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MORTALITY RISK AND ITS EFFECT ON SHORTFALL AND RISK 

MANAGEMENT IN L IFE INSURANCE 

 

Nadine Gatzert, Hannah Wesker∗ 

 

ABSTRACT 

 
Mortality risk is a key risk factor for life insurance companies and can have a crucial 
impact on its risk situation. In general, mortality risk can be divided into different sub-
categories, among them unsystematic risk, adverse selection, and systematic risk. In 
addition, basis risk may arise in case of hedging, e.g., longevity risk. The aim of this 
paper is to holistically analyze the impact of these different types of mortality risk on 
the risk situation and the risk management of a life insurer. Toward this end, we extend 
previous models of adverse selection, empirically calibrate mortality rates, and study 
the interaction among the mortality risk components in the case of an insurer holding a 
portfolio of annuities and term life insurance contracts. For risk management, we ex-
amine natural hedging and mortality contingent bonds. Our results show that particu-
larly adverse selection and basis risk can have crucial impact not only on the effective-
ness of mortality contingent bonds, but also on the insurer’s risk level, especially when 
a portfolio consists of several types of products. 

 

Keywords: Longevity risk, mortality contingent bonds, natural hedging, life insurance, risk man-

agement 

JEL Classification: G22, G23, G32, J11 
 

1. INTRODUCTION  

Recently, there has been a growing interest in mortality risk and its management in the scientific 

literature as well as in practice, especially due to the demographic development in most industri-

alized countries. The increasing life expectancy poses serious problems to life insurance compa-

nies selling annuities and to pension funds. These problems are especially severe because of a 

scarcity of possibilities to hedge against this risk. Due to the limited capacity of reinsurance, sev-

eral alternative instruments for managing demographic risk, e.g., by transferring mortality risk to 

the capital market or the use of natural hedging, have been discussed in the scientific literature 

and by practitioners. However, mortality heterogeneity as well as information asymmetries be-

tween the insurance company and the insured about these different mortality experiences of indi-

viduals can lead to adverse selection. In particular, annuitants generally have a systematically 
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erlangen.de, hannah.wesker@wiso.uni-erlangen.de.  
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lower mortality than the population as a whole.1 Mortality heterogeneity and information asym-

metries can thus severely limit the usefulness of these risk management tools. Therefore, the aim 

of this paper is to study the interaction among different types of mortality risk – unsystematic 

mortality risk, basis risk, adverse selection, and systematic mortality risk – with respect to the risk 

situation of an insurance company. Furthermore, we analyze the impact of mortality risk compo-

nents on the effectiveness of two risk management tools: 1) a natural hedging strategy, using the 

opposed reaction towards changes in mortality of term life insurance and annuities for eliminat-

ing the impact of systematic mortality risk, and 2) a mortality contingent bond (MCB) for trans-

ferring mortality risk to the capital market. 

 

In the literature, mortality risk is generally divided into different subcategories: 1) unsystematic 

mortality risk that the individual time of death is a random variable with a certain probability dis-

tribution (see Biffis, Denuit, and Devolder (2009)), 2) systematic mortality risk, which is the risk 

of unexpected changes in the underlying population mortality, e.g. due to common factors im-

pacting the mortality of the population as a whole, which causes dependencies between lives and 

is thus not diversifiable through enlarging the portfolio (see Wills and Sherris (2010)), and 3) 

adverse selection, which refers to the fact that the probability distribution differs in the level and 

trend over age for different populations of insured, for example, for life insurance holders and 

annuitants2 (see, e.g., Brouhns, Denuit, and Vermunt (2002a)). Furthermore, adverse selection, 

which is due to the mortality heterogeneity of individuals and information asymmetries between 

the insurance company and the insured, is one important source of basis risk when hedging lon-

gevity risk through mortality contingent bonds or other capital market instruments (see Sweeting 

(2007)). Basis risk arises if the population mortality underlying the hedge and the hedged portfo-

lio mortality do not coincide. Thus, the differences in the mortality of the population and the mor-

tality of the insured annuitants caused by adverse selection imply basis risk in longevity hedges. 

In this analysis, we solely consider the basis risk in longevity hedges3 and model all types of mor-

tality risk explicitly in order to analyze their impact on a life insurer’s risk situation. 

 

Adverse selection (and basis risk) is modeled differently in the literature. Plat (2009) proposes to 

model the difference in mortality rates for annuitants and the population through an age and time 

                                              
1  See Finkelstein and Poterba (2002), Cohen and Siegelmann (2010). 
2  In general, adverse selection refers to information asymmetry and hidden characteristics. In this paper, we follow 

Brouhns, Denuit, and Vermunt (2002a) and refer to adverse selection as the observation that, due to mortality 
heterogeneity and asymmetric information, annuitants experience a lower mortality than the average population 
and therefore have a higher life expectancy. Other papers (e.g., Coughlan et al. (2009)) refer to this as basis risk. 
In the following analysis, we consider two cases in order to highlight the importance of mortality information in 
underwriting, one where the insurer is not fully informed about the mortality of its annuitants, and one case where 
adverse selection can be fully addressed.  

3  Other potential sources of basis risk in longevity hedges are stated, e.g. by Sweeting (2007) or Coughlan et al. 
(2007) and include age mismatch or geographic differences.  
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dependent portfolio-specific mortality factor, which reflects the relative difference between annu-

itant mortality and population mortality. Ngai and Sherris (2011) also use a portfolio specific 

mortality factor and, following Stevenson and Wilson (2008), assume a linear and constant effect 

of age as the only impact factor. Brouhns, Denuit, and Vermunt (2002a) choose a different ap-

proach and model annuitant mortality through a Brass-type relational model for the central death 

rates. Concerning the effectiveness of mortality contingent bonds (or other instruments for trans-

ferring mortality risk to capital markets) under basis risk resulting from adverse selection, other 

certain aspects have already been discussed in the literature. Sweeting (2007) discusses the influ-

ence of basis risk when using a survivor swap qualitatively in a utility-maximizing framework 

and concludes that basis risk is comparatively small and thus will not hinder the occurrence of 

hedging transactions. In terms of the effectiveness of q-forwards4 based on the population mortal-

ity for hedging insured lives, Coughlan et al. (2007) use historical data and conclude that the loss 

in efficiency is small from a long-term perspective. Ngai and Sherris (2011) quantify the impact 

of basis risk in longevity bonds and q-forwards in a static framework and find that basis risk does 

not significantly affect the hedging effectiveness. Coughlan et al. (2010) introduce a general 

framework for assessing basis risk in longevity hedges and conclude that it can be reduced con-

siderably by applying their framework for calibrating the hedge. A more general concept in this 

context, the so-called population basis risk, describes the risk of basing the payout of the risk 

management instrument on a different population5 and is discussed by Li and Hardy (2009) and 

Coughlan et al. (2007). Thus, to date, results in the literature suggest that basis risk in longevity 

hedges overall has a minor impact on the effectiveness of the hedge.  

 

The second risk management instrument, natural hedging, has also been studied in the literature. 

Cox and Lin (2007) as well as Bayraktar and Young (2007) examine the impact of natural hedg-

ing on pricing. Gründl, Post, and Schulze (2006) and Hanewald, Post, and Gründl (2011) com-

pare the effects of different risk management strategies on shareholder value, concluding that 

natural hedging is the preferred risk management tool, but only under certain circumstances. 

Wang et al. (2010) apply the concept of duration to mortality and derive an optimal liability mix, 

which is characterized by a portfolio-mortality-duration of zero, while Wetzel and Zwiesler 

(2008) show that the mortality variance, i.e. the variance due to fluctuations in mortality, can be 

reduced by more than 99% through portfolio composition. Gatzert and Wesker (2010) consider 

the insurer as a whole and show how to immunize a given risk level by simultaneously consider-

ing the investment and insurance portfolio.  

                                              
4  A q-forward is a standardized mortality contingent swap, based on the LifeMetrics index by J.P. Morgan. The 

LifeMetrics index is distinguished by gender and age for the population of U.S., England and Wales, the Nether-
lands and Germany (for more information and current index data see 
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics).  

5  Potential sources of population mismatch include differences in geographic location, age, social status etc. 
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Despite a fair amount of research on mortality risk, the impact of all three mortality risk compo-

nents (separately and combined) and basis risk resulting from adverse selection on the risk level 

of a life insurance company and on the effectiveness of different risk management strategies with 

respect to reaching a desired risk level as well as hedging against unexpected changes in mortali-

ty has not been systematically studied. Hence, in this paper, mortality risk is modeled compre-

hensively to gain deeper insight into the interaction among the different types of risk, incorporat-

ing unsystematic mortality risk, adverse selection, systematic mortality risk, and basis risk with 

respect to the risk management instruments. Based on this model, the impact of mortality risk on 

the risk level of a two-product life insurance company and for hedging longevity risk is analyzed. 

Population mortality is forecasted using the extension of the Lee-Carter (1992) model proposed 

by Brouhns, Denuit, and Vermunt (2002a).6 Adverse selection is modeled based on an extension 

of the Brass-type relational model by Brouhns, Denuit, and Vermunt (2002a) and estimated based 

on data from the Continuous Mortality Investigation (CMI). 

 

Furthermore, in contrast to previous literature, we specifically study the impact of information 

asymmetries concerning mortality heterogeneity and the resulting adverse selection on an insur-

er’s risk situation and the effectiveness of risk management. If the insurance company cannot 

observe the insured’s individual mortality or if there is insufficient data on average annuitant 

mortality, adverse selection may lead to a misestimation of mortality experience for annuitants 

and thus to a difference between actual mortality and expected mortality, which is used in, e.g. 

pricing and reserving. Therefore, to examine the impact of mortality information, we first look at 

adverse selection under information asymmetry, implying a misestimation of annuitant mortality 

experience. Second, we examine the impact of adverse selection when the insurance company has 

gained perfect information about the mortality experience within the annuitant portfolio, e.g. by 

way of experience rating.  

 

This consideration of adverse selection extends the work of Ngai and Sherris (2011) and Cough-

lan et al. (2007) and is intended to offer additional central insight regarding the effect of adverse 

selection and basis risk. In particular, our results show that adverse selection and the resulting 

basis risk in longevity hedges can in fact have a particularly strong impact on both an insurer’s 

risk level and on the effectiveness of MCBs in reducing the level of risk, if the true mortality ex-

perience is partly hidden from the insurer. Thus, this effect should be taken into account when 

determining the amount of risk management needed to achieve a certain desired risk level. This is 

also true when determining the optimal MCB volume and portfolio composition to reduce the 

impact of systematic mortality risk. In this context, another contribution to previous literature, 

                                              
6  This mortality model is taken as an example and can as well be replaced by other stochastic mortality models that 

provide a good fit depending on the concrete application (and the respective country).  
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including Coughlan et al. (2007), Ngai and Sherris (2011), and Sweeting (2007), is the considera-

tion of systematic mortality risk in addition to basis risk as well as the analysis of natural hedg-

ing. In addition, the explicit inclusion of adverse selection and the model of systematic mortality 

risk in the analysis of natural hedging extend previous studies such as Gründl, Post, and Schulze 

(2006) and Gatzert and Wesker (2010), where focus is not laid on adverse selection.  

 

The remainder of the paper is structured as follows. Section 2 introduces methods for modeling 

and forecasting population mortality. Furthermore, the model of the insurer and the MCB are 

presented. Section 3 contains results of the numerical analyses and Section 4 concludes. 

 

2. MODEL FRAMEWORK  

 

2.1 Modeling and forecasting mortality risk 

 

Modeling unsystematic mortality risk  

One of the most frequently used models for mortality is the Lee-Carter (1992) model, which con-

sists of a demographic and a time series part. In this framework, the central death rate or force of 

mortality ( )xµ τ
 
is modeled through 

 

( ) ( ) ,

,ln x x xa b k
x x x x xa b k e τ τε

τ τµ τ ε µ τ + ⋅ += + ⋅ + ⇔ =   ,
 

 

where xa
 and xb  are time constant parameters indicating the general shape of mortality over age 

and the sensitivity of the mortality rate at age x to changes in kτ , respectively, where kτ   is a 

time-varying index and shows the general development of mortality over time, and ,x τε  is an error 

term with mean 0 and constant variance. Lee and Carter (1992) propose to fit an appropriate 

ARIMA process on the estimated time series of kτ ,  

 

1 1 2 2 1 1 2 2

ˆ

ˆ... ...p p q q

k

k k k k k

τ

τ τ τ τ τ τ τ τ τ τφ α α α δ ε δ ε δ ε ε ε− − − − − −= + ⋅ + ⋅ + + ⋅ + ⋅ + ⋅ + + ⋅ + = +
�����������������������������

 

 

using Box-Jenkins time series analysis techniques with ( )2~ 0,Nτε σ , where 2σ  is assumed to 

be constant over time. A more recent variation of the Lee-Carter (1992) model is the extension by 

Brouhns, Denuit, and Vermunt (BDV) (2002a), whose proposed modification results in slightly 

more attractive theoretical properties. They model the realized number of deaths at age x and time 

τ, ,xD τ , as  
 

( )( ), ,~x x xD Poisson Eτ τ µ τ⋅
 
with ( ) ˆ

,x xa b k
x e τµ τ + ⋅=
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where k̂τ  is the forecasted realization of the time index used in BDV (2002a) for simulating ran-

dom numbers of death, thus reflecting the unsystematic mortality risk and ,xE τ  is the risk expo-

sure at age x and time τ , defined as ( ) ( )( ), 1 1 / 2,x x xE n nτ τ τ−= − + where nx(τ) is the number of 

persons (i.e., the population size) still alive at age x and the end of year τ.7 The advantages of the 

BDV (2002a) model are that the restrictive assumption of homoscedastic errors made in the Lee-

Carter (1992) model is given up and that the resulting Poisson distribution is well suited for a 

counting variable such as the number of deaths.8  

 

Modeling adverse selection and basis risk  

Mortality heterogeneity refers to the fact that mortality rates are not identical for all individuals of 

the same age x but differ depending on, e.g., genetic predisposition or behavior. Individuals are 

usually able to gain some information about their individual mortality, for example through fami-

ly history or their general health situation, which may influence their insurance decisions (see 

Finkelstein and Poterba (2002)). For instance, a person estimating its own mortality to be below 

average will be more likely to purchase an annuity than a person with below average mortality. 

Insurance companies generally do not have access to these information and thus cannot directly 

distinguish between individuals with above or below average health. These circumstances give 

rise to information asymmetries and thus the problem of adverse selection, as both the level of 

mortality rates as well as their development over time differ between annuitants and the general 

population. At the same time, adverse selection also implies basis risk when hedging against lon-

gevity risk due to the difference between the mortality rates of the reference population used as 

an underlying for the hedge and the annuitants’ mortality rates. Hence, basis risk arises because 

the underlying and the hedged population are not perfectly dependent and can thus reduce the 

hedging effectiveness.9 In the following, adverse selection is modeled through an extension of the 

brass-type relational model used by, among others, Brouhns, Denuit, and Vermunt (2002a), 

 ( ) ( ) ( )( ), 1 , 2 , ,ln ln lnann pop pop
x x x index xeτ τ τ τµ α β µ β µ τ= + ⋅ + ⋅ ⋅ + ,                                      (1) 

 

which relates the mortality of annuitants (denoted by superscript “ann”) to that of a reference 

population (denoted by superscript “pop”). In this context, the parameter β1 can be interpreted as 

the speed of improvement of annuitant mortality as compared to population mortality, where val-

                                              
7  For simulation purposes, ( ) ( ), 1 lnref pop pop

x t ref x xE n t q p= − − ⋅  is used instead (see BDV (2002b)). 
8  Depending on the respective country and application, other mortality models may be more appropriate to ade-

quately forecast mortality rates of the population (see, e.g., Cairns et al. (2009)). 
9  Here, adverse selection and basis risk are modeled identically through a differing mortality experience for annui-

tants and the population as a whole. However, the two terms refer to different aspects. While adverse selection re-
fers to the difference in mortality experiences arising from mortality heterogeneity, basis risk refers to the conse-
quences of this difference when hedging longevity risk through capital markets. 
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ues greater than one indicate a greater improvement in mortality rates for the group of annuitants. 

In contrast to previous literature, we additionally include an interaction term between mortality 

rates and a time index τindex in order to incorporate time dependency in the speed of relative im-

provement. We expect a negative coefficient β2, indicating that the over-improvement in mortali-

ty rates of annuitants decreases over time. This regression model can then be used to obtain fore-

casts of annuitant mortality based on the estimated and forecasted population mortality. The nor-

mally distributed error term ,xe τ  has zero mean and a constant variance over age and time and is 

taken into account in forecasting. As in the case of unsystematic risk, the realized number of 

deaths for annuitants is modeled by applying the Poisson distribution for a given exposure and 

the forecasted force of mortality ,
ann
x τµ . 

 

In the context of adverse selection, we additionally focus on the role of mortality information in 

underwriting and its impact on the risk situation and risk management of an insurance company. 

Therefore, we first assume that the insurer cannot perfectly account for adverse selection, for ex-

ample because of a lack of data on annuitant mortality and private information of the insured 

concerning his individual health situation, and that the parameters of Equation (1) are misestimat-

ed, such that β1 = 1, β2 = 0, and 0α ≠  (referred to as “adverse selection misestimated”). Hence, 

since the actual relationship between annuitant and population mortality (equal to the mortality of 

term life insurance policyholders) is misestimated, the different development of mortality rates 

for annuitants and life insurance policyholders cannot be fully taken into account when calculat-

ing premiums and benefits. However, the insurance company may be able to gain information 

about the average mortality within the annuitant portfolio under adverse selection, e.g. by way of 

experience rating. Thus, second, we assume that the insurer is able to perfectly estimate and thus 

account for adverse selection effects and consequently to take this information into account when 

determining benefits and premiums of annuitants.10 This setting is referred to as “adverse selec-

tion perfectly estimated”.  

 

Modeling systematic mortality risk 

Systematic mortality risk is the risk that cannot be diversified through enlarging the insurance 

portfolio, i.e. it is the risk of unexpected deviations from the expected mortality rates applying to 

all individuals, which can result, e.g., from a common factor unexpectedly impacting mortality at 

all ages (see, e.g., Wills and Sherris (2010)). This can in general be attributed either to unex-

pected environmental or social influences, impacting mortality positively or negatively,11 or to 

                                              
10  Thus, adverse selection in the sense of hidden information is in fact eliminated. 
11  Additionally, certain other macroeconomic variables might have an influence on mortality (see, e.g., Hanewald 

(2011)). 
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wrong expectations about future mortality due to estimation errors.12 Unexpected common factors 

that influence lives in a similar way induce dependencies and thus destroy diversification benefits 

of large pool sizes. In the literature, systematic mortality risk is modeled and accounted for in 

different ways. Hanewald, Piggot, and Sherris (2011) and Wills and Sherris (2010) characterize 

systematic (longevity) risk as uncertain changes in mortality applying to all individuals, which 

leads to dependencies between lives due to common improvement in mortality rates across indi-

viduals. Wang et al. (2010) describe systematic risk as a constant shock to the force of mortality, 

thus accounting for unexpected changes in mortality rates, similarly to Milevsky and Promislow 

(2003) and Gründl, Post, and Schulze (2006). Furthermore, Cox and Lin (2007) point out that 

while mortality risk may not be hedgeable in financial markets, it may be reduced or eliminated 

by insurers by means of, e.g., natural hedging, reinsurance, asset-liability management, or mortal-

ity swaps.  

 

In the following, systematic mortality risk is modeled through different realizations of the time 

trend kτ , where now the error term is taken into account, having  ˆsystk kτ τ τε= + , which we refer 

to as the “neutral scenario” as the mean life expectancy does not change. The factor τε  impacts 

mortality at all ages in year τ 13 and thus causes dependencies between lives, which cannot be 

diversified through enlarging the portfolio. To study systematic mortality risk in more detail, we 

conduct scenario analyses by distinguishing between a longevity scenario, in which mortality is 

unexpected low, and a scenario with unexpected high mortality (“mortality scenario”) using the 

absolute value of ,τε  respectively, thus having 

 
, ˆsyst longevityk kτ τ τε= −  and , ˆsyst mortalityk kτ τ τε= + . 

 

Summary of modeled mortality risk 

Based on the mortality model presented here, the probability that a male policyholder aged x in 

calendar year τ dies within the next year, given he has survived until age x, is calculated by 

( ) ( )( )1 expx xq τ µ τ= − −  (see BDV (2002a), p. 376), and 
1

0

n

n x x i
i

p p
−

+
=

=∏
 
is the probability that an 

x-year old male policyholder survives for the next n years. Based on the previous modeling of 

mortality rates, four different cases can be distinguished depending on the inclusion of unsystem-

atic risk, adverse selection, and systematic mortality risk, laid out in Table 1. 

 
  

                                              
12  An example of a potential source of estimation error is the choice of the appropriate sample period, since kτ  is 

rather sensitive towards the specified period. 
13  Due to the assumed ARIMA process for kτ , subsequent years are also impacted by the realization of τε . 
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Table 1: Overview of force of mortality depending on included mortality risk component 
Without 
adverse 
selection 

,pop unsyst
xµ  Mortality rates of the reference population:  

� Only unsystematic risk 
 

 ,pop syst
xµ  Mortality rates of the reference population with systematic mortality risk (time 

trend ksyst)  
� Unsystematic risk + systematic risk 
 

   
With  
adverse 
selection 

,ann unsyst
xµ  Mortality rates of annuitants  

� Unsystematic risk + adverse selection 
 

 ,ann syst
xµ  Mortality rates of annuitants with systematic mortality risk (time trend ksyst)  

� Unsystematic risk + adverse selection + systematic risk 
 

 

2.2 Modeling and valuation of life insurance liabilities 

 

Modeling a life insurance company 

Table 2 depicts a simplified balance sheet of the life insurance company at time t = 0. The insur-

ance company sells immediate annuities paying a yearly annuity a in arrear each year as long as 

the insured is alive, and a term life insurance paying a constant death benefit DB. The annuity is 

financed through a single premium i
ASP  paid in t = 0, which depends on assumptions regarding 

the mortality setting (see Table 1). In particular, i = unsyst refers to the case where only unsys-

tematic risk is modeled, and i = syst is the setting that takes into account systematic risk. The 

term life insurance contract is financed through constant annual premiums iLP . We thereby as-

sume that the insurance company sells fL·n = nL(0) term life and (1 – fL)·n = nA(0) annuity con-

tracts, where fL denotes the fraction of term life insurance and n the constant number of insurance 

contracts sold. 

 

Table 2: Balance sheet of the insurance company at time t = 0 for i = unsyst, syst 

Assets Liabilities 

( )0i
lowS  ( )0i

AM  

( )0i
highS  ( )0i

LM  

( )0i
bondM  E (0) 

 

On the liability side, ( )0i
AM , or, more general, ( )i

AM t , denotes the value of annuities at time t 

and ( )0i
LM  represents the value of term life insurance liabilities at time t = 0 for i = unsyst, syst. 
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To increase the comparability in the numerical analysis, the total volume per contract14 of both 

contract types in t = 0 is identical. E(0) denotes the initial equity contributed by shareholders in t 

= 0, and Ei(t) is residually determined as the difference between assets and liabilities. In return for 

their investment, shareholders receive a constant fraction re of the positive earnings each year as a 

dividend, given by ( ) ( ) ( )( )max 1 ;0i i i
ediv t r E t E t= ⋅ − − , i = unsyst, syst. Furthermore, ( )i

bondM t  

is the value of the mortality contingent bond (MCB) at time t as detailed in the next subsection, 

( )0i
lowS  stands for the market value of low-risk assets at time t = 0, and ( )0i

highS  represent the 

high-risk assets. If the insurance company purchases a mortality contingent bond, a premium 

,
i
x TΠ  has to be paid in t = 0, implying that the initial capital at time 0 available for investment in 

the capital market Si(0) is given by 

 
( ) ( ) ( ) ( ) ,0 0 0 0i i i i

A A L L x TS E n SP n P= + ⋅ + ⋅ − Π , i = unsyst, syst.
 

 

The total value of assets Ai(t) in the balance sheet at time t in turn increases by the market value 

of the MCB, such that 

 
( ) ( ) ( )0 0 0i i i

bondA S M= + , i = unsyst, syst. 

 

The market value of assets ( )i
jS t , j = low, high, is assumed to follow a geometric Brownian mo-

tion with jµ  the being drift and jσ  denoting the volatility. Let P
lowW  and P

highW  denote two 

Brownian motions with correlation ρ under the real-world measure P on the probability space 

( , , )PΩ F , where F  is the filtration generated by the Brownian motion. Hence, ( )i
jS t  can be 

expressed as (see Björk (2004)) 

 

( ) ( ) ( ) ( )2
, ,

1
exp

2
i i P P
j j j j j j t j sS t S s t s W Wµ σ σ  = ⋅ − ⋅ − + ⋅ −    

,  j = low, high, i = unsyst, syst. 

 

Thus, the value of the capital investment Si(t) develops as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i i i

high low L L A LS t S t S t n t P n t a d t DB X t div t= + + ⋅ − ⋅ − ⋅ + − , i = unsyst, syst. 

 

As before, ( )i
An t  is the number of annuitants still alive at the end of year t, ( )i

Ln t
 
the number of 

term life insurance policyholders alive at the end of year t, ( )i
Ld t  represents the number of deaths 

of life insurance policyholders during year t, and Xi(t) denotes the coupon payment for the MCB 

in year t and ( ) ( )i i
lowS t s S t sα− = ⋅ −  and ( ) ( ) ( )1i i

highS t s S t sα− = − ⋅ − . The total market value 

of assets is then given by  

                                              
14  Volume here refers to the present value of expected benefit payments in t = 0. 
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( ) ( ) ( )i i i
bondA t S t M t= + , i = unsyst, syst. 

 

Valuation of insurance liabilities 

We assume independence of market and mortality risk and evaluate the insurance contracts using 

risk-neutral valuation. The resulting market values for annuities and term life insurance at time t 

on the liability side of the balance sheet for annuities (paid in arrears at the end of each year) and 

life insurance, respectively are given by 

 
( ) ( ) ( )

1

1 , , ,
AT t

si i A
A A s x t

s

M t n t a p r i unsyst syst
−

−
+

=

= ⋅ ⋅ ⋅ + =∑  
 

( ) ( ) ( ) ( ) ( )
1

1

0

1 1 , , ,
LT t

s si i L L i L
L L s x t x t s L s x t

s

M t n t DB p q r P p r i unsyst syst
− −

− + −
+ + + +

=

 
= ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ + = 

 
∑

15

 

 

with ( )i
An t  being the number of annuity contracts and ( )i

Ln t  being the number of life insurance 

contracts in t. TL and TA denote the maximum duration of the respective contract type and r is the 

risk-free rate. The superscripts A and L of the mortality rates used in the valuation of insurance 

contracts refer to the respective mortality rates for annuitants or life insurance holders, which 

depend on the mortality assumptions (unsystematic risk, unsystematic risk + adverse selection, 

see Table 1), but do not include the systematic mortality risk. The contract parameters a, DB and 
i

LP , i = unsyst, syst, are calculated by using the actuarial equivalence principle, i.e., expected 

premiums must be equal to expected benefits. We refer to these premiums as fair
ASP  and fair

LP .16 

In the presence of systematic mortality risk, the insurance company additionally demands a risk 

premium (1+δ), which we assume to be equal for both products, resulting in the premiums syst
LP  

and syst
LSP . Furthermore, the contract volume of annuities and life insurance contracts, defined as 

the present value of the expected benefit payouts, is fixed to V for both contract types. Thus, the 

death benefit DB and the annual premium i
L

P  as well as a are calculated by 

 

( ) ( ) ( )
1 1! 1

0 0

1 1
L LT T

t tL L fair L
t x x t L t x

t t

V DB p q r P p r
− −

− + −
+

= =

= ⋅ ⋅ ⋅ + = ⋅ ⋅ +∑ ∑ ,                                      (2) 

( ) ( ) ( )
1! 1

1
0

1 .
AT

tA fair
x At

t

V a p r SP
−

− +
+

=

= ⋅ ⋅ + =∑                                                      (3) 

 

                                              
15  The time subscript τ in the death and survival probabilities has been dropped from the formulas for ease of illus-

tration; however, all death and survival probabilities remain dependent on age and time. 
16  The probability of default is not taken into account in pricing since we assume that the insurance benefits will 

continue to be paid out in case of a default; this is in line with the current situation in many countries, where ben-
efits are guaranteed by a guaranty fund (see e.g., Gatzert and Kling (2007)). 
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Thus, in the setting without systematic risk, unsyst fair
L LP P=  and unsyst fair

A ASP SP= , while in the pres-

ence of systematic risk, ( )1syst fair
L LP P δ= ⋅ + and ( )1syst fair

A ASP SP δ= ⋅ + , ensuring that the volume 

of benefits for both contract types is the same. Overall, the value of liabilities at time t, Li(t), is 

thus given by  

 

( ) ( ) ( )i i i
L AL t M t M t= + , i = unsyst, syst. 

 

2.3 Risk management and risk measurement 

 

Modeling and valuation of a simple mortality contingent bond 

For risk management, a simple coupon-based mortality contingent bond (MCB), called a survivor 

bond, is used as proposed by Blake and Burrows (2001), which is considered to provide an effi-

cient hedge against longevity risk. We assume that the variable coupon payment Xi(t), for i = un-

syst, syst, at the end of each year t = 0, …, T-1 is proportional to the percentage of the reference 

population still alive at time t. At time t = 0, the insurance company pays a premium ,
i
x TΠ , for i = 

unsyst, syst, where x denotes the age of the reference population of the MCB and T is the duration 

of the bond.  

 

There is an extensive literature on the pricing of MCBs, assuming different processes for the un-

derlying mortality and different valuation approaches (e.g., Lin and Cox (2005, 2008), Barbarin 

(2008). Blake et al. (2006), Dawson et al. (2011). However, there is still uncertainty concerning 

suitable methods for pricing a given instrument. Additionally, since there does not yet exist a 

liquid market for longevity risk, it is not easily possible to determine the risk premium for lon-

gevity risk. Therefore, in the following, the pricing approach applied for the EIB/BNP Paribas is 

used to determine the premium of the mortality contingent bond,17 which was derived using the 

projected survival rates by the U.K. Government Actuary Department, whereby coupon payments 

were discounted using the LIBOR rate minus a certain risk premium λ (see Cairns et al. (2005)). 

Hence, the price of a bond with duration T that pays out Xi(t) in year t can be calculated by 

 

( )( ) ( ) ( )1
1

,
0

1 , ,
T

ti unsyst
x T

t

E X t r i unsyst systλ
−

− +

=

Π = ⋅ + − =∑ , 

 

where r is the risk-free interest rate and λ the risk premium for systematic mortality risk, if i = 

syst and λ = 0 if i = unsyst. The actual cash-flow Xi(t) at time t depends on the mortality of the 

reference population, i.e., on the forecasted force of mortality ,pop i
xµ , and thus also on whether 

                                              
17  This approach seems justifiable despite the non-success of the bond, since e.g. Blake et al. (2006) state that the 

failure was likely due to weaknesses in design rather than due to mispricing. 
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systematic risk is taken into account in the analysis or not (i = unsyst, syst). As before, in pricing 

and valuation, systematic risk is not taken into consideration in the mortality projection as it rep-

resents an unexpected change to mortality. However, systematic mortality risk is addressed by 

introducing the risk premium λ. Moreover, basis risk is involved in the hedge as the behavior of 

the underlying of the bond (with ,pop i
xµ ) is not identical to the development of the hedged posi-

tion, i.e. the portfolio of annuities (with ,ann i
xµ , see Table 1). Let ( )i

refn t  denote the number of 

persons in the reference group still alive at the end of year t, which can be recursively calculated 

as ( ) ( ) ( )( )1i i i
ref ref refn t n t d t= − − , where ( )i

refd t  is the number of persons who died within year t. 

This is calculated using 

 
( ) ( )( ), ,

,~i ref i pop i
ref x t xd t Poisson E tµ⋅  and ( ), i

x x ta b kpop i
x t eµ + ⋅= , i = unsyst, syst, 

 

nref(0) equal to an arbitrary number18 and C being the initial coupon payment agreed upon at in-

ception of the contract. The exposure to risk of the reference population ,
,

ref i
x tE  is given by

( )( ) ( ), , ,
, 1 / lnref i i pop i pop i

x t ref x xE n t q p= − − ⋅  (see BDV (2002b)). Then, the annual payoff Xi(t) is equal 

to  

 
( ) ( )

( )0

i
refi

ref

n t
X t C

n
= ⋅ , i = unsyst, syst.

 
 

Thus, the actual coupon payment taken into account in risk measurement by means of actual cash 

flows is ( )systX t , whereas for valuation, ( )unsystX t  is used. The value of the MCB at time t, 

( )i
bondM t , i = unsyst, syst, is an asset for the insurance company and given by the expected value 

of future cash-flows discounted to time t and given the information at time t, multiplied by the 

number of MCBs purchased at time 0 (Bn ), 

 ( ) ( )( ) ( )
1

( 1)
1 , 0,..., 1,

T
j ti unsyst

bond B t
j t

M t n E X j r t Tλ
−

− − +

=

= ⋅ ⋅ + − = −∑  λ = 0 if i = unsyst.  

 

Risk management using natural hedging  

We further examine the effect of natural hedging, which uses the opposed reaction towards 

changes in mortality rates of term life insurances and annuities to immunize a life insurer against 

systematic mortality risk. In the literature, natural hedging has been used for minimizing (e.g. 

Wetzel and Zwiesler (2008)) or immunizing (e.g. Wang et al. (2010)) the risk of an insurance 

company in response to unexpected (systematic) changes in mortality. In the following analysis, 

                                              
18  nref(0) is merely a scaling parameter that does not impact the result, since the coupon payment is expressed in 

relative terms. 
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we take an immunization approach as in Wang et al. (2010), but follow Gatzert and Wesker 

(2010) by considering the insurance company as a whole instead of only focusing on the liability 

side. In the case without adverse selection and taking the probability of default PD as the relevant 

risk measure, for example, the optimal portfolio composition *
Lf  is defined as 

 
( ) ( ) ( ) ( ) ( ) ( )

!
, ,; ; ; ; 0,pop pop syst pop pop syst unsyst syst

L L x x L x L x L Lg f PD f PD f PD f PD f PD fµ µ µ µ= ∆ = − = − =  

 

implying that the probability of default is the same with and without systematic risk. However, 

since the risk immunizing portfolio composition does not constitute the risk minimizing portfolio, 

the investment strategy, reinsurance, or MCBs can be used to achieve a desired risk level, which 

is at the same time immunized against changes in mortality as illustrated in the numerical section. 

 

Risk measurement 

To analyze the impact of mortality risk on the insurer’s risk situation, we consider two downside 

risk measures, namely the probability of default (PDi) and the mean loss (MLi), which essentially 

correspond to the Lower Partial Moments (LPM) of order zero and one, adapted to account for 

the long duration of contracts and to take into account potential default during the contract period. 

The probability of default is defined as 

 

( )i i
dPD P T T= ≤ , i = unsyst, syst, 

 

where ( ) ( ){ }inf :i i i
dT t A t L t= <  is the time of default. Thus, the PD only measures the frequency 

of default. The second risk measure, the mean loss, is defined as an LPM of order one at the time 

of default, discounted to t = 0, i.e.  

 ( ) ( )( ) ( ) { }1 1
i
dTi i i i

d d dML E L T A T r T T
− = − ⋅ + ⋅ ≤  

, i = unsyst, syst 

 

where { }1 i
dT T≤  denotes the indicator function, which is equal to one if the condition in the 

brackets is satisfied. Thus, this risk measure is the discounted unconditional expected loss in case 

of default, which takes into account the extent of the default and thus reflects the amount by 

which assets are not sufficient to cover liabilities. It can thus be interpreted as the average amount 

of money necessary for funding a case of default during the contract term. 
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3. NUMERICAL ANALYSIS  

 

This section presents results of the numerical analysis. We first discuss the relevant input parame-

ters and the estimation of mortality rates. Second, all three types of mortality risk – unsystematic 

risk, adverse selection, and systematic risk – and their interaction are analyzed with respect to an 

insurer’s risk situation with special focus on adverse selection. Third, the impact of mortality risk 

on the effectiveness of risk management instruments is illustrated, thereby considering mortality 

contingent bonds and natural hedging. 

 

3.1 Definition of input parameters and estimation of the mortality model 

 

In the numerical analysis, we assume that the life insurance contracts are sold to x = 35 year old 

male policyholders for a duration of T = 35 years. The contract volume V is set to 10,000 for each 

of the two contract types.19 Using Equation (2), this assumption results in a fair death benefit of 

DB = 164,547. Concerning the premium calculation, data regarding the size of the loading for 

only systematic mortality risk is not available; hence, we follow Gründl, Post, and Schulze (2006) 

by assuming a loading of δ = 1% and conduct sensitivity analyses. Thus, under unsystematic 

mortality risk, the constant annual premium 465unsyst
LP =  is used, and in the presence of system-

atic mortality risk, 469syst
LP = . The age of the annuitants at inception of the contract is x = 65 and 

the maximum age attainable as implied by the BDV (2002a) model is 100, which corresponds to 

a maximum duration of T = 35 years.20 Setting the single premium for the annuitant under unsys-

tematic und systematic mortality risk equal to 10, 000unsyst
ASP =  and 10,100syst

ASP = , using Equa-

tion (3), the fair annuity a depends on whether or not adverse selection is taken into account in 

pricing and reserving. The calendar year of contract inception is set to 2012. Initial equity E0 is 

set to 20 Mio and the dividend payment is re = 25%. Regarding the assets, a constant risk-free 

rate r of 3% is assumed and the drift and volatility of high (low) risk assets are fixed at 10% (5%) 

and 20% (8%), with a correlation of 0.1 and a fraction α = 80% invested in low-risk assets, where 

sensitivity analyses were conducted for robustness. To ensure comparability among portfolios, in 

addition to fixing the volume of each contract, the total number of contracts sold, n(0), is fixed 

and equal to 10,000. All analyses are based on Monte-Carlo simulation with 100,000 paths for the 

asset portfolio and the same sequence of random numbers was used for each simulation run. As 

the value of the MCB at time t depends on the information available at time t, valuation is con-

                                              
19  These parameters were subject to robustness checks. Results are similar when considering a shorter duration of 

contracts (e.g. T = 30 or T = 25), younger term life insurance policyholders (e.g. x = 30), or older annuitants (e.g. 
x = 70, x = 75).  

20  This might be considered too low, however due to the scarcity of data especially at high ages, a reliable estima-
tion of the parameters above this age is not possible. For example, J. P. Morgan recommends a maximum age of 
only 89 in the accompanying software for its LifeMetrics index (see http://www.jpmorgan.com/pages/ jpmor-
gan/investbk/solutions/lifemetrics/software). 
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ducted path-dependently for all 100,000 possible realizations of ( ) ( )0i
ref refn t n , i = unsyst, syst 

at each time t. Due to computational intensity, ( )i
bondM t  is thereby approximated based on 1,000 

simulation runs of future mortality, still ensuring robust results.21  

 

Estimating and projecting future mortality and adverse selection in the U.K. 

Regarding the empirical estimation of mortality rates, the U.K. is chosen as an example of a typi-

cal industrialized country due to the availability of mortality rates for annuitants deduced from 

actuarial mortality tables that are derived from actual insurance data. Hence, the data basis for the 

estimation of mortality for both groups of insured (annuitant data and population data used for 

term life policyholders) is the number of deaths and exposure to risk for U.K. from 1950 to 2009 

available through the Human Mortality Database and the U.K. annuitant mortality from the Con-

tinuous Mortality Investigation (CMI) from 1947 to 2000 as reflected in the five mortality tables 

for the years 1947, 1968, 1980, 1992 and 2000.22 The estimated demographic parameters of the 

BDV (2002a) model are consistent with the results stated in the original article by Lee and Carter 

(1992) and the estimated and forecasted mortality trend kτ  is obtained by applying Box-Jenkins 

time series analysis techniques, which indicated an ARIMA (0,1,0) model23 with drift equal to 

φ = -1.5403 (standard error 0.3056); the standard error of τε  is estimated as 2.3474. 

 

Systematic mortality risk is modeled by simulating random realizations of τε  for each year. As 

illustrated in Figure 1, this common factor impacts mortality at all ages and thus leads to depend-

encies in the number of deaths at each date τ. Figure 1 exhibits the correlation between the ran-

dom number of deaths ,xD τ  in the year τ = 2020 for different ages x.24 Without systematic mortal-

ity risk, as shown in Part a) of Figure 1, the number of deaths ,xD τ  for different ages x for a given 

year τ are generally uncorrelated. Thus, the benefits of risk pooling apply. However, under sys-

tematic mortality risk (Figure 1 b)), the common factor causes correlations between the number 

of deaths for different ages and the correlation coefficient increases with policyholders’ age.  

                                              
21  The standard error of Monte-Carlo simulation for the value of the mortality contingent bond at t = 1 ( )1unsyst

bondM  is 
about 0.0322 (the expected value is approximately 12; the exact standard error depends on the path considered 
and values for the standard error lie between 0.0291 and 0.0354. These values are calculated for an initial coupon 
C = 1), while for t = 10 it is about 0.0263 (between 0.0239 and 0.0287). 

22  The corresponding graphs exhibiting the demographic parameters exp(ax), bx and kτ can be found in the appendix; 
for the estimation procedure using a uni-dimensional Newton-method, we refer to BDV (2002a). Other annuitant 
data with more data points is not publicly available; however, the data still implies significant parameter esti-
mates when calibrating the time series to estimate the effect of adverse selection. 

23  The Schwarz as well as the Akaike information criterion indicated a more complex model for the ARIMA time 
series. However, subsequent residual analysis using Box-Ljung test as well as ACF and PACF analysis showed 
no significant residual autocorrelation. 

24  All calculations of the correlations are based on ˆsystk kτ τ τε= + , i.e. the “neutral” scenario. Results for the longevi-
ty and the mortality scenario are qualitatively similar, except that correlations are slightly smaller. The year 2020 
was used as an example. The results are based on 100,000 simulation runs and a population of 10,000 policyhold-
ers for each age x. 
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Figure 1: Correlations between the random number of deaths at age x and age y for life insurance 

policyholders and annuitants, respectively, in the year τ = 2020  
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
 

 

Figure 2: Correlation between the cash flows for death benefits and annuities for the cohort of 

1977 and 1947 at age x and y over the contract term  

 

 

 

 

 

 

 

 

 

 

These results can also be confirmed when considering the correlation between the cash flows for 

annuities and death benefits for the cohort of, e.g., 1947 (annuitants) and 1977 (life insurance 

policyholders) over the contract term, i.e. for the year 2012 to 2047, as shown in Figure 2. With-

out systematic mortality risk, the correlation at each point in time t is zero, while under systemat-

ic mortality risk, negative correlations between cash flows of annuities and death benefits can be 

observed, which increase over the contract term. These correlations between the number of 

deaths for different ages caused by systematic mortality risk in general destroy diversification 

benefits. This can further be seen in Figure 3, where the coefficient of variation 

( ) ( )var /X E X  is displayed, which provides a relative measure of risk by relating the standard 

deviation to the expected value. Here, X denotes the random number of deaths for the cohort of 

1947 (annuitants) or 1977 (life insurance policyholders) for different ages (i.e., different points in 

time) with and without systematic mortality risk. The results show that under unsystematic mor-
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tality risk, the coefficient of variation decreases for an increasing portfolio size, i.e. the benefits 

of risk pooling and the law of large numbers apply. However, under systematic mortality risk, 

diversification benefits are limited and the risk reduction achievable through enlarging the portfo-

lio is considerably reduced. 

 

Figure 3: Measuring diversification – Coefficient of variation for different ages and different 

portfolio sizes under unsystematic and systematic mortality risk  

  
 

 

Regarding adverse selection, the estimation according to Equation (1) indicates that annuitant 

mortality rates improve more rapidly than the population mortality rates, but that this greater im-

provement decreases over time. The estimated intercept α is equal to -0.0275 (0.0198), the pa-

rameter for the relationship between annuitant and population mortality (β1) is 1.1618 (0.0123), 

and the interaction term between year τindex and population mortality is slightly negative with 

β2 = -0.0004 (0.0002) (robust standard errors in parenthesis).25 The estimated standard error of 

residuals ,x te  is 0.1292, which are also taken into account for each year t and age x in forecasting. 

In case the insurer is not be able to perfectly account for adverse selection (“adverse selection 

misestimated”), the parameters of Equation (1) are misestimated, such that β1 = 1, β2 = 0, and 

-0.2779α = . Concerning the interaction of adverse selection and systematic risk, further analy-

sis shows that the correlation between lives implied by systematic mortality risk is reduced 

through adverse selection, which is due to the difference between the mortality experience of the 

population and annuitants induced by mortality heterogeneity and adverse selection.  

 
  

                                              
25  The estimate for β1 and β2 are significantly different from zero (on the 1% and 5% significance level, respective-

ly), while the intercept is not. The inclusion of β2 additionally leads to a slight improvement in R² by 0.1 percent-
age point. Note that 1950

index
τ τ= − , where 1950 is the first year for which mortality data is used and τ is the year 

under consideration. The R² indicates that more than 98% of the variance of annuitant mortality can be explained 
through the model, which is to be expected, since impact factors for mortality rates of annuitants and the popula-
tion should generally be similar. 
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3.2 The impact of mortality risk on an insurer’s risk situation 

 

Mortality risk in pricing and risk measurement 

In the numerical analysis, we distinguish different cases with respect to mortality risk for pricing 

and risk measurement as exhibited in Table 3 (see also Table 1 for the notation of mortality 

rates). We first study the case without taking into account adverse selection, using only unsys-

tematic and systematic mortality risk. Regarding the impact of adverse selection (see third row in 

Table 3, “With adverse selection” � “unsystematic risk + adverse selection”), the two cases con-

cerning the ability of the insurance company to forecast and thus to take into account adverse 

selection in pricing are studied. If the insurer cannot account perfectly for adverse selection, the 

different development of mortality rates for annuitants and life insurance policyholders cannot be 

fully taken into account when calculating premiums and benefits. The resulting annuity is 688. 

Second, if the insurer is able to perfectly estimate and thus account for adverse selection effects, 

the resulting annuity is 663. 

 

Table 3: Overview of assumptions on the insurer’s pricing and risk measurement  
 Notation in 

figures 
Pricing and reserving Fair  

annuity 
Risk mea-
surement 

Without 
adverse 
selection 

“unsystematic 
risk” 

A pop
x xq q=  
L pop
x xq q=  

748 A pop
x xq q=  
L pop
x xq q=  

unsyst fair
L LP P= ; 

unsyst fair
A ASP SP=  

 “unsystematic 
risk 
+ systematic 
risk” 

A pop
x xq q=  
L pop
x xq q=  

7481 ,A pop syst
x xq q=

,L pop syst
x xq q=

  ( )1syst fair
L LP Pδ= + ⋅  ( )1syst fair

A ASP SPδ= + ⋅  
With  
adverse 
selection 

“unsystematic 
risk 
+ adverse selec-
tion”  

1 2*: 0, 1, 0,, . .

, . .

ann
xA

x ann
x

q adv sel misestimated
q

q if adv sel perfectly estimated

α β β≠ = == 


 

L pop
x xq q=  

688 

663 

 

A ann
x xq q=  

L pop
x xq q=  

unsyst fair
L LP P= ; unsyst fair

A ASP SP=  
 “unsystematic 

risk 
+ adverse selec-
tion  
+ systematic 
risk” 

1 2*: 0, 1, 0,, . .

, . .

ann
xA

x ann
x

q adv sel misestimated
q

q if adv sel perfectly estimated

α β β≠ = == 


L pop
x xq q=  

6881 

6631 
 

,A ann syst
x xq q=  

,L pop syst
x xq q=

 

( )1syst fair
L LP Pδ= + ⋅ ; ( )1syst fair

A ASP SPδ= + ⋅
1 Systematic mortality risk is considered in the premium through the loading δ .  
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Figure 4: Probability of default and mean loss under different types of mortality risk for a lon-

gevity scenario 
a) Without adverse selection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) With adverse selection 
i.) Adverse selection misestimated 
 
 
 
 
 
 
 
 
 
 
 

 
ii.) Adverse selection perfectly estimated 
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The impact of unsystematic mortality risk on an insurer’s risk situation 

We begin by examining the impact of unsystematic mortality risk on the risk situation of an in-

surance company to gain insight into central effects of portfolio composition. Furthermore, this 

setup serves as a benchmark for further analyses. In this scenario, the only uncertainty stemming 

from mortality is the time of death of each policyholder, realized with a certain known probability 

distribution and identical for all policyholders (independent of the purchased product). Figure 4 

shows the results of this analysis, displaying the absolute level of risk measured by the probabil-

ity of default and the mean loss. As shown in Part a) of Figure 4, the risk of a portfolio of insur-

ance liabilities can generally be considerably decreased through portfolio composition, particular-

ly by selling more life insurance contracts than annuities.26  

 

The impact of systematic mortality risk on an insurer’s risk situation 

Systematic mortality risk is considered based on different scenarios, where Figure 4 displays re-

sults for the longevity scenario.27 Without adverse selection (Figure 4 Part a)), the impact of a 

systematic change in mortality on a portfolio of life insurance contracts (fL = 1) is greater than the 

impact on a portfolio of only annuities (fL = 0), which is due to the different types of insured 

risks.28 However, the impact on a portfolio of annuities is still not negligible but amounts to an 

increase of 10.3% for the probability of default and to 9.8% for the mean loss. This opposed reac-

tion of life insurance and annuities in response to systematic mortality risk and the negative cor-

relations between cash flows induced by systematic mortality risk (see Figure 2) create natural 

hedging opportunities that can immunize the risk of an insurance company against changes in 

mortality (at the intersection points, where the risk level remains unchanged despite the unex-

pected common factor impacting mortality).  

 

Further analyses for the neutral scenario and the mortality scenario showed that even though the 

mean life expectancy is not impacted in case of the former, life insurance contracts are considera-

bly more sensitive towards systematic mortality risk.29 This result is also supported by the mortal-

ity scenario, where the probability of default increases from 0.03% (in Figure 4 a) to almost 2% 

                                              
26  The exact portfolio composition for which the insurer’s risk is minimized depends on input parameters and con-

tract characteristics. For example, if the term life insurance is financed through a single premium, the risk level 
for a portfolio with only term life insurance is higher as compared to a portfolio with only annuities.  

27  First, the longevity scenario corresponds to a mean increase in the remaining life expectancy of a 65 year old man 
of about 1.9 years in the year 2012 from 18.5 years to 20.4 years. Second, the mortality scenario implies a mean 
decrease in the remaining life expectancy of about 1.8 years to 16.7 years. Third, the realization of ετ is not re-
stricted in the “neutral” scenario, and since ( ) 0E τε = , the mean life expectancy is not impacted.  

28  Life insurances constitute a low-probability risk, which are more heavily impacted by a change in mortality rates 
than annuities, which constitute a high-probability risk, see, e.g., Gründl, Post, and Schulze (2006). 

29  For a portfolio with only annuities, in contrast, the risk level decreases slightly due to the inclusion of a loading 
for systematic mortality risk. Thus, in this case, the required premium is sufficiently high to cover the costs of 
systematic mortality risk for a portfolio with only annuities. 
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for a portfolio with only life insurance. Thus, while under unsystematic mortality risk, a portfolio 

of only life insurance contracts implies a lower risk level than annuities in the considered exam-

ples, the sensitivity of life insurance towards systematic mortality risk is considerably higher as 

compared to a portfolio of annuities. 

 

The impact of adverse selection on an insurer’s risk situation 

Regarding the impact of adverse selection on an insurer’s risk situation, which is induced by mor-

tality heterogeneity among individuals and asymmetric information between insurer and insureds, 

in addition to Figure 4 b), Figure 5 exhibits the relative change in the risk of an insurance compa-

ny due to the presence of adverse selection (perfectly estimated or misestimated) as compared to 

the case where only unsystematic risk is included.  

 

Figure 5: Maximum range of risk due to adverse selection (Figure 4 b) when adverse selection is 

misestimated or estimated perfectly (difference between “unsystematic” and “unsystematic + 

adverse selection” in Figure 4 b.i) and b.ii), respectively)30 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

When comparing the difference between the case where only unsystematic risk is considered 

(“unsystematic”) and the case with adverse selection (estimated perfectly or misestimated, “un-

systematic + adverse selection”), Figure 4 b) and Figure 5 show that the risk level considerably 

increases when taking into account adverse selection. This is true even if adverse selection is per-

fectly estimated by the insurer as illustrated in Figure 5, line “adverse selection perfectly estimat-

ed.” In this case, the difference to the situation with only unsystematic risk still constitutes an 

increase of 7.8% in the default probability for a portfolio of annuities (fL = 0). For mixed portfoli-

os, the increase in risk due to the inclusion of perfectly estimated adverse selection can be even 

                                              
30  The relative change is calculated as the relative increase in the risk measure due to adverse selection, e.g. for the 

probability of default, ( )unsyst unsyst unsyst
with adverse selection without adverse selection without adverse selectionPD PD PD− . 
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up to 21.7% in case of the mean loss. The risk level increases by a fairly large amount if adverse 

selection is misestimated, which is mainly due to a lower than predicted mortality in the annuity 

portfolio, leading to a greater than expected cash outflow. For example, for a portfolio with only 

annuities (fL = 0), the default probability increases by about 30% (see Figure 5, left graph, “ad-

verse selection misestimated”). The increase in the mean loss for the same portfolio even corre-

sponds to more than 35% and can rise to almost 60% for mixed portfolios (see Figure 5, right 

graph), which emphasizes the importance of properly forecasting not only the mortality of the 

population as a whole, but especially the relationship between annuitant mortality and population 

mortality, as an underestimation of annuitant mortality leads to severely increased risk.  

 

Thus, adverse selection, even if it can be perfectly forecasted and taken into account in pricing, 

can considerably increase the risk level of an insurance company, especially when considering 

mixed portfolios. However, the results also emphasize that the impact of adverse selection can be 

significantly decreased through a reliable forecast of the relationship between annuitant mortality 

and mortality of the population as a whole (and thus the mortality of term life insurance policy-

holders), which stresses the importance of developing models for better forecasting this relation-

ship. Including systematic risk in addition to adverse selection (line “unsystematic + adverse se-

lection + systematic” in Figure 4 b)) shows that if adverse selection is misestimated (Figure 4 

b.i)), the risk level is considerably higher compared to the case of perfect estimation and included 

in pricing (Figure 4 b.ii)), while systematic mortality risk has only a slight impact. 31  

 

3.3 The impact of mortality risk on an insurer’s risk management 

 

We next study the effect of mortality risk components on the effectiveness of risk management. 

Regarding the mortality contingent bond, the loading is set to λ = 35 bp (see Cairns et al. 

(2005))32 and the scaling parameter for the reference population is nref(0) = 1 Mio, with x equal to 

initial age of annuitants. Furthermore, we assume that the insurer generally purchases one MCB 

with a volume of 1,000 per bond for each annuity sold, i.e. ( )unsyst
bondM t  = nB · 1,000 = (1 – fL) · n(0) 

                                              
31  When considering a portfolio with younger term life insurance policyholders (x = 30), older annuitants (x = 70), 

and a shorter duration of contracts (T = 30), the impact of adverse selection is further increased. For example, for 
a portfolio consisting of 50% term life insurance and 50% annuities, the mean loss increases by about 100% if 
adverse selection is misestimated, and by about 13% if it is perfectly estimated as compared to 73% and 9%, re-
spectively. In addition, all results shown are based on a single portfolio of life insurance contracts consisting of 
annuities as well as term life insurance, where all policyholders belong to the same cohort. Taking into account 
continuing business activity, i.e. the repeated sale of insurance contracts in which the current mortality can be 
more fully acknowledged, may decrease the effects explained above.  

32  The size of the loading does not substantially impact the results as shown in sensitivity analyses. 
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· 1,000, and thus hedges 10% of its annuity business.33 The coupon payment C corresponding to a 

volume of 1,000 is C = 75 and the premium is 1,000 (1,036) under unsystematic (systematic) 

mortality risk.34  

 

The impact of basis risk on the effectiveness of MCBs in reducing the risk level 

In this subsection, we examine the effectiveness of MCBs for reducing the risk level of an insur-

ance company in the absence of systematic mortality risk. The use of MCBs regarding the impact 

of systematic mortality risk is analyzed in the second subsection. Figure 6 shows results for dif-

ferent assumptions regarding the MCB and mortality risk for the probability of default and the 

mean loss. The line “without adverse selection (no basis risk)” shows the effectiveness of an 

MCB under “ideal” circumstances, in which the probability distribution of mortality for the popu-

lation underlying the MCB and for the hedged insurance portfolio is identical, is examined (i.e., 

without basis risk). In this setup, any deviations in the mortality of the hedged and the underlying 

reference population are only due to unsystematic deviations in realized mortality between the 

population as a whole underlying the MCB and mortality within the insurance portfolio.  

 

Figure 6: The impact of risk management using mortality contingent bonds (MCBs) under dif-

ferent assumptions concerning adverse selection without systematic mortality risk35 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                              
33  This number is somewhat arbitrary, but since we are merely interested in the relative effectiveness of an MCB 

under different assumptions concerning mortality, the different scenarios have to be comparable in terms of 
amount of purchased hedging instruments.  

34  For instance, for a portfolio with 50% annuities and 50% term life insurance, the insurance company purchases 
bonds with a total volume of unsyst

bondM  = 0.5 · 10,000 · 1,000 = 5 Mio, which is equal to a total coupon payment of 
5,000 · C = 5,000 · 75 = 375,000 (to be weighted with the percentage of survivors in the underlying population). 

35  The relative change shown by the dotted line is the relative reduction in the risk measure achievable through the 
use of MCBs, e.g. for the probability of default, ( )unsyst unsyst unsyst

without MCB with MCB with MCBPD PD PD− . 
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The results show that a significant risk reduction can be achieved through the use of MCBs. For a 

portfolio consisting of only annuities (fL = 0), for which MCBs with a total volume of unsyst
bondM  = 10 

Mio are purchased, the probability of default is reduced by -27.8% (i.e., -0.05 percentage points) 

and the mean loss by -43.3% (i.e., -94 T). This observation indicates that MCBs are more effec-

tive in reducing the severity of default than in reducing the frequency of default. In terms of a 

relative risk reduction, the effectiveness of MCBs can be further enhanced through portfolio 

composition, despite purchasing fewer MCBs. In particular, for the probability of default, the 

maximum risk reduction of -32.2% is achieved for a portfolio with 70% annuities (fL = 30%), for 

which MCBs with a total volume of unsyst
bondM  = 0.7 · 10 T · 1,000 = 7 Mio

 
are purchased. With re-

spect to the mean loss, the use of MCBs leads to the highest risk reduction of -50.2% for a portfo-

lio with 70% annuities (fL = 30%).  

 

Turning to the effectiveness of MCBs in reducing the level of risk of the insurance company un-

der basis risk, the results vary depending on the insurer’s ability to estimate adverse selection. For 

a portfolio comprised only of annuities (fL = 0), i.e., a typical pension fund, for example, without 

basis risk, MCBs imply a reduction of 27.8% in the probability of default, while the probability 

of default can only be decreased by 19.4% in the case of a misestimated adverse selection used in 

pricing, which constitutes a significant loss in efficiency as compared to the case without adverse 

selection. However, if the insurer is able to estimate adverse selection perfectly and takes this 

knowledge into account in pricing, the loss in efficiency compared to the case where no basis risk 

is included can be reduced, but only by around 3 percentage points in the case of an annuities 

portfolio. Thus, this result emphasizes the importance of accounting adequately for basis risk 

effects when determining the amount of risk management needed to achieve a desired risk level.  

 

Due to the higher level of risk and the loss in efficiency of MCBs under basis risk, more MCBs 

need to be acquired to achieve the same amount of risk reduction in the presence of basis risk, 

which comes with greater cost for transferring this risk to the capital market. To gain an impres-

sion about the risk management costs associated with basis risk (if adverse selection effects are 

perfectly accounted for), one can calculate the additional volume of MCBs needed to reach the 

same level of risk as when basis risk is absent, i.e. when the probability distributions of the mor-

tality of annuitants and term life insurance policyholders are identical. For example, for a portfo-

lio of 50% term life insurance (fL = 0.5) and 50% annuities, MCBs with a volume of unsyst
bondM  = 0.5 

· 10,000 · 1,597 = 7.99 Mio are needed under basis risk to achieve the same probability of default 

that would otherwise be achieved through purchasing bonds with a volume of only unsyst
bondM  = 0.5 · 

10,000 · 1,000 = 5 Mio when no basis risk is modeled. This corresponds to an increase in the vol-

ume of risk management of almost 60%. For the mean loss, the volume has to be increased by 

even 65.6% to unsyst
bondM  = 0.5 · 10,000 · 1,656 = 8.28 Mio. For a portfolio with annuities only (fL = 
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0), an increase in the volume of MCBs by 36.3% (41.0%) for the probability of default (mean 

loss) would be necessary.  

 

The impact of basis risk on the effectiveness of MCBs for hedging systematic risk 

In the literature, MCBs are also described as an important tool in reducing the impact of system-

atic mortality risk. Here, the longevity scenario is considered since the “survivor bond” by Blake 

and Burrows (2001) was proposed for hedging the longevity risk inherent in annuities and pen-

sions. The results for this analysis are displayed in Table 4 for a portfolio consisting of only annu-

ities. In the case without basis risk, MCBs can be used to reduce the impact of systematic mortali-

ty risk on an insurer’s risk situation. This is particularly evident for the mean loss, which in the 

presence of systematic mortality risk can be reduced by almost 40% in the present setting by pur-

chasing mortality contingent bonds with a volume of syst
bondM  = 10,36 Mio, using the same coupon 

as in the case of unsystematic mortality risk. This result confirms the previous finding that MCBs 

prove more useful in hedging the severity of default as compared to the frequency of default. The 

risk reduction effect is almost as strong in the case where adverse selection is perfectly estimated 

and priced by the insurer (reduction of 38%), even though the implied change in mortality differs 

for the hedged population and the reference population underlying the MCB.  

 

Table 4: Probability of default and mean loss for a portfolio of only annuities (fL = 0) including 

systematic mortality risk (longevity scenario) 

Portfolio of  

annuities only 

Without adverse  

selection (no basis risk) 

With adverse selection  

(in the presence of basis risk) 

misestimated perfectly estimated 

PD ML PD ML PD ML 

Without MCB 0.27% 342 T 0.34% 458 T 0.28% 369 T 

With MCB 0.22% 245 T 0.29% 349 T 0.23% 267 T 

Relative reduction 

through MCB* 23.8% 39.4% 17.7% 31.2% 22.5% 38.0% 

*  The relative reduction is defined as 
( )syst syst

without MCB with MCB

syst
with MCB

PD PD

PD

−
 and 

( )syst syst
without MCB with MCB

syst
with MCB

ML ML

ML

−
. 

 

However, if adverse selection is misestimated and not perfectly taken into account in pricing, the 

effectiveness of MCBs is considerably dampened. An additional analysis of mixed portfolios 

further shows that under unexpected low mortality, the insurer’s risk level is further decreased, 
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since unexpected low mortality leads to lower payout for term life insurance contracts and, at the 

same time, a higher payments from the MCB.36  

 

The effectiveness of natural hedging under adverse selection  

Insurance companies can use the opposed reaction of term life insurances and annuities in re-

sponse to a change in mortality to hedge the impact of systematic mortality risk using natural 

hedging. This subsection studies the impact of adverse selection on the effectiveness of this risk 

management strategy (see Table 5). Since the neutral scenario does not imply a change in the 

expected life expectancy, only the longevity and mortality scenario are considered. The optimal 

fraction of life insurance contracts fL corresponds to the intersection points of the respective risk 

measure, e.g. of the lines “unsystematic” and “unsystematic + systematic” in Figure 4 a). At these 

points, for the given portfolio composition, the risk level remains unchanged for the modeled 

unexpected changes in mortality. The immunization is thereby driven by the negative correlation 

between cash flows for death benefits and for annuities over the contract term (see Figure 2), 

which is especially pronounced for later contract years and contributes to the immunizing effects 

utilized in natural hedging. 

 

Table 5: Fraction of life insurance at which the impact of systematic mortality risk on the risk 

situation of an insurance company is immunized 

Fraction of life 
insurance fL to im-
munize portfolio 

Without adverse  
selection 

With adverse selection  

misestimated perfectly estimated 

PD ML PD ML PD ML 

Longevity scenario 27.2% 30.0% 18.7% 22.0% 15.5% 18.6% 

Mortality scenario 21.3% 20.3% 21.0% 19.5% 21.0% 20.1% 
 

If no adverse selection is assumed in pricing and risk measurement, the insurance company can 

eliminate the impact of unexpected low mortality on the probability of default by signing about 

27.2% life insurance contracts in case of the longevity scenario (30.0% when using the mean loss 

as the relevant risk measure). In case of the mortality scenario, the optimal fraction of life insur-

ance contracts is reduced to 21.3% (20.3% for the mean loss). The presence of adverse selection 

leads to a change in the optimal fraction of life insurance contracts, at which the risk of an insur-

ance company is immunized against unexpected low mortality. This is particularly evident in case 

of the longevity scenario. If adverse selection is not correctly priced, the optimal fraction is re-

duced from 27.2% to 18.7% for the probability of default and from 30.0% to 22.0% for the mean 

loss. Thus, despite the greater implied change in life expectancy of annuitants, less life insurance 

                                              
36  In contrast, in case of an opposed change in mortality rates, e.g. because the rate of mortality improvement is 

overestimated, the purchase of MCBs would lead to a further increase in the risk, since payments from the MCBs 
decrease at the same time that payouts for term life insurance increase. 
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contracts are needed to eliminate this effect. In the case of a perfectly forecasted adverse selec-

tion, the fraction of life insurance contracts is further decreased to 15.5% and 18.6%, respective-

ly. For the mortality scenario, in contrast, the impact of adverse selection is overall negligible and 

the optimal fraction of life insurance remains almost constant. Compared to the longevity scenar-

io, fL is considerably lower for the mortality scenario, which can be explained by the greater sen-

sitivity of life insurance towards systematic mortality risk in the mortality scenario. Our immun-

ization approach is similar to Gatzert and Wesker (2010) and Wang et al. (2010) and can also be 

compared to the results in Cox and Lin (2007). The results in Wang et al. (2010) differ from the 

results found in the present setting in that the fraction of life insurance contracts is generally 

higher. For instance, for a 10% mortality shift, the optimal product mix proportion, i.e. the opti-

mal proportion of life insurance liabilities, lies between 30% and 35% life insurance.37 In Cox 

and Lin (2007), past mortality shocks are used in an example to illustrate the effectiveness of 

natural hedging. First, a positive shock to mortality is modeled based on the average life expec-

tancy improvement rate in historical mortality tables. In this case, the deviation between the pre-

sent value of benefits and premiums for both products can be eliminated completely through port-

folio composition by signing about equal amounts of life insurance and annuity business. Second, 

as an example for a bad shock, two different epidemic scenarios are modeled based on the 1918 

flu epidemic. While in one scenario, natural hedging can contribute to a considerable reduction in 

cash flow volatility, in the other scenario an optimal ratio of annuity to life insurance business of 

about 80% to 90% is found. In Gatzert and Wesker (2010), slightly higher optimal portfolio frac-

tions are found than those in the present analysis.  

 

The differences regarding the optimal portfolio mix in previous literature and the present findings 

generally arise due to various reasons. First, the definition of the product mix proportion differs, 

e.g. using the value of liabilities (Wang et al. (2010)) instead of the number of contracts. Second, 

in contrast to previous studies, adverse selection effects are explicitly modeled and taken into 

account in the present analysis.38 Additional reasons include the different natural hedging ap-

proaches (e.g. using durations), the implementation of systematic mortality risk (e.g. constant 

shock versus common stochastic factor), the risk measure (e.g., immunization of liabilities as 

compared to immunizing the insurance company as a whole), as well as differences in the product 

characteristics. The comparison emphasizes that the optimal portfolio composition depends on 

various assumptions and the concrete definition of natural hedging, issues that need to be ad-

dressed by insurers when setting a risk strategy. However, our results can still be considered to be 

                                              
37  The product mix proportion lifeω  is thereby defined as life

life V Vω = , with V  as the total liability and lifeV  as the 
life insurance liability (see Wang et al. (2010, p. 476)). 

38  Wang et al. (2010) also acknowledge the importance of accounting for adverse selection effects. They conduct 
sensitivity analysis through implementing different mortality shifts for annuitants and life insurance and do not 
focus on a separate model. 



 29

generally in accordance with previous findings, especially in that the optimal portfolio composi-

tion consists of a lower percentage of life insurance in the portfolio as compared to annuities.  

 

Overall, our findings indicate that in the present setting, natural hedging can be an effective risk 

management tool to immunize the risk situation of an insurance company against changes in mor-

tality and thus systematic risk, even if annuitants and life insurance policyholders do not experi-

ence the exact same impact. However, adverse selection should be taken into account when ana-

lyzing the impact of portfolio composition, for instance in the sense of sensitivity analysis.  

 

Simultaneous consideration of MCBs and natural hedging 

While a portfolio with about 30% life insurance contracts is immunized against the modeled lon-

gevity scenario, this portfolio comes with a higher absolute level of risk than portfolios with a 

higher percentage of life insurance (see Figure 4). Thus, the insurance company faces a trade-off 

between risk minimization and immunization. In light of the significant uncertainty accompany-

ing mortality predictions, the immunization effect should not be neglected as a potentially very 

effective method for hedging longevity risk, especially in view of the scarceness of alternative 

instruments. A potential strategy for the insurance company to overcome this trade-off, i.e., to 

simultaneously immunize an insurance company against changes in mortality and reach a desired 

risk level, can be to combine the two presented risk management strategies MCB and natural 

hedging. Since MCBs reinforce the mortality risk to which an insurance company is exposed, the 

amount of MCBs purchased has an impact on the portfolio composition at which an insurance 

company is immunized against changes in mortality. Thus, we simultaneously calculate the 

amount of MCBs needed to achieve a desired risk level and the fraction of life insurance neces-

sary to immunize the desired risk level under different assumptions concerning adverse selection 

and thus basis risk. In this setup, we assume that the insurer intends to achieve a probability of 

default of 0.1% and a mean loss of 50 T.  

 

Table 6: Portfolio composition and amount of MCB to simultaneously achieve a certain risk lev-

el and immunize this risk level against systematic mortality risk (longevity scenario) 
 Without adverse selection (no 

basis risk) 
With adverse selection  
(in the presence of basis risk) 
misestimated perfectly estimated 

PDsyst
!

= 0.1% MLsyst
!

= 50 T PDsyst
!

= 0.1% MLsyst
!

= 50 T PDsyst
!

= 0.1% MLsyst
!

= 50 T 
Fraction of 
life insurance  

26.1% 28.1% 17.2% 20.4% 16.1% 17.6% 

MCB volume 

( )syst
bondM t  

(1- 26.1%)  
·10 T · 1,378 = 
10.18 Mio 

(1-28.1%)  ·10 
T · 2,574 = 
18.51 Mio 

(1-17.2%)  ·10 
T · 3,498  = 
28.96 Mio 

(1-20.4%)  ·10 
T · 4,491  = 
35.75 Mio 

(1-16.1%)  ·10 
T · 2,551  = 
21.40 Mio 

(1-17.6%)  ·10 
T · 3,646  = 
30.04 Mio 

Coupon C 99.59 185.99 252.77 324.55 184.36 263.50 
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Thus, Table 6 shows that in the present setting, when no basis risk is assumed, the insurance 

company should sell about fL = 26% life insurance contracts (and 74% annuities) and purchase 

MCBs with a volume of 10.18 Mio to achieve a default probability of 0.1% and to simultaneously 

immunize this default probability against the modeled shock to mortality. With perfectly estimat-

ed adverse selection and thus in the presence of basis risk, the optimal fraction of life insurance 

contracts decreases by 10 percentage points in case of the PDsyst, while the amount of MCBs 

needs to be increased to 21.40 Mio to achieve and immunize the desired risk level. When adverse 

selection is not correctly forecasted, the volume of MCBs has to be increased even further to 

28.96 Mio, while the fraction of life insurance is slightly higher than in the case when adverse 

selection was perfectly forecasted. These results are in line with those in the previous subsection, 

in that under adverse selection, a smaller fraction of life insurance contracts is needed to elimi-

nate the impact of unexpected low mortality on the insurer’s risk situation and that more MCBs 

are needed to achieve a certain risk level. 

 

3.4 Sensitivity Analyses 

 

To examine the robustness of the results with respect to input parameters, sensitivity analyses 

were conducted. Concerning the loading δ for systematic mortality risk, we followed Gründl, 

Post, and Schulze (2006) and changed the loading to 0.5% and 5% (instead of 1%). The loading 

has a significant impact on the risk situation of the insurance company under systematic mortality 

risk. By demanding a loading of 5%δ =  instead of 1%δ = , the probability of default can be 

reduced in the longevity scenario by about 30% for a portfolio with only annuities and even by 

more than 70% for a portfolio with only life insurance contracts. When reducing the loading to 

0.05%, the effects are reversed and the insurer’s risk level increases under systematic mortality 

risk. However, the size of the effects is smaller as compared to a loading of 5%δ = . E.g., the 

mean loss for a portfolio with only annuities increases by about 5% in the longevity scenario. 
 

When reducing the loading λ of the MCB from 35 bp to 20 bp, the premium under systematic 

mortality risk decreases from , 1,036syst
x TΠ =  to , 1,020syst

x TΠ = , which results in a lower risk of the 

insurance company under systematic mortality risk when MCBs are used for risk management. 

However, the effect is rather small. In contrast, a higher fraction of high risk assets in the invest-

ment portfolio considerably increases the risk situation of the life insurer. For example, decreas-

ing the fraction of low risk assets α from 80% to 50% almost doubles the risk of an insurance 

company for a portfolio with only annuities and can more than triple it for mixed portfolios. The 

portfolio composition for which the risk of the insurance company is immunized against the 

modeled longevity scenario still ranges between 20% and 30% life insurance in the case without 

adverse selection, while under adverse selection, the fraction of life insurance contracts needed 

for an immunization decreases for a riskier asset strategy. Thus, as shown in Gatzert and Wesker 
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(2010), the asset allocation should be taken into account when determining the optimal portfolio 

composition. Concerning the impact of adverse selection, the relative increase in risk due to ad-

verse selection is less pronounced for a riskier asset allocation. However, if adverse selection is 

misestimated, the increase in risk can still amount to more than 30% and is thus not negligible. 

Furthermore, the effectiveness of MCBs for lowering the risk level of an insurance company is 

slightly reduced for a riskier asset strategy. 

 

Finally, setting the dividend to shareholders to zero ( 0%er = ) considerably decreases the risk 

level of an insurance company as reserves can be built up faster. For a portfolio with only annui-

ties and without adverse selection, for instance, the mean loss and the probability of default are 

reduced by about 20% for 0%er = . In addition, the impact of adverse selection decreases as well, 

but to a minor extent.  

 

4. SUMMARY  

 

In this paper, we examine the impact of three different components of mortality risk – unsystem-

atic mortality risk, adverse selection and systematic mortality risk – as well as the basis risk in 

longevity hedges resulting from adverse selection on a life insurer’s risk level using U.K. data. 

Furthermore, we study the effectiveness of two risk management strategies, including natural 

hedging and the purchase of mortality contingent bonds (MCBs), in the case of a two-product life 

insurance company offering annuities and term life insurance contracts.  

 

Our results show that under unsystematic mortality risk, the insurer’s risk level can generally be 

reduced by means of portfolio composition. Taking into account adverse selection in addition to 

unsystematic mortality risk implies a substantial increase in the risk of an insurance company. 

However, the impact of adverse selection can be considerably reduced through a correct forecast 

of the relationship between life insurance policyholder mortality and annuitant mortality, i.e., 

under perfect information about adverse selection. Concerning the impact of systematic mortality 

risk, term life insurances are much more strongly affected than are annuities, which is due to the 

different types of risks insured.  

 

Turning to the effect of the three mortality risk components on an insurer’s risk management, our 

findings demonstrate that mortality contingent bonds can contribute to a major reduction in the 

risk level, even in the presence of basis risk, i.e., if the implied change in mortality is not identical 

for the underlying and the hedged population due to mortality heterogeneity and adverse selection 

effects. However, the extent of the risk reduction achievable with a certain volume of MCBs de-

creases substantially due to basis risk and if adverse selection is not correctly forecasted. Fur-

thermore, an improvement in the efficiency of MCBs for mixed portfolios of term life insurances 
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and annuities can be observed. Thus, our results emphasize the importance of these factors, which 

should be taken into account when determining the volume of risk management activities needed 

to achieve a desired safety level. 

 

Regarding the usefulness of risk management for reducing the impact of systematic mortality 

risk, our findings show that the effectiveness of MCBs is not severely hampered if adverse selec-

tion is correctly accounted for, i.e., under perfect information by the insurance company about 

annuitant mortality. This is true despite the presence of basis risk. The impact of unexpected low 

mortality on the mean loss, i.e., the severity of default, can be reduced by about one third through 

the use of MCBs if adverse selection is assumed absent or forecasted perfectly. Turning to the 

effectiveness of natural hedging under systematic mortality risk for eliminating the impact of an 

unexpected change in mortality, our observations show that despite the different implied level of 

mortality as well as speed of mortality improvement in the insurance portfolio, natural hedging 

can still be a feasible and important risk management tool against unexpected changes in mortali-

ty. However, in particular in the longevity scenario, adverse selection needs to be taken into ac-

count in determining the proper portfolio composition to immunize a portfolio against changes in 

mortality.  

 

Our results indicate that for an insurance company selling different types of life insurance prod-

ucts, besides correctly forecasting the mortality of the population in general, which has been giv-

en great attention in recent years, the correct forecasting of the relationship between annuitant 

mortality and the mortality of the population as a whole is crucial. Here, further research, espe-

cially concerning the development of this relationship over time, seems necessary to enable in-

surance companies to conduct efficient risk management with respect to mortality risk. 
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APPENDIX A 
Figure A.1: Estimated value of exp(ax) and bx over all ages 

 

 
 

 

Figure A.2: Level of estimated mortality index kτ  and forecasted values of kτ   
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