are modedmtically through a differing mortality expemige for annui-

tants and the population as a whole. However \loetérms refer to different aspects. While adveedection re-
fers to the difference in mortality experiencesiag from mortality heterogeneity, basis risk refey the conse-
guences of this difference when hedging longevitly through capital markets.
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ues greater than one indicate a greater improvemenbrtality rates for the group of annuitants.
In contrast to previous literature, we additionaftglude an interaction term between mortality
rates and a time index.qex In Order to incorporate time dependency in theedpe relative im-
provement. We expect a negative coefficigntindicating that the over-improvement in mortali-
ty rates of annuitants decreases over time. Tlgiession model can then be used to obtain fore-
casts of annuitant mortality based on the estimatebforecasted population mortality. The nor-
mally distributed error terne, . has zero mean and a constant variance over agenasand is
taken into account in forecasting. As in the cakersystematic risk, the realized number of
deaths for annuitants is modeled by applying thisddo distribution for a given exposure and
the forecasted force of mortalify; " .

In the context of adverse selection, we additignedtus on the role of mortality information in
underwriting and its impact on the risk situatiordaisk management of an insurance company.
Therefore, we first assume that the insurer capadectly account for adverse selection, for ex-
ample because of a lack of data on annuitant nityrtahd private information of the insured
concerning his individual health situation, and tive parameters of Equation (1) are misestimat-
ed, such thgf; = 1,4, = 0, anda # 0 (referred to as “adverse selection misestimatddénce,
since the actual relationship between annuitantpapdilation mortality (equal to the mortality of
term life insurance policyholders) is misestimattiag different development of mortality rates
for annuitants and life insurance policyholdersnzdrbe fully taken into account when calculat-
ing premiums and benefits. However, the insurarmapany may be able to gain information
about the average mortality within the annuitantfpbo under adverse selection, e.g. by way of
experience rating. Thus, second, we assume thatsheer is able to perfectly estimate and thus
account for adverse selection effects and conséguertake this information into account when
determining benefits and premiums of annuitahfBhis setting is referred to as “adverse selec-
tion perfectly estimated”.

Modeling systematic mortality risk

Systematic mortality risk is the risk that cannet diversified through enlarging the insurance
portfolio, i.e. it is the risk of unexpected devais from the expected mortality rates applying to
all individuals, which can result, e.g., from a goon factor unexpectedly impacting mortality at
all ages (see, e.g., Wills and Sherris (2010))sTdan in general be attributed either to unex-
pected environmental or social influences, impactimortality positively or negativel{, or to

% Thus, adverse selection in the sense of hiddemiration is in fact eliminated.
1 Additionally, certain other macroeconomic varegbmight have an influence on mortality (see, ¢dgnewald
(2011)).



wrong expectations about future mortality due tingstion errors2 Unexpected common factors
that influence lives in a similar way induce depemdes and thus destroy diversification benefits
of large pool sizes. In the literature, systematiartality risk is modeled and accounted for in
different ways. Hanewald, Piggot, and Sherris (2Cdrid Wills and Sherris (2010) characterize
systematic (longevity) risk as uncertain changemaonrtality applying to all individuals, which
leads to dependencies between lives due to commprovement in mortality rates across indi-
viduals. Wang et al. (2010) describe systematicasa constant shock to the force of mortality,
thus accounting for unexpected changes in morteditys, similarly to Milevsky and Promislow
(2003) and Grindl, Post, and Schulze (2006). Furtbee, Cox and Lin (2007) point out that
while mortality risk may not be hedgeable in finmhenarkets, it may be reduced or eliminated
by insurers by means of, e.g., natural hedgingsteance, asset-liability management, or mortal-
ity swaps.

In the following, systematic mortality risk is mdee through different realizations of the time
trend k., where now the error term is taken into accouatjig k™ = I2, +&,, which we refer
to as the “neutral scenario” as the mean life etgy@y does not change. The fac@rimpacts
mortality at all ages in year'® and thus causes dependencies between lives, whiufot be
diversified through enlarging the portfolio. To @yusystematic mortality risk in more detail, we
conduct scenario analyses by distinguishing betveelmgevity scenario, in which mortality is
unexpected low, and a scenario with unexpected imgftality (“mortality scenario”) using the
absolute value of,, respectively, thus having

ksyst Iongevity: |2r _|£ | and kTsyst mortality= izr +|£. |
T T |

Summary of modeled mortality risk

Based on the mortality model presented here, thbatility that a male policyholder agedn
calendar yearr dies within the next year, given he has sunr_\{ivedl age x, is calculated by
q,(7) =1-exp(-4, (7)) (see BDV (2002a), p. 376), and, = |_| P..; is the probability that an
x-year old male policyholder survives for the nexyears. BasSed on the previous modeling of
mortality rates, four different cases can be dggtished depending on the inclusion of unsystem-
atic risk, adverse selection, and systematic mytask, laid out in Table 1.

12 An example of a potential source of estimatiamreis the choice of the appropriate sample persinte k. is
rather sensitive towards the specified period.
13 Due to the assumed ARIMA process fqr, subsequent years are also impacted by the realizaf &, .



Table 1. Overview of force of mortality depending on ind&d mortality risk component

Without g, porunsyst - Mortality rates of the reference population:
adverse » Only unsystematic risk
selection
wuPoPst Mortality rates of the reference population witlstgynatic mortality risk (time
trendk™®)
» Unsystematic risk + systematic risk

With perensyst - Mortality rates of annuitants
adverse » Unsystematic risk + adverse selection
selection

pmst Mortality rates of annuitants with systematic mbiyarisk (time trendk™®)
» Unsystematic risk + adverse selection + systennisc

2.2 Modeling and valuation of life insurance liabities

Modeling a life insurance company

Table 2 depicts a simplified balance sheet of ifleeihsurance company at tinbe= 0. The insur-
ance company sells immediate annuities paying dyyaanuitya in arrear each year as long as
the insured is alive, and a term life insuranceiq@ya constant death bendiiB. The annuity is
financed through a single premiusP, paid int = 0, which depends on assumptions regarding
the mortality setting (see Table 1). In particulax, unsystrefers to the case where only unsys-
tematic risk is modeled, and= systis the setting that takes into account systenraic The
term life insurance contract is financed throughstant annual premiumB'. We thereby as-
sume that the insurance company sklts = n (0) term life and (1 .)-n = na(0) annuity con-
tracts, wherd_ denotes the fraction of term life insurance arile constant number of insurance
contracts sold.

Table 2 Balance sheet of the insurance company attime fori = unsyst, syst
Assets Liabilities

Sou (0) M., (0)

Sien (0) M, (0)
Miona(0) | E(O)

On the liability side,M, (0), or, more generalM, (t), denotes the value of annuities at titne
and M‘L(O) represents the value of term life insurance liagd at timet = O fori = unsyst, syst
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To increase the comparability in the numerical gsial the total volume per contritof both
contract types ith = 0 is identical E(0) denotes the initial equity contributed by slhatders int
=0, andE'(t) is residually determined as the difference betwassets and liabilities. In return for
their investment, shareholders receive a constaatiénr, of the positive earnings each year as a
dividend, given bydiv' (t) =r, Dmax( E(t)-E (t-1 () i =unsyst, systFurthermoreM,,(t)

is the value of the mortality contingent bond (MC&)timet as detailed in the next subsection,
Suw (0) stands for the market value of low-risk assettina¢ t = 0, and S, (0) represent the
high-risk assets. If the insurance company purchasenortality contingent bond, a premium
I'I‘X'T has to be paid ih= 0, implying that the initial capital at time ©aalable for investment in
the capital mark&é(O) is given by

S'(0) = E(0)+ n,(0)OSP+ p(0OpP-M',,,i=unsyst, syst

The total value of assefs(t) in the balance sheet at tirhén turn increases by the market value
of the MCB, such that

A (0)=S(0)+ M,,.4(0),i =unsyst, syst

The market value of asseﬁ}(t) , ] =low, high is assumed to follow a geometric Brownian mo-
tion with 4, the being drift ando, denoting the volatility. Letw, and thgh denote two
Brownian motions with correlatiop under the real-world measuReon the probability space
(Q,.#,P), where 7 s the filtration generated by the Brownian motiéfence, S () can be
expressed as (see Bjork (2004))

S ()= 9( $@xp([,uj —%af}[@ t 3o W- ’VS/)J j =low, high i = unsyst, syst.
Thus, the value of the capital investm8&(t) develops as
S(1)=Sign(d+ Su( )+ 0( YOP-'p( YO & 'd )0 DB 'X )t dif),i=unsyst, syst

As before,n; (t) is the number of annuitants still alive at the efigeart, n_ (t) the number of
term life insurance policyholders alive at the efgeart, d, (t) represents the number of deaths
of life insurance policyholders during yeamndX'(t) denotes the coupon payment for the MCB
in yeart and S, (t- 9 =a0$( + $ and §, (t- 9 =(1-a)0S( t $. The total market value
of assets is then given by

14 Volume here refers to the present value of exgaebenefit payments in= 0.
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A(t)=S(9+ M,.(1,i=unsyst, syst

Valuation of insurance liabilities

We assume independence of market and mortalityanskevaluate the insurance contracts using
risk-neutral valuation. The resulting market vali@sannuities and term life insurance at titne
on the liability side of the balance sheet for atesl (paid in arrears at the end of each year) and
life insurance, respectively are given by

Tp-t s
My (t) =n, () DD al &, [{1+r) ", i=unsyst sys
s=1
T -t-1

M|I- (t) ( ) Z DBl;l pl;<+t|:d;<+t+sl:ql+ ) S+l PLQ ﬁ’x t[q1+ r)_SJ’ i: unSySI Sysl5

with n, (t) being the number of annuity contracts aijdt) being the number of life insurance
contracts irt. T. andTadenote the maximum duration of the respective eahtype and is the
risk-free rate. The superscripdsandL of the mortality rates used in the valuation cfurance
contracts refer to the respective mortality ratesannuitants or life insurance holders, which
depend on the mortality assumptions (unsystematc unsystematic risk + adverse selection,
see Table 1), but do not include the systematidatity risk. The contract parameteasDB and

P', i = unsyst, systare calculated by using the actuarial equivaleprieciple, i.e., expected
premiums must be equal to expected benefits. W tefthese premiums &P and p_o" .'°

In the presence of systematic mortality risk, theurance company additionally demands a risk
premium (1+9), which we assume to be equal for both produessylting in the premiumg>*
and SP”*'. Furthermore, the contract volume of annuities lednsurance contracts, defined as
the present value of the expected benefit pay@ifssed toV for both contract types. Thus, the
death benefiDB and the annual premiuf@ as well as are calculated by

-1

V= ZDBDd;EttHEGh ) Zp‘a"mg[@h N, ()

t=0
| TA—l

V=2 aldy B ) = g (3)

15 The time subscriptin the death and survival probabilities has bempped from the formulas for ease of illus-

tration; however, all death and survival probaigititremain dependent on age and time.

The probability of default is not taken into agobin pricing since we assume that the insuraraeetits will
continue to be paid out in case of a default; ithis line with the current situation in many coues, where ben-
efits are guaranteed by a guaranty fund (see@ajzert and Kling (2007)).
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Thus, in the setting without systematic rigk;™*'= P " and SB"™'= SP*", while in the pres-
ence of systematic risk3®* = R *'[{1+d)and SP** = SP*"[f1+J), ensuring that the volume
of benefits for both contract types is the sameer@\, the value of liabilities at time L'(t), is
thus given by

L' (t) =M (t)+M},(t),i = unsyst, syst
2.3 Risk management and risk measurement

Modeling and valuation of a simple mortality comggmt bond

For risk management, a simple coupon-based mortadittingent bond (MCB), called a survivor
bond, is used as proposed by Blake and Burrowsl1{2@¢hich is considered to provide an effi-
cient hedge against longevity risk. We assumettievariable coupon paymexXi(t), fori = un-
syst syst at the end of each year O, ..., T-1 is proportional to the percentage of the refeeen
population still alive at timé At timet = 0, the insurance company pays a premlﬂlm, fori =
unsyst, systwherex denotes the age of the reference population oG8 andT is the duration
of the bond.

There is an extensive literature on the pricing@Bs, assuming different processes for the un-
derlying mortality and different valuation approashe.g., Lin and Cox (2005, 2008), Barbarin
(2008). Blake et al. (2006), Dawson et al. (20Hgwever, there is still uncertainty concerning
suitable methods for pricing a given instrumentdiidnally, since there does not yet exist a
liquid market for longevity risk, it is not easipossible to determine the risk premium for lon-
gevity risk. Therefore, in the following, the pmg approach applied for the EIB/BNP Paribas is
used to determine the premium of the mortality im@nt bond,” which was derived using the
projected survival rates by the U.K. Governmentuacy Department, whereby coupon payments
were discounted using the LIBOR rate minus a aentiak premium/ (see Cairns et al. (2005)).
Hence, the price of a bond with duratibhat pays ouX'(t) in yeart can be calculated by

i < unsyst -(t+1) . _
M, =Y E(X"(1))a+r-2)"", i=unsyst sys,
t=0

wherer is the risk-free interest rate andhe risk premium for systematic mortality risk,i if
systandZ = 0 if i = unsyst The actual cash-flow((t) at timet depends on the mortality of the
reference population, i.e., on the forecasted fafceortality £°®', and thus also on whether

" This approach seems justifiable despite the mmoess of the bond, since e.g. Blake et al. (2668 that the
failure was likely due to weaknesses in designeratihan due to mispricing.
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systematic risk is taken into account in the analgs not { = unsyst, sy¥t As before, in pricing
and valuation, systematic risk is not taken intonstderation in the mortality projection as it rep-
resents an unexpected change to mortality. Howeystematic mortality risk is addressed by
introducing the risk premium. Moreover, basis risk is involved in the hedgehesbehavior of
the underlying of the bond (wit"') is not identical to the development of the hedpesi-

i
ref

tion, i.e. the portfolio of annuities (with/™', see Table 1). Leh (t) denote the number of

persons in the reference group still alive at the ef yeart, which can be recursively calculated
() :(r'Lef (t-1)-d,, (t)) wheredy, (t) is the number of persons who died within year

ref

asn

ref

This is calculated using

i
dref

t) ~ Poissoff E' [P ( }) and pP (t) = ™™ i = unsyst, syst
( ) rﬁ Et X X

ne(0) equal to an arbitrary numbB2andC being the initial coupon payment agreed upon -at in
ception of the contract. The exposure to risk af thference populatiofEy;" is given by
Eq :—(rief (t-1) [tfj"”")/ln( pf"”") (see BDV (2002b)). Then, the annual paydft) is equal

to

X' (t) = :: (((;)) [C, i =unsyst, syst
Thus, the actual coupon payment taken into accdouigk measurement by means of actual cash
flows is X**(t), whereas for valuationX""**(t) is used. The value of the MCB at time
M, (t) i = unsyst, systis an asset for the insurance company and giyeghdéexpected value
of future cash-flows discounted to tinh@nd given the information at tinte multiplied by the
number of MCBs purchased at timel],

T-1 _
Mti)ond (t) = nB@ Et( xunsyst( J)) [G1+ r—/l)_“_tﬂ) A=0,..T-1A=0ifi = unsyst
=

Risk management using natural hedging

We further examine the effect of natural hedgindpiclv uses the opposed reaction towards
changes in mortality rates of term life insuranaed annuities to immunize a life insurer against
systematic mortality risk. In the literature, naluhedging has been used for minimizing (e.qg.
Wetzel and Zwiesler (2008)) or immunizing (e.g. Waet al. (2010)) the risk of an insurance
company in response to unexpected (systematic)gelsaim mortality. In the following analysis,

8 n.(0) is merely a scaling parameter that does notinthe result, since the coupon payment is exptess

relative terms.
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we take an immunization approach as in Wang e{28110), but follow Gatzert and Wesker

(2010) by considering the insurance company as@enhstead of only focusing on the liability

side. In the case without adverse selection anddake probability of default PD as the relevant
risk measure, for example, the optimal portfolionpmsition f, is defined as

g( 1) =APD( ;47 17> = PD( 1;1,) - PD( £;11,” %= PD “*{'{)- PD {*{)=0,

implying that the probability of default is the samwith and without systematic risk. However,
since the risk immunizing portfolio composition da®ot constitute the risk minimizing portfolio,
the investment strategy, reinsurance, or MCBs @unded to achieve a desired risk level, which
is at the same time immunized against changes mafityg as illustrated in the numerical section.

Risk measurement

To analyze the impact of mortality risk on the irests risk situation, we consider two downside
risk measures, namely the probability of defaBIDio and the mean Iosk/l(_i), which essentially
correspond to the Lower Partial Moments (LPM) adesrzero and one, adapted to account for
the long duration of contracts and to take intaaot potential default during the contract period.
The probability of default is defined as

PD' = P(T, < T), i = unsysfsyst

whereT, =inf {t: A(t)<L (t)} is the time of default. Thus, tHRD only measures the frequency
of default. The second risk measure, the mean i®sefined as an LPM of order one at the time
of default, discounted tb= 0, i.e.

ML :E[(L‘( 2= A(T)) L+ r )Td o T, 'Iﬂ,i:unsysisyst

where 2{T, < T} denotes the indicator function, which is equalote if the condition in the
brackets is satisfied. Thus, this risk measuréeasdiscounted unconditional expected loss in case
of default, which takes into account the extenthsf default and thus reflects the amount by
which assets are not sufficient to cover liabisiti& can thus be interpreted as the average amount
of money necessary for funding a case of defauihdiuhe contract term.
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3.NUMERICAL ANALYSIS

This section presents results of the numericalyargal\We first discuss the relevant input parame-
ters and the estimation of mortality rates. Secatidhree types of mortality risk — unsystematic

risk, adverse selection, and systematic risk —thanl interaction are analyzed with respect to an
insurer’s risk situation with special focus on aceeselection. Third, the impact of mortality risk

on the effectiveness of risk management instrumigntiistrated, thereby considering mortality

contingent bonds and natural hedging.

3.1 Definition of input parameters and estimation 6the mortality model

In the numerical analysis, we assume that thergarance contracts are soldxte 35 year old
male policyholders for a duration ©f= 35 years. The contract volunaas set to 10,000 for each
of the two contract types.Using Equation (2), this assumption results imia death benefit of
DB = 164,547. Concerning the premium calculationadagarding the size of the loading for
only systematic mortality risk is not availablenlee, we follow Griindl, Post, and Schulze (2006)
by assuming a loading a¥ = 1% and conduct sensitivity analyses. Thus, unohsystematic
mortality risk, the constant annual premiupi'>*' = 465 is used, and in the presence of system-
atic mortality risk,P¥*' = 469. The age of the annuitants at inception of thereghisx = 65 and
the maximum age attainable as implied by the BD80Z&) model is 100, which corresponds to
a maximum duration of = 35 years® Setting the single premium for the annuitant undesys-
tematic und systematic mortality risk equalse"*'=10,000 and SB”* =10,100, using Equa-
tion (3), the fair annuitya depends on whether or not adverse selection entako account in
pricing and reserving. The calendar year of cohtirameption is set to 2012. Initial equiBg is

set to 20 Mio and the dividend paymentdss 25%. Regarding the assets, a constant risk-free
rater of 3% is assumed and the drift and volatility @th(low) risk assets are fixed at 10% (5%)
and 20% (8%), with a correlation of 0.1 and a fractr = 80% invested in low-risk assets, where
sensitivity analyses were conducted for robustribs®ensure comparability among portfolios, in
addition to fixing the volume of each contract, tb&al number of contracts sold(0), is fixed
and equal to 10,000. All analyses are based on &4Gatlo simulation with 100,000 paths for the
asset portfolio and the same sequence of randonbensmvas used for each simulation run. As
the value of the MCB at timedepends on the information available at timealuation is con-

1 These parameters were subject to robustness chekults are similar when considering a shonteatibn of

contracts (e.gT = 30 orT = 25), younger term life insurance policyholdezgy(x = 30), or older annuitants (e.g.
X=70,x=75).

This might be considered too low, however dughtoscarcity of data especially at high ages, iabikel estima-
tion of the parameters above this age is not plesditor example, J. P. Morgan recommends a maxiagenof
only 89 in the accompanying software for its Lifekiles index (see http://www.jpmorgan.com/pages/gpm
gan/investbk/solutions/lifemetrics/software).

20
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ducted path-dependently for all 100,000 possibédizations ofnj,, (t)/n, (0), i = unsyst syst

at each time. Due to computational intensityl,,,(t) is thereby approximated based on 1,000
simulation runs of future mortality, still ensuringbust resulté®

Estimating and projecting future mortality and adseeselection in the U.K.

Regarding the empirical estimation of mortalityesatthe U.K. is chosen as an example of a typi-
cal industrialized country due to the availabildl mortality rates for annuitants deduced from
actuarial mortality tables that are derived frortuatinsurance data. Hence, the data basis for the
estimation of mortality for both groups of insur@hnuitant data and population data used for
term life policyholders) is the number of deathd axposure to risk for U.K. from 1950 to 2009
available through the Human Mortality Database tedU.K. annuitant mortality from the Con-
tinuous Mortality Investigation (CMI) from 1947 #000 as reflected in the five mortality tables
for the years 1947, 1968, 1980, 1992 and Z80the estimated demographic parameters of the
BDV (2002a) model are consistent with the resubisesl in the original article by Lee and Carter
(1992) and the estimated and forecasted mortabtydtK_ is obtained by applying Box-Jenkins
time series analysis techniques, which indicated\RIMA (0,1,0) modef® with drift equal to
¢=-1.5403 (standard error 0.3056); the standaf efrs, is estimated as 2.3474.

Systematic mortality risk is modeled by simulatiagmdom realizations of, for each year. As
illustrated in Figure 1, this common factor impagctsrtality at all ages and thus leads to depend-
encies in the number of deaths at each dakegure 1 exhibits the correlation between the ran
dom number of deathB, , in the yearr = 2020 for different ages** Without systematic mortal-
ity risk, as shown in Part a) of Figure 1, the nembf deathsD, , for different ages for a given
yeart are generally uncorrelated. Thus, the benefitdséf pooling apply. However, under sys-
tematic mortality risk (Figure 1 b)), the commomwrtta causes correlations between the number
of deaths for different ages and the correlatiogffocient increases with policyholders’ age.

2 The standard error of Monte-Carlo simulationtfu value of the mortality contingent bond at1 M “”SVS‘(l) is

bond
about 0.0322 (the expected value is approximat2lytie exact standard error depends on the patsidered
and values for the standard error lie between Q.G 0.0354. These values are calculated foriaial icoupon
C =1), while fort = 10 it is about 0.0263 (between 0.0239 and 0.0287
The corresponding graphs exhibiting the demodcapéwrameters expy), b, andk; can be found in the appendix;
for the estimation procedure using a uni-dimendidlewton-method, we refer to BDV (2002a). Other @itant
data with more data points is not publicly avaiabhowever, the data still implies significant paeder esti-
mates when calibrating the time series to estineteffect of adverse selection.
The Schwarz as well as the Akaike informatiotecion indicated a more complex model for the ARINIfe
series. However, subsequent residual analysis iixglLjung test as well as ACF and PACF analysisvwsid
no significant residual autocorrelation. .
All calculations of the correlations are basedkdfi = k +¢, , i.e. the “neutral” scenario. Results for the levig
ty and the mortality scenario are qualitatively ikim except that correlations are slightly smaliene year 2020
was used as an example. The results are basedd@00Gimulation runs and a population of 10,00icpbold-

ers for each age x.
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Figure 1: Correlations between the random number of deathgeat and agey for life insurance
policyholders and annuitants, respectively, inyarz = 2020

a) Correlation across ages b) Correlation across ages
under unsystematic mortality risk under unsystematic + systematic mortality risk

Figure 2: Correlation between the cash flows for death benand annuities for the cohort of
1977 and 1947 at ageandy over the contract term

Correlation between cash flows over the contract term
(without adverse selection)
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These results can also be confirmed when consgidhis correlation between the cash flows for
annuities and death benefits for the cohort of,, 4847 (annuitants) and 1977 (life insurance
policyholders) over the contract term, i.e. for ylear 2012 to 2047, as shown in Figure 2. With-
out systematic mortality risk, the correlation atle point in time is zero, while under systemat-
ic mortality risk, negative correlations betweesltdiows of annuities and death benefits can be
observed, which increase over the contract ternes&hcorrelations between the number of
deaths for different ages caused by systematicafitgrrisk in general destroy diversification
benefits. This can further be seen in Figure 3, rethéhe coefficient of variation
var(X) /E( X) is displayed, which provides a relative measuraséfby relating the standard
deviation to the expected value. Hexedenotes the random number of deaths for the calfort
1947 (annuitants) or 1977 (life insurance policgens) for different ages (i.e., different points in
time) with and without systematic mortality riskhd results show that under unsystematic mor-
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tality risk, the coefficient of variation decreades an increasing portfolio size, i.e. the bersefit
of risk pooling and the law of large numbers applpwever, under systematic mortality risk,
diversification benefits are limited and the rigkluction achievable through enlarging the portfo-
lio is considerably reduced.

Figure 3: Measuring diversification — Coefficient of vai@t for different ages and different
portfolio sizes under unsystematic and systematidatity risk
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Regarding adverse selection, the estimation aaegrth Equation (1) indicates that annuitant
mortality rates improve more rapidly than the papioh mortality rates, but that this greater im-
provement decreases over time. The estimated aptacis equal to -0.0275 (0.0198), the pa-
rameter for the relationship between annuitant @ogllation mortality £;) is 1.1618 (0.0123),
and the interaction term between yarfex and population mortality is slightly negative with
S =-0.0004 (0.0002) (robust standard errors in phesis)*®> The estimated standard error of
residualse, ; is 0.1292, which are also taken into account émheyeat and agex in forecasting.

In case the insurer is not be able to perfectlyoant for adverse selection (“adverse selection
misestimated”), the parameters of Equation (1)raigestimated, such that = 1, > = 0, and

a =-0.2779. Concerning the interaction of adverse selectiwh systematic risk, further analy-
sis shows that the correlation between lives intpliy systematic mortality risk is reduced
through adverse selection, which is due to thesifice between the mortality experience of the
population and annuitants induced by mortality tegeneity and adverse selection.

% The estimate fof, andf, are significantly different from zero (on the 1%daB% significance level, respective-
ly), while the intercept is not. The inclusionffadditionally leads to a slight improvementRhby 0.1 percent-
age point. Note that  =1950-7, where 1950 is the first year for which mortalitgta is used andis the year
under consideration. THe indicates that more than 98% of the variancenofugtant mortality can be explained
through the model, which is to be expected, singgaict factors for mortality rates of annuitants &émel popula-

tion should generally be similar.
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3.2 The impact of mortality risk on an insurer’s risk situation

Mortality risk in pricing and risk measurement

In the numerical analysis, we distinguish differeases with respect to mortality risk for pricing
and risk measurement as exhibited in Table 3 (t&® Bable 1 for the notation of mortality
rates). We first study the case without taking iat@ount adverse selection, using only unsys-
tematic and systematic mortality risk. Regarding ithpact of adverse selection (see third row in
Table 3, “With adverse selectior? “unsystematic risk + adverse selection”), the tases con-
cerning the ability of the insurance company tefast and thus to take into account adverse
selection in pricing are studied. If the insurenmat account perfectly for adverse selection, the
different development of mortality rates for ananis and life insurance policyholders cannot be
fully taken into account when calculating premiuamsl benefits. The resulting annuity is 688.
Second, if the insurer is able to perfectly esteratd thus account for adverse selection effects,
the resulting annuity is 663.

Table 3 Overview of assumptions on the insurer’s pricamgl risk measurement

Notation in Pricing and reserving Fair Risk mea-

figures annuity | surement
Without “unsystematic ql =g/ 748 gl =g/
adverse risk” L — Pop L — yPop
selection 9 qu f S G =

unsys air NSyS! air
R SF” = SR

“unsystematic | g* = qXPOP 748 qh = g/

risk L — ~PopP L — (Pop, syst

+ systematic b = 9 : G = G

risk,, Psyst (1+ 5) EP fair Snyst (1+ 5) Ealr
With “unsystematic o [germar0ATA0 a4y sel misestimate | 688 q = g;™"
adverse risk O =9 ]
selection + adverse selec g, ", if adv. sel perfectly estimated | gg3 q; =g

tion” qL = gP°

Punsyst P fair . Spmsyst SPfaJr

“_urll(systematic o _ QMmO AT adv sel misestimate 688 q; =g

ris q, = ]

+adverse selec] | g™, if adv. sel perfectly estimated | g3t qL = gPop ot

tion . ar = qf”

+ systematic .

I'iSk” Psyst (1+ 5) EP air . Spsyst (1+ 5) DSFjalr

! Systematic mortality risk is considered in thenpiten through the loading .



Figure 4: Probability of default and mean loss under différgpes of mortality risk for

gevity scenario
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The impact of unsystematic mortality risk on amies's risk situation

We begin by examining the impact of unsystematictatity risk on the risk situation of an in-
surance company to gain insight into central e$fedtportfolio composition. Furthermore, this
setup serves as a benchmark for further analysehid scenario, the only uncertainty stemming
from mortality is the time of death of each polioldter, realized with a certain known probability
distribution and identical for all policyholdersx@iependent of the purchased product). Figure 4
shows the results of this analysis, displayingahsolute level of risk measured by the probabil-
ity of default and the mean loss. As shown in Baf Figure 4, the risk of a portfolio of insur-
ance liabilities can generally be considerably dased through portfolio composition, particular-
ly by selling more life insurance contracts thanuities?®

The impact of systematic mortality risk on an iesigrisk situation

Systematic mortality risk is considered based dfemdint scenarios, where Figure 4 displays re-
sults for the longevity scenarfd.Without adverse selection (Figure 4 Part a)),ithpact of a
systematic change in mortality on a portfolio & linsurance contract§ = 1) is greater than the
impact on a portfolio of only annuitie§ (= 0), which is due to the different types of ireslir
risks?® However, the impact on a portfolio of annuitiessi#l not negligible but amounts to an
increase of 10.3% for the probability of default@aa 9.8% for the mean loss. This opposed reac-
tion of life insurance and annuities in responseytstematic mortality risk and the negative cor-
relations between cash flows induced by systenmtdality risk (see Figure 2) create natural
hedging opportunities that can immunize the riskanfinsurance company against changes in
mortality (at the intersection points, where th&krievel remains unchanged despite the unex-
pected common factempacting mortality).

Further analyses for the neutral scenario and theatity scenario showed that even though the
mean life expectancy is not impacted in case ofdhaer, life insurance contracts are considera-
bly more sensitive towards systematic mortaliti.fi5This result is also supported by the mortal-
ity scenario, where the probability of default im@ses from 0.03% (in Figure 4 a) to almost 2%

% The exact portfolio composition for which theunar’s risk is minimized depends on input paranseterd con-

tract characteristics. For example, if the terra liisurance is financed through a single premitn@,risk level
for a portfolio with only term life insurance isghier as compared to a portfolio with only annuities

First, the longevity scenario corresponds to anriacrease in the remaining life expectancy 0% g&ar old man
of about 1.9 years in the year 2012 from 18.5 y&a0.4 years. Second, the mortality scenarioigsph mean
decrease in the remaining life expectancy of alioBityears to 16.7 years. Third, the realizatiors,aé not re-
stricted in the “neutral” scenario, and sinEéE,) =0, the mean life expectancy is not impacted.

Life insurances constitute a low-probability riskhich are more heavily impacted by a change intatity rates
than annuities, which constitute a high-probabiiigk, see, e.g., Grindl, Post, and Schulze (2006).

For a portfolio with only annuities, in contrasie risk level decreases slightly due to the isiclu of a loading
for systematic mortality risk. Thus, in this catiee required premium is sufficiently high to covbe costs of
systematic mortality risk for a portfolio with ondnnuities.
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for a portfolio with only life insurance. Thus, Midiunder unsystematic mortality risk, a portfolio

of only life insurance contracts implies a loweskrievel than annuities in the considered exam-
ples, the sensitivity of life insurance towardstegsatic mortality risk is considerably higher as

compared to a portfolio of annuities.

The impact of adverse selection on an insurer’s situation

Regarding the impact of adverse selection on amrén's risk situation, which is induced by mor-
tality heterogeneity among individuals and asymrmoétformation between insurer and insureds,
in addition to Figure 4 b), Figure 5 exhibits tle¢ative change in the risk of an insurance compa-
ny due to the presence of adverse selection (gbrfestimated or misestimated) as compared to
the case where only unsystematic risk is included.

Figure 5: Maximum range of risk due to adverse selectionyfEgl b) when adverse selection is
misestimated or estimated perfectly (differenceveen “unsystematic” and “unsystematic +
adverse selection” in Figure 4 b.i) and b.ii), exsvely)°
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When comparing the difference between the caseewvbely unsystematic risk is considered
(“unsystematic”) and the case with adverse seled@stimated perfectly or misestimated, “un-
systematic + adverse selection”), Figure 4 b) aigdie 5 show that the risk level considerably
increases when taking into account adverse sefeclius is true even if adverse selection is per-
fectly estimated by the insurer as illustrated iguFe 5, line “adverse selection perfectly estimat-
ed.” In this case, the difference to the situatrath only unsystematic risk still constitutes an
increase of 7.8% in the default probability foratfolio of annuities f_ = 0). For mixed portfoli-

0s, the increase in risk due to the inclusion ofqotly estimated adverse selection can be even

% The relative change is calculated as the relativeease in the risk measure due to adverse wrlgetg. for the
probability of default,( PDip — pD U )/ PO

with adverse selection without adverse séter; thout adverse selectio*
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up to 21.7% in case of the mean loss. The risk ieceeases by a fairly large amount if adverse
selection is misestimated, which is mainly due toveer than predicted mortality in the annuity
portfolio, leading to a greater than expected aagflow. For example, for a portfolio with only
annuities 1. = 0), the default probability increases by abdd#3(see Figure 5, left graph, “ad-
verse selection misestimated”). The increase imikan loss for the same portfolio even corre-
sponds to more than 35% and can rise to almost @0%nixed portfolios (see Figure 5, right
graph), which emphasizes the importance of proprgcasting not only the mortality of the
population as a whole, but especially the relatgmbetween annuitant mortality and population
mortality, as an underestimation of annuitant mibyteeads to severely increased risk.

Thus, adverse selection, even if it can be pesfdotiecasted and taken into account in pricing,
can considerably increase the risk level of anrarste company, especially when considering
mixed portfolios. However, the results also empreadnat the impact of adverse selection can be
significantly decreased through a reliable forecédhe relationship between annuitant mortality
and mortality of the population as a whole (andstthe mortality of term life insurance policy-
holders), which stresses the importance of devetppiodels for better forecasting this relation-
ship. Including systematic risk in addition to acbeeselection (line “unsystematic + adverse se-
lection + systematic” in Figure 4 b)) shows thatdverse selection is misestimated (Figure 4
b.i)), the risk level is considerably higher comgzito the case of perfect estimation and included
in pricing (Figure 4 b.ii)), while systematic mditarisk has only a slight impact:

3.3 The impact of mortality risk on an insurer’s risk management

We next study the effect of mortality risk compotsean the effectiveness of risk management.
Regarding the mortality contingent bond, the logdia set toA= 35 bp (see Cairns et al.
(2005)¥? and the scaling parameter for the reference ptipnlis n.(0) = 1 Mio, withx equal to
initial age of annuitants. Furthermore, we assunag the insurer generally purchases one MCB
with a volume of 1,000 per bond for each annuitysice. Moe(t) =ng - 1,000 = (1 ) - n(0)

31 When considering a portfolio with younger terfie linsurance policyholders & 30), older annuitantx & 70),
and a shorter duration of contracts< 30), the impact of adverse selection is furihereased. For example, for
a portfolio consisting of 50% term life insuranaeda0% annuities, the mean loss increases by alifo if
adverse selection is misestimated, and by about il 8% perfectly estimated as compared to 73% &0, re-
spectively. In addition, all results shown are lolasa a single portfolio of life insurance contractmsisting of
annuities as well as term life insurance, whergalicyholders belong to the same cohort. Takirtg sccount
continuing business activity, i.e. the repeate@ sdlinsurance contracts in which the current nlitytaan be
more fully acknowledged, may decrease the effeqitasned above.

32 The size of the loading does not substantiallyaiot the results as shown in sensitivity analyses.
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- 1,000, and thus hedges 10% of its annuity busifiéBse coupon paymeit corresponding to a
volume of 1,000 iLC = 75 and the premium i%,000 (1,036) under unsystematic (systematic)
mortality risk3*

The impact of basis risk on the effectiveness oBMI@ reducing the risk level

In this subsection, we examine the effectivenedd©Bs for reducing the risk level of an insur-
ance company in the absence of systematic mortaéky The use of MCBs regarding the impact
of systematic mortality risk is analyzed in the@®t subsection. Figure 6 shows results for dif-
ferent assumptions regarding the MCB and mortaigly for the probability of default and the
mean loss. The line “without adverse selection lfasis risk)” shows the effectiveness of an
MCB under “ideal” circumstances, in which the prbitity distribution of mortality for the popu-
lation underlying the MCB and for the hedged insggaportfolio is identical, is examined (i.e.,
without basis risk). In this setup, any deviatiamghe mortality of the hedged and the underlying
reference population are only due to unsystemadidgations in realized mortality between the
population as a whole underlying the MCB and maxtalithin the insurance portfolio.

Figure 6: The impact of risk management using mortalitytoagent bonds (MCBs) under dif-
ferent assumptions concerning adverse selectidrouttsystematic mortality riSk
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% This number is somewhat arbitrary, but since veeraerely interested in the relative effectivenesan MCB

under different assumptions concerning mortalibe tifferent scenarios have to be comparable imsenf
amount of purchased hedging instruments.

For instance, for a portfolio with 50% annuitesd 50% term life insurance, the insurance compamghases
bonds with a total volume af ;»>* = 0.5- 10,000 1,000 = 5 Mio, which is equal to a total coupoyrpant of
5,000- C =5,000- 75 = 375,000 (to be weighted with the percentdgaitvivors in the underlying population).
The relative change shown by the dotted lindésrelative reduction in the risk measure achievdiough the

use of MCBs, e.g. for the probability of defaL(IR Dunsyst | — PD st )/ PD v

without MCB with MCB with MCB*
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The results show that a significant risk reducttan be achieved through the use of MCBs. For a
portfolio consisting of only annuitie§ (= 0), for which MCBs with a total volume ofi 7 = 10

Mio are purchased, the probability of default idueed by -27.8% (i.e., -0.05 percentage points)
and the mean loss by -43.3% (i.e., -94 T). Thiseolsion indicates that MCBs are more effec-
tive in reducing the severity of default than imlweing the frequency of default. In terms of a
relative risk reduction, the effectiveness of MC&m be further enhanced through portfolio
composition, despite purchasing fewer MCBs. Inipaldr, for the probability of default, the
maximum risk reduction of -32.2% is achieved fquaatfolio with 70% annuitiesf( = 30%), for
which MCBs with a total volume of1 % = 0.7- 10 T- 1,000 = 7 Mioare purchased. With re-

spect to the mean loss, the use of MCBs leadsetbitihest risk reduction of -50.2% for a portfo-
lio with 70% annuitiesf( = 30%).

Turning to the effectiveness of MCBs in reducing tavel of risk of the insurance company un-
der basis risk, the results vary depending onrtherer’s ability to estimate adverse selection. For
a portfolio comprised only of annuitieg € 0), i.e., a typical pension fund, for examplé&haut
basis risk, MCBs imply a reduction of 27.8% in febability of default, while the probability

of default can only be decreased by 19.4% in tilse cha misestimated adverse selection used in
pricing, which constitutes a significant loss ifi@éncy as compared to the case without adverse
selection. However, if the insurer is able to eatenadverse selection perfectly and takes this
knowledge into account in pricing, the loss in@éncy compared to the case where no basis risk
is included can be reduced, but only by around r@grgage points in the case of an annuities
portfolio. Thus, this result emphasizes the impwéaof accounting adequately for basis risk
effects when determining the amount of risk manasgmeeded to achieve a desired risk level.

Due to the higher level of risk and the loss incgfhcy of MCBs under basis risk, more MCBs
need to be acquired to achieve the same amoumskofaduction in the presence of basis risk,
which comes with greater cost for transferring tis& to the capital market. To gain an impres-
sion about the risk management costs associatédbagis risk (if adverse selection effects are
perfectly accounted for), one can calculate thatmaal volume of MCBs needed to reach the
same level of risk as when basis risk is absentwhen the probability distributions of the mor-
tality of annuitants and term life insurance padtiolders are identical. For example, for a portfo-
lio of 50% term life insurancd (= 0.5) and 50% annuities, MCBs with a volumenfi* = 0.5

- 10,000- 1,597 = 7.99 Mio are needed under basis risk liese the same probability of default
that would otherwise be achieved through purchalsorgls with a volume of only " = 0.5-
10,000- 1,000 = 5 Mio when no basis risk is modeled. Togesponds to an increase in the vol-
ume of risk management of almost 60%. For the ness) the volume has to be increased by

even 65.6% tavi "> = 0.5- 10,000- 1,656 = 8.28 Mio. For a portfolio with annuitiesly (f. =

bond
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0), an increase in the volume of MCBs by 36.3% @%d). for the probability of default (mean
loss) would be necessary.

The impact of basis risk on the effectiveness oBMf©r hedging systematic risk

In the literature, MCBs are also described as gpontant tool in reducing the impact of system-
atic mortality risk. Here, the longevity scenarsoconsidered since the “survivor bond” by Blake
and Burrows (2001) was proposed for hedging thgdeity risk inherent in annuities and pen-
sions. The results for this analysis are displagethble 4 for a portfolio consisting of only annu-
ities. In the case without basis risk, MCBs camubed to reduce the impact of systematic mortali-
ty risk on an insurer’s risk situation. This is fpaularly evident for the mean loss, which in the
presence of systematic mortality risk can be redigealmost 40% in the present setting by pur-
chasing mortality contingent bonds with a volumemyP®, = 10,36 Mio, using the same coupon
as in the case of unsystematic mortality risk. Tagult confirms the previous finding that MCBs
prove more useful in hedging the severity of defaslcompared to the frequency of default. The
risk reduction effect is almost as strong in theecavhere adverse selection is perfectly estimated
and priced by the insurer (reduction of 38%), etrerugh the implied change in mortality differs
for the hedged population and the reference populainderlying the MCB.

Table 4: Probability of default and mean loss for a pditf@f only annuities f{. = 0) including
systematic mortality risk (longevity scenario)

Portfolio of Without adverse With adverse selection
annuities only selection (no basis risk) (in the presence of basis risk)

misestimated perfectly estimated

PD ML PD ML PD ML
Without MCB 0.27% 342T 0.34% 458 T 0.28% 369 T
With MCB 0.22% 245 T 0.29% 349 T 0.23% 267 T
Relative reductior
through MCB 23.8% 39.4% 17.7% 31.2% 22.5% 38.0%
" The relative reduction is defined (gzD;iy‘?"“l;“g;yéhn}:?jiy‘?MCB) and (M Syif'%“’\‘AMlj%h?M’\:BL;yﬁ = .

However, if adverse selection is misestimated astdprrfectly taken into account in pricing, the
effectiveness of MCBs is considerably dampened.additional analysis of mixed portfolios
further shows that under unexpected low mortathy, insurer’s risk level is further decreased,
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since unexpected low mortality leads to lower payouterm life insurance contracts and, at the
same time, a higher payments from the MEB.

The effectiveness of natural hedging under advestection

Insurance companies can use the opposed reactirroflife insurances and annuities in re-
sponse to a change in mortality to hedge the impaslystematic mortality risk using natural
hedging. This subsection studies the impact of mdveelection on the effectiveness of this risk
management strategy (see Table 5). Since the heg®aario does not imply a change in the
expected life expectancy, only the longevity andtality scenario are considered. The optimal
fraction of life insurance contracts corresponds to the intersection points of theeetsype risk
measure, e.g. of the lines “unsystematic” and “ateypatic + systematic” in Figure 4 a). At these
points, for the given portfolio composition, thakilevel remains unchanged for the modeled
unexpected changes in mortalifyhe immunization is thereby driven by the negatigerelation
between cash flows for death benefits and for d@msubver the contract term (see Figure 2),
which is especially pronounced for later contragang and contributes to the immunizing effects
utilized in natural hedging.

Table 5 Fraction of life insurance at which the impactsystematic mortality risk on the risk
situation of an insurance company is immunized

Fraction of life Without adverse With adverse selection

insurance fto im- | selection misestimated perfectly estimated
munize portfolio PD ML PD ML PD ML
Longevity scenario| 27.2% 30.0% 18.7% 22.0% 15.5% 18.6%
Mortality scenario | 21.3% 20.3% 21.0% 19.5% 21.0% 20.1%

If no adverse selection is assumed in pricing askl measurement, the insurance company can
eliminate the impact of unexpected low mortalitytbe probability of default by signing about
27.2% life insurance contracts in case of the leitgescenario (30.0% when using the mean loss
as the relevant risk measure). In case of the titgrszenario, the optimal fraction of life insur-
ance contracts is reduced to 21.3% (20.3% for teamioss). The presence of adverse selection
leads to a change in the optimal fraction of Ifsurance contracts, at which the risk of an insur-
ance company is immunized against unexpected lowtality. This is particularly evident in case
of the longevity scenario. If adverse selectiomas$ correctly priced, the optimal fraction is re-
duced from 27.2% to 18.7% for the probability ofaddt and from 30.0% to 22.0% for the mean
loss. Thus, despite the greater implied changdarekpectancy of annuitants, less life insurance

% In contrast, in case of an opposed change inalityrrates, e.g. because the rate of mortalityrowpment is
overestimated, the purchase of MCBs would leadftother increase in the risk, since payments ftbenMCBs
decrease at the same time that payouts for teenmisurance increase.
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contracts are needed to eliminate this effecthéndase of a perfectly forecasted adverse selec-
tion, the fraction of life insurance contracts ustfer decreased to 15.5% and 18.6%, respective-
ly. For the mortality scenario, in contrast, thepant of adverse selection is overall negligible and
the optimal fraction of life insurance remains afinconstant. Compared to the longevity scenar-
io, f is considerably lower for the mortality scenardiich can be explained by the greater sen-
sitivity of life insurance towards systematic mdityarisk in the mortality scenario. Our immun-
ization approach is similar to Gatzert and Weské1Q) and Wang et al. (2010) and can also be
compared to the results in Cox and Lin (2007). fdsailts in Wang et al. (2010) differ from the
results found in the present setting in that tleetfon of life insurance contracts is generally
higher. For instance, for a 10% mortality shifte thptimal product mix proportion, i.e. the opti-
mal proportion of life insurance liabilitiefies between 30% and 35% life insuraritén Cox

and Lin (2007), past mortality shocks are usednresample to illustrate the effectiveness of
natural hedging. First, a positive shock to manrtak modeled based on the average life expec-
tancy improvement rate in historical mortality &l In this case, the deviation between the pre-
sent value of benefits and premiums for both préxiaan be eliminated completely through port-
folio composition by signing about equal amountéifefinsurance and annuity business. Second,
as an example for a bad shock, two different epidestenarios are modeled based on the 1918
flu epidemic. While in one scenario, natural hedgian contribute to a considerable reduction in
cash flow volatility, in the other scenario an omi ratio of annuity to life insurance business of
about 80% to 90% is found. In Gatzert and Wesket@2, slightly higher optimal portfolio frac-
tions are found than those in the present analysis.

The differences regarding the optimal portfolio rnmixprevious literature and the present findings
generally arise due to various reasons. Firstd#fmition of the product mix proportion differs,
e.g. using the value of liabilities (Wang et aD1R)) instead of the number of contracts. Second,
in contrast to previous studies, adverse seleaitects are explicitly modeled and taken into
account in the present analy¥isAdditional reasons include the different naturatting ap-
proaches (e.g. using durations), the implementatiosystematic mortality risk (e.g. constant
shock versus common stochastic factor), the risksme (e.g., immunization of liabilities as
compared to immunizing the insurance company asae), as well as differences in the product
characteristics. The comparison emphasizes thabptimal portfolio composition depends on
various assumptions and the concrete definitiomaifiral hedging, issues that need to be ad-
dressed by insurers when setting a risk strategweider, our results can still be considered to be

%7 The product mix proportiomy,, is thereby defined asy,, =V"™/V, with V as the total liability ans/'™ as the

life insurance liability (see Wang et al. (20104{6)).

Wang et al. (2010) also acknowledge the impodarfcaccounting for adverse selection effects. Temyduct
sensitivity analysis through implementing differenortality shifts for annuitants and life insuraramed do not
focus on a separate model.

38
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generally in accordance with previous findings,eesgly in that the optimal portfolio composi-
tion consists of a lower percentage of life inseem the portfolio as compared to annuities.

Overall, our findings indicate that in the pressetting, natural hedging can be an effective risk
management tool to immunize the risk situationrofrsurance company against changes in mor-
tality and thus systematic risk, even if annuitaantd life insurance policyholders do not experi-

ence the exact same impact. However, adverse iseletiould be taken into account when ana-
lyzing the impact of portfolio composition, for tasice in the sense of sensitivity analysis.

Simultaneous consideration of MCBs and natural imeglg

While a portfolio with about 30% life insurance t@cts is immunized against the modeled lon-
gevity scenario, this portfolio comes with a higladasolute level of risk than portfolios with a
higher percentage of life insurance (see Figurd s, the insurance company faces a trade-off
between risk minimization and immunization. In ligif the significant uncertainty accompany-
ing mortality predictions, the immunization effesttould not be neglected as a potentially very
effective method for hedging longevity risk, esjdlgiin view of the scarceness of alternative
instruments. A potential strategy for the insuranoepany to overcome this trade-off, i.e., to
simultaneously immunize an insurance company ageirenges in mortalitgnd reach a desired
risk level, can be to combine the two presentekl m&nagement strategies MCB and natural
hedging. Since MCBs reinforce the mortality riskatbich an insurance company is exposed, the
amount of MCBs purchased has an impact on thegdort€omposition at which an insurance
company is immunized against changes in mortalityus, we simultaneously calculate the
amount of MCBs needed to achieve a desired risél land the fraction of life insurance neces-
sary to immunize the desired risk level under défe assumptions concerning adverse selection
and thus basis risk. In this setup, we assumetligainsurer intends to achieve a probability of
default of 0.1% and a mean loss of 50 T.

Table 6: Portfolio composition and amount of MCB to simukansly achieve a certain risk lev-
el and immunize this risk level against systemiatartality risk (longevity scenario)

Without adverse selection (ngWith adverse selection
basis risk) (in the presence of basis risk)
misestimated perfectly estimated
! ! ! ! ! !

PD¥'=0.1% | ML¥'=50T | PD"®"=0.1% | ML™=50T | P"'=0.1% | ML™'=50T
IF raction of |, 1o, 28.1% 17.2% 20.4% 16.1% 17.6%
ife insurance
MCB volume[(1- 26.1%) |(1-28.1%) 10 | (1-17.2%) -10 | (1-20.4%) -10 | (1-16.1%) -10 [ (1-17.6%) -10
M Syst (t) -10T-1,378 =T 2,574 = T-3,498 = |[T-4491 = |T-2,551 = |T-3,646 =

bond 10.18 Mio 18.51 Mio 28.96 Mio 35.75 Mio 21.40 Mio 30.04 Mio

Coupon C 99.59 185.99 252.77 324.55 184.36 263.50
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Thus, Table 6 shows that in the present settinggrwino basis risk is assumed, the insurance
company should sell abofit = 26% life insurance contracts (and 74% annuitég) purchase
MCBs with a volume of 10.18 Mio to achieve a defgumbbability of 0.1% and to simultaneously
immunize this default probability against the medieshock to mortality. With perfectly estimat-
ed adverse selection and thus in the presencestd bgak, the optimal fraction of life insurance
contracts decreases by 10 percentage points inafatte PD¥®, while the amount of MCBs
needs to be increased to 21.40 Mio to achieve rmnmiuinize the desired risk level. When adverse
selection is not correctly forecasted, the volurhéM&Bs has to be increased even further to
28.96 Mio, while the fraction of life insurance sightly higher than in the case when adverse
selection was perfectly forecasted. These restdtsndine with those in the previous subsection,
in that under adverse selection, a smaller fraotiblife insurance contracts is needed to elimi-
nate the impact of unexpected low mortality on itigurer’s risk situation and that more MCBs
are needed to achieve a certain risk level.

3.4 Sensitivity Analyses

To examine the robustness of the results with msjgeinput parameters, sensitivity analyses
were conducted. Concerning the loadiddor systematic mortality risk, we followed Grindl,
Post, and Schulze (2006) and changed the loadifgbd and 5% (instead of 1%). The loading
has a significant impact on the risk situationhe insurance company under systematic mortality
risk. By demanding a loading a¥ =5% instead ofd =1%, the probability of default can be
reduced in the longevity scenario by about 30%afqortfolio with only annuities and even by
more than 70% for a portfolio with only life insm@e contracts. When reducing the loading to
0.05%, the effects are reversed and the insureskslevel increases under systematic mortality
risk. However, the size of the effects is smallercampared to a loading @f=5%. E.g., the
mean loss for a portfolio with only annuities ineses by about 5% in the longevity scenario.

When reducing the loading of the MCB from 35 bp to 20 bp, the premium unggstematic
mortality risk decreases fromi ;' =1,036 to M} =1,020, which results in a lower risk of the
insurance company under systematic mortality rislkenvMCBs are used for risk management.
However, the effect is rather small. In contrastjgher fraction of high risk assets in the invest-
ment portfolio considerably increases the riskagitin of the life insurer. For example, decreas-
ing the fraction of low risk assets from 80% to 50% almost doubles the risk of an iasae
company for a portfolio with only annuities and caore than triple it for mixed portfolios. The
portfolio composition for which the risk of the umance company is immunized against the
modeled longevity scenario still ranges between 20 30% life insurance in the case without
adverse selection, while under adverse selecti@nfraction of life insurance contracts needed
for an immunization decreases for a riskier assategy. Thus, as shown in Gatzert and Wesker
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(2010), the asset allocation should be taken intmant when determining the optimal portfolio
composition. Concerning the impact of adverse $electhe relative increase in risk due to ad-
verse selection is less pronounced for a riskisetaallocation. However, if adverse selection is
misestimated, the increase in risk can still amdannhore than 30% and is thus not negligible.
Furthermore, the effectiveness of MCBs for lowerihg risk level of an insurance company is
slightly reduced for a riskier asset strategy.

Finally, setting the dividend to shareholders toozg, =0%) considerably decreases the risk
level of an insurance company as reserves can iliaipuaster. For a portfolio with only annui-
ties and without adverse selection, for instanice,mean loss and the probability of default are
reduced by about 20% fag =0%. In addition, the impact of adverse selection dases as well,
but to a minor extent.

4. SUMMARY

In this paper, we examine the impact of three tiffié components of mortality risk — unsystem-
atic mortality risk, adverse selection and systé&mnartality risk — as well as the basis risk in
longevity hedges resulting from adverse selectioradife insurer’s risk level using U.K. data.

Furthermore, we study the effectiveness of two nsknagement strategies, including natural
hedging and the purchase of mortality contingemdlsoqMCBS), in the case of a two-product life
insurance company offering annuities and termitifeirance contracts.

Our results show that under unsystematic mortakty, the insurer’s risk level can generally be
reduced by means of portfolio composition. Takingpiaccount adverse selection in addition to
unsystematic mortality risk implies a substantiarease in the risk of an insurance company.
However, the impact of adverse selection can bsiderably reduced through a correct forecast
of the relationship between life insurance polidgleo mortality and annuitant mortality, i.e.,
under perfect information about adverse select@mncerning the impact of systematic mortality
risk, term life insurances are much more strondigcéed than are annuities, which is due to the
different types of risks insured.

Turning to the effect of the three mortality riskngponents on an insurer’s risk management, our
findings demonstrate that mortality contingent b®edn contribute to a major reduction in the
risk level, even in the presence of basis risk, it¢he implied change in mortality is not ides#l

for the underlying and the hedged population dumaatality heterogeneity and adverse selection
effects. However, the extent of the risk reductihievable with a certain volume of MCBs de-
creases substantially due to basis risk and if raéveelection is not correctly forecasted. Fur-
thermore, an improvement in the efficiency of MGBsmixed portfolios of term life insurances
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and annuities can be observed. Thus, our resulhasize the importance of these factors, which
should be taken into account when determining thienaze of risk management activities needed
to achieve a desired safety level.

Regarding the usefulness of risk management fanciad the impact of systematic mortality
risk, our findings show that the effectiveness d@B& is not severely hampered if adverse selec-
tion is correctly accounted for, i.e., under petrfiadormation by the insurance company about
annuitant mortality. This is true despite the pneseof basis risk. The impact of unexpected low
mortality on the mean loss, i.e., the severityefadlt, can be reduced by about one third through
the use of MCBs if adverse selection is assumedraly forecasted perfectly. Turning to the
effectiveness of natural hedging under systematidatity risk for eliminating the impact of an
unexpected change in mortality, our observatiomsvstinat despite the different implied level of
mortality as well as speed of mortality improvemanthe insurance portfolio, natural hedging
can still be a feasible and important risk manageral against unexpected changes in mortali-
ty. However, in particular in the longevity scemaradverse selection needs to be taken into ac-
count in determining the proper portfolio compasitto immunize a portfolio against changes in
mortality.

Our results indicate that for an insurance compsaiyng different types of life insurance prod-
ucts, besides correctly forecasting the mortalftthe population in general, which has been giv-
en great attention in recent years, the corre@ctmsting of the relationship between annuitant
mortality and the mortality of the population asvhole is crucial. Here, further research, espe-
cially concerning the development of this relatiupsover time, seems necessary to enable in-
surance companies to conduct efficient risk managemith respect to mortality risk.
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APPENDIX A
Figure A.1: Estimated value of exa( andby over all ages
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Figure A.2: Level of estimated mortality indei and forecasted values kf
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