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ABSTRACT 

 
Systematic mortality risk, i.e. the risk of unexpected changes in mortality and 
survival rates, can substantially impact a life insurers’ risk and solvency situa-
tion. By using the “natural hedge” between life insurance and annuities, insur-
ance companies have an effective tool for reducing their net-exposure. The aim 
of this paper is to analyze this risk management tool and to quantify its effec-
tiveness in hedging against changes in mortality with respect to default risk 
measures. To achieve this goal, we model the insurance company as a whole 
and take into account the interaction between assets and liabilities. Systematic 
mortality risk is considered in two ways. First, systematic mortality risk is 
modeled using scenario analyses and, second, empirically observed changes in 
mortality rates for the last 10-15 years are used. We demonstrate that the con-
sideration of both the asset and liability side is vital to obtain deeper insight in-
to the impact of natural hedging on an insurer’s risk situation and show how to 
reach a desired safety level while simultaneously immunizing the portfolio 
against changes in mortality rates. 
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1. INTRODUCTION  

 

In recent years, life expectancy in all industrialized countries has risen steadily. This poses a 

serious problem to pension funds and life insurance companies selling annuities, since the 

payouts for these products might be higher than expected.1 At the same time, worldwide pan-

demics, such as the swine and bird flu, have appeared more frequently and spread more rapid-

ly. A serious pandemic might lead to severely increased mortality,2 implying high losses for a 

life insurance company selling life insurance contracts with a death benefit payment. This risk 

of unexpected high or low mortality is one of the major risks to which a life insurance com-

pany is exposed through its insurance portfolio and is of high relevance, because instruments 

to hedge this risk through an external partner are scarce. However, life insurance companies 

can use the “natural hedge”, which is the opposed reaction in the value of liabilities and in the 

amount of benefit payouts between term life insurance products and annuities in response to 

shifts in mortality, to lower their net-exposure. The aim of this paper is to quantify the impact 

of natural hedging on a life insurance company’s insolvency risk using a multi-period model 

framework that takes into account assets and liabilities. In contrast to previous literature, we 

further focus on two issues simultaneously, namely the question of how to immunize an insur-

er’s solvency situation against specific changes in mortality and, at the same time, fix the ab-

solute level of risk, which we illustrate by means of the insurer’s investment strategy.  

 

Instruments for hedging mortality and longevity risk, especially the possibility of hedging 

through capital markets, have been discussed thoroughly in the literature. A comprehensive 

overview about potential and existing capital market instruments is given in Blake, Cairns, 

and Dowd (2006a). Examples for these instruments are mortality contingent bonds, first in-

troduced by Blake and Burrows (2001) as “survivor bonds”, mortality swaps, described by 

Cox and Lin (2007) as a natural hedge between companies, mortality options and mortality 

futures. As an application of these instruments, Luciano, Regis, and Vigna (2011a) propose a 

Delta-Gamma hedge technique for mortality risk in endowment insurance contracts by means 

of longevity bonds. They additionally hedge stochastic interest risk through purchasing lon-

gevity and zero coupon bonds and extend their work in Luciano, Regis, and Vigna (2011b) by 

combining Delta-Gamma hedging using the natural hedge between life insurance contracts 

and annuities. Pricing of these instruments is discussed in, e.g., Lin and Cox (2008), and the 

                                              
1  Some life insurance companies already claim to make losses on their annuity portfolio, because their policy-

holders are living too long (see Blake, Cairns, and Dowd (2006a, p. 154)). 
2  Cowley and Cummins (2005) additionally refer to the increased likelihood of terrorism in this context (p. 

202). 
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current state of the market for these instruments is described, e.g., in Blake et al. (2009). An 

alternative for hedging mortality risk was proposed by Dahl (2004), who suggests linking 

premiums and/or benefit payments to realized mortality in the population, thus transferring 

the risk of an increase in the general life expectancy back to the insured.  

 

Different aspects of natural hedging have already been discussed in the literature as well. Cox 

and Lin (2007) use empirical data on market quotes for single premium immediate annuities 

to show that they are lower for insurance companies offering life insurance and annuities at 

the same time as compared to “one-product” insurance companies. Bayraktar and Young 

(2007) follow a similar approach as in Cox and Lin (2007). To study the effect of natural 

hedging, they use the instantaneous Sharpe ratio to price pure endowments and life insurances 

jointly and show that the price for a portfolio of m life insurances and n pure endowments is 

lower than the sum of the prices of a portfolio of m life insurances and a portfolio of n pure 

endowments. Gründl, Post, and Schulze (2006) assume a shareholder value maximizing strat-

egy and compare the effects of different risk management strategies on shareholder value dur-

ing one period with a discrete mortality model. In their model framework, natural hedging is 

the preferred risk management tool only under certain circumstances and in others might even 

decrease shareholder value. Gatzert and Wesker (2011) examine the impact of different mor-

tality risk components on an insurer’s risk situation and risk management, thereby also con-

sidering natural hedging and mortality contingent bonds. Their results show that adverse se-

lection can play an important role when determining an optimal portfolio composition to im-

munize a portfolio against changes in mortality, especially in case of a longevity scenario. 

Wang et al. (2010) focus on the change in the value of liabilities due to changes in mortality 

rates and discuss an immunization strategy for this risk through portfolio composition. They 

apply the concept of duration to mortality and derive an optimal liability mix, which is char-

acterized by a portfolio-mortality-duration of zero. The aim of Wetzel and Zwiesler (2008) is 

to find a (liability) variance minimizing product mix in a stochastic interest and stochastic 

mortality framework. They show that the mortality variance, which is the variance due to 

fluctuations in mortality, can be reduced by more than 99% through portfolio composition. 

However, while Wang et al. (2010) and Wetzel and Zwiesler (2008) show that natural hedg-

ing can significantly lower the sensitivity of an insurance portfolio with respect to mortality 

risk, both concentrate on the liability side and do not take into account the asset side.  

 

We will expand their viewpoint by considering the insurance company as a whole by taking 

into account both, assets and liabilities, as well as their interaction. In contrast to e.g. Gründl, 

Post, and Schulze (2006), in considering assets and liabilities we further focus on the insurer’s 
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risk situation in a multi-period setting over 35 years, which corresponds approximately to the 

usually observed duration of a life insurance contract and spans the majority of annuity con-

tracts as well. We dynamically take into account possible default over time, as the timing of 

payouts can significantly influence risk during the observation period. Furthermore, in con-

trast to, e.g., Gatzert and Wesker (2011), we show how to obtain a desired safety level while 

simultaneously immunizing a portfolio against changes in default risk. The procedure is illus-

trated by varying the insurer’s investment strategy. Overall, this approach allows a more 

comprehensive view of a life insurer’s long-term risk situation and the risk reduction effect 

attainable by means of natural hedging. It is particularly useful in light of Solvency II to pro-

vide insight into the possible reduction of solvency capital requirements and long-ranging 

effects of management decisions concerning portfolio composition. It is further relevant for 

the calculation of the Market Consistent Embedded Value (MCEV), where diversification 

benefits between non-hedgeable risks may be taken into account, given that they are identifia-

ble and quantifiable.3 

 

The distribution of mortality is based upon the extension of the Lee-Carter (1992) model by 

Brouhns, Denuit, and Vermunt (2002a), which has slightly more attractive theoretical features 

than the original model.4 To quantify the impact of systematic mortality risk, i.e. unexpected 

changes in mortality rates, on the solvency situation of the insurance company and thus the 

extent to which this impact can be hedged through natural hedging and to deduce the optimal 

ratio of life insurance contracts to hedge against systematic mortality risk, a simulation ap-

proach is used. We thereby distinguish between a longevity and a mortality scenario. Our re-

sults show that, in the present setting, systematic mortality risk can be hedged by selling about 

15 – 20% term life insurance and 85 – 80% annuities depending on the risk measure and the 

considered scenario. Additionally, we apply this approach to realized changes in mortality 

rates, thus incorporating adverse selection by differentiating between mortality rates of annui-

tants and life insurance policyholders, and find that these can be hedged as well, but that the 

optimal hedge ratio, at which the impact of changing death and survival probabilities can be 

eliminated completely in our model setup, is dependent upon the exact realization of the in- or 

                                              
3  The MCEV is a concept to measure shareholder value of life insurance companies introduced by the CFO 

Forum. This is a group formed by the Chief Financial Officers of leading European insurance companies 

(amongst others, Allianz, AXA, BNP Paribas, Generali, Munich Re, Swiss Re, Zurich) with the stated goal to 

“influence the development of financial reporting, value based reporting, and related regulatory develop-

ments for insurance enterprises on behalf of its members” (see http://www.cfoforum.nl/). 
4  This mortality model is taken as an example and can as well be replaced by other stochastic mortality mod-

els, depending on the concrete application of the approach (and the respective country). For instance, accord-

ing to a quantitative comparison study by Cairns et al. (2009), a variation by the Cairns, Blake, and Dowd 

(2006b) two-factor model is very suitable to explain improvements in mortality rates in England.  
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decrease in mortality rates. We further compare the case of continued underwriting activities 

to the single portfolio case and find that the more general case of continued business activities 

only results in minor changes. Our main finding is that by selling 15% to 20% life insurance 

contracts, depending on the exact changes in mortality and the risk measure chosen, the im-

pact of mortality risk can be reduced significantly. The optimal hedge ratio depends on the 

considered scenario for systematic mortality risk, the exact realization of mortality improve-

ments and the investment strategy of the insurance company, each of which should be taken 

into account by life insurers when writing new business. 

 

The remainder of this paper is structured as follows. Section 2 presents the model framework, 

including the model of the insurance company, mortality assumptions and modifications, 

product characteristics and relevant risk measures. The results of the numerical analysis are 

laid out in Section 3 and Section 4 concludes. 

 

2. MODEL FRAMEWORK  

 

This section describes the model framework used to examine the effects of natural hedging on 

an insurer’s portfolio consisting of term life insurance and annuities. To measure the effec-

tiveness of natural hedging, assets, liabilities and consequently the possibility of default are 

taken into account.  

 

Modeling mortality risk 

As the basis for death and survival probabilities, we use the extension of the Lee-Carter 

(1992) model by Brouhns, Denuit, and Vermunt (2002a) to estimate and project future mor-

tality. Depending on the respective country, other mortality models may be more appropriate 

to adequately forecast mortality rates of the population.5 Thus, the following analysis can as 

well be conducted using other stochastic mortality models and the model used here can be 

considered as an example, as our aim is to focus on the general approach with respect to natu-

ral hedging, fixing the level of risk and immunizing this risk level against unexpected changes 

in mortality rates, i.e. systematic mortality risk. 

 

The Lee-Carter (1992) model consists of a demographic and a time series part, where the cen-

tral death rate or force of mortality of an x year old male in year τ  ( )xµ τ
 
is modeled through 

 

                                              
5  In general, model risk can play an important role in mortality projections (see Coppola et al., 2011).  
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( ) ,ln x x x xa b kτ τµ τ ε= + ⋅ +    
⇔

 ( ) ,x x xa b k
x e τ τεµ τ + ⋅ += , 

 
where kτ  is a time varying index that shows the general development of mortality over time, 

xa  and xb  are time constant parameters indicating the general shape of mortality over age and 

the sensitivity of the mortality rate at age x to changes in kτ , respectively, and ,x τε  is an error 

term with mean zero and constant variance. Brouhns, Denuit, and Vermunt (BDV) (2002a) 

propose a modification to the model, which results in slightly more attractive theoretical 

properties. The realized number of deaths at age x and time τ , ,xD τ , is modeled as  

 

( )( ), ,~x x xD Poisson Eτ τ µ τ⋅
 
with ( ) x xa b k

x e τµ τ + ⋅= ,
                                     

(1)
 

 
where ,xE τ  is the risk exposure at age x and time τ  defined as ( ) ( )( ), 1 1 / 2x x xE n nτ τ τ−= − +  

and nx(τ) is the number of persons (i.e., the population size) still alive at age x and the end of 

year τ.6 An important advantage of the BDV (2002a) model is that the restrictive assumption 

of homoscedastic errors made in the Lee-Carter (1992) model is given up. Furthermore, the 

resulting Poisson distribution is well suited for a counting variable such as the number of 

deaths (see Brillinger (1986)). The model can be estimated via the Maximum-Likelihood ap-

proach using a uni-dimensional Newton method as proposed by Goodman (1979).7 Since xa  

and xb  are time constant, they can be used directly in forecasting mortality rates. However, 

since kτ  is time-varying, one needs to obtain forecasts of kτ  for predicting future mortality. 

Lee and Carter (1992) propose to fit an appropriate ARIMA process on the estimated time 

series of kτ   

 

1 1 2 2 1 1 2 2

ˆ

ˆ... ... .p p q q

k

k k k k k

τ

τ τ τ τ τ τ τ τ τ τφ α α α δ ε δ ε δ ε ε ε− − − − − −= + ⋅ + ⋅ + + ⋅ + ⋅ + ⋅ + + ⋅ + = +
�����������������������������

 

 

using Box-Jenkins time series analysis techniques. The obtained parameters of the ARIMA 

process can then be used to forecast k̂τ , and, thus, ( )xµ τ .8 Based on the estimated ( )xµ τ , 

the one-year death probability ( )xq τ , which is the probability that an x-year old male in year 

τ  will die within the next year, given he has survived until age x-1, can be calculated using 
  ( ) ( )( )1 expx xq τ µ τ= − −  (see Brouhns, Denuit, and Vermunt (2002a, p. 376)).9 The respec-

tive one-year survival probability of an x-year old male policyholder is ( ) ( )1x xp qτ τ= − , and 

                                              
6  For simulation purposes, ( ) ( ), 1 lnx t x x xE n t q p= − − ⋅  is used instead (see Brouhns, Denuit, and Vermunt 

(2002b)). 
7   Standard Maximum-Likelihood methods are not feasible due to the bilinear term bxkt. 
8   The error term τε  is set equal to zero in forecasting since ( ) 0E τε = . 
9  In this calculation, we assume a piecewise constant force of mortality ( )xµ τ . 
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the probability that an x-year old male policyholder will survive the next n years, n xp , can be 

calculated as
 

11

n

n x x ii
p p + −=

= ∏ . In the remainder of the paper, we omit the indicator τ  to sim-

plify the notation; however, all mortality rates are dependent on age and year. 
  

It has been observed in the past that mortality rates do not remain constant but are subject to 

random, unexpected changes that arise due to, e.g., common factors that impact all individuals 

in a similar way, thus causing dependencies between lives that cannot be diversified through 

enlarging the portfolio size (see e.g. Biffis, Denuit, and Devolder (2010), Wills and Sherris 

(2010), Gatzert and Wesker (2011)). This can in general be attributed either to unexpected 

environmental or social influences, impacting mortality positively or negatively,10 or to wrong 

expectations about future mortality due to estimation errors.11 The impact of this so called 

systematic mortality risk is defined and accounted for differently in the literature. Hanewald, 

Piggot, and Sherris (2011) model systematic (longevity) risk as uncertain changes in mortality 

applying to all individuals, while Evans and Sherris (2009) define it as the uncertainty in fu-

ture survival probabilities, which imply dependencies between lives due to a common im-

provement in mortality rates across individuals. In particular, while mortality risk may not be 

hedgeable in financial markets, insurers can reduce it by means of, e.g., natural hedging, rein-

surance, asset-liability management, or mortality swaps (see Cox and Lin (2007)).  

 

To gain comprehensive insight into the effectiveness of natural hedging for diversifying this 

risk, we follow the approach in Gatzert and Wesker (2011) and make different assumptions 

concerning the realization of the change in mortality rates using the absolute value of the fac-

tor τε , which impacts mortality at all ages in year τ and thus causes dependencies between 

lives.12 We thereby distinguish between a “longevity scenario” with unexpected low mortali-

ty, and a “mortality scenario” with unexpected high mortality, by defining 

 
ˆlongevityk k sτ τ τε= − ⋅  and ˆmortalityk k sτ τ τε= + ⋅ , 

 

where s is a scaling factor that influences the extent of the implied change in life expectancy 

and allows a more detailed insight into the impact of mortality and longevity scenarios. While 

this procedure affects mortality at all ages, it does not lead to an identical change of mortality 

at all ages due to the multiplication with the term xb . Therefore, the simulated change in the 

                                              
10  Additionally, certain other macroeconomic variables might have an influence on mortality (see, e.g., 

Hanewald (2010)). 
11  An example of a potential source of estimation error is the choice of the appropriate sample period, since kτ  

is rather sensitive towards the specified period. 
12  Due to the assumed ARIMA process for kτ , subsequent years are also impacted by the realization of τε , see 

Gatzert and Wesker (2011). 
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mortality rate for an x-year old male is consistent with the sensitivity of mortality at this age 

observed in the past. The deduced mortality rates based on ikτ  for a given scaling factor
 
will 

be referred to as ixq  and i
n xp , for i = longevity, mortality, respectively. The initial mortality 

rates forecasted using the BDV (2002a) model are denoted by i = initial . 

 

Second, recently observed changes in mortality rates are modeled by simulating the change 

from the old mortality tables by the Continuous Mortality Investigation (CMI) dating from the 

year 1992 to the updated mortality tables from the year 2000. To take into account the possi-

bility that mortality for life insurance policyholders and annuitants might experience a differ-

ent change in mortality, here referred to as adverse selection (see, e.g., Brouhns, Denuit, and 

Vermunt (2002a)), we use different mortality tables for these two populations of insured. 

Thus, we are able to analyze the usefulness of natural hedging under actually realized changes 

in mortality and in the presence of adverse selection. 

 

Model of a life insurance company 

A simplified balance sheet of the modeled insurance company at time t is shown in Table 1, 

where Ai(t) is the market value of the assets of the company at time t, Li(t) is the value of total 

liabilities for the term life insurances and annuities, and Ei(t) is the equity of the insurance 

company, which is residually determined as the difference between assets and liabilities. The 

development of these accounts depends on the mortality assumption and the scenario consid-

ered, i.e. whether the initial death rates are assumed or the longevity or mortality scenario, i = 

initial, longevity, mortality. 

 

Table 1: Balance sheet of the insurance company at time t depending on mortality assump-

tions (i = initial, longevity, mortality) 

Assets Liabilities 

Ai(t) Ei(t) 

 Li(t) 

 

A default occurs when assets are not sufficient to cover liabilities at time t, i.e., when Li(t) > 

Ai(t). In this situation, the insurance company does not hold sufficient assets to cover its future 

payment obligations and the company is consequently shut down. However, we will assume 

that the insurance benefits acquired by the policyholders are guaranteed by an external institu-

tion, which takes over payment of the benefits in case of default (see, e.g., Gatzert and Kling 

(2007)). Thus, the policyholders are not affected by the possibility of default and the value of 

their contracts does not depend upon the corresponding probability of default.  
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With term life insurance, a constant death benefit DB is paid out in case the insured dies dur-

ing the contract term. We assume that policyholders pay a constant annual premium P at the 

beginning of the year, while the death benefit DB is paid at the end of the year in which the 

insured dies. With an annuity, a constant annual benefit a is paid at the end of each year as 

long as the policyholder is alive in return for a single premium SP, which is paid in t = 0. The 

duration of both contract types is random, as it depends upon the individual time of death, 

which is limited by the maximum age implied by the stochastically forecasted mortality rates 

(ω = 100) and the contractually defined time to maturity. The initial investment made by the 

shareholders of the insurance company is denoted by E(0). In return for their investment, the 

shareholders receive a constant dividend13 div in each year the company is still active, i.e. has 

not yet defaulted. In case of default, the shareholders lose their investment, but, due to their 

limited liability, do not have to compensate the difference between Ai(t) and Li(t).  

 

Assets Ai(t) are invested in the capital market, and, since we are merely interested in the de-

velopment of the assets at an aggregate level, their composition is not considered here. Fol-

lowing most of the literature dealing with the valuation of insurance liabilities (e.g. Grosen 

and Jørgensen (2000, 2002)), we assume that the value of the asset portfolio evolves accord-

ing to a geometric Brownian motion, 
 

( ) ( ) ( ) ( )i i i PdA t A t dt A t dW tµ σ= ⋅ ⋅ + ⋅ ⋅ , for i = initial, longevity, mortality, 

 

where µ is the drift of the assets, σ the asset volatility, and WP a standard Brownian motion 

under the real-world measure P on the probability space ( , , )PΩ F , where F  is the filtration 

generated by the Brownian motion. The solution of this stochastic differential equation is giv-

en by (see Björk (2009)) 
 

( ) ( ) ( ) ( )( )2  1 exp / 2 1i i P PA t A t W t W tµ σ σ = − ⋅ − + − −  , i = initial, longevity, mortality. 

 

for a given A(0). The asset base is influenced by premium payments, death benefit and annui-

ty payments to the policyholders as well as dividend payments and mortality assumptions. 

Figure 1 exhibits the evolution of these payments and their influence on the asset base, where 

t- denotes that payments are made in the beginning of the year t, while t+ denotes those made 

                                              
13  One way to define the dividend amount is to calculate it in a way that the shareholders expect to receive the 

risk-free rate (under the risk-neutral measure Q) or the market rate of return (under the real world probability 

measure P) on their initial investment each year. In this framework, the shareholders assume a yearly proba-

bility of default of 1%, thus the dividend can be calculated using 0 0(1 0.01) 0.01 ( )r E div E⋅ = − ⋅ + ⋅ −  in 

the risk-neutral world. Under the real-world measure P, r is substituted by the market rate of return, rm.  
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at the end. The number of survivors in the annuities portfolio at the beginning of year t is de-

noted by ( )i
An t , and the number of survivors in the life insurance portfolio by ( )i

Ln t , both 

dependent on the actual mortality experience in the portfolio (i = initial, longevity, mortality). 

Hence, ( ) ( ) ( )1i i i
L L Ld t n t n t= ⋅ − −

 
is the number of deaths within the t-th year in the life insur-

ance portfolio, for which the insurance company has to pay out death benefits. Assuming that 

the total number of contracts initially sold is equal to n, the product mix is thus determined by 

the portion of life insurance contracts sold, denoted by d, such that, at time 0, the portfolio 

consists of ( )0Ln d n= ⋅  life insurance and ( ) ( )0 1An d n= − ⋅  annuity contracts, where n = 

nA(0) + nL(0). 

 

In t = 0, the asset base consists of the initial equity by the shareholders and the premiums paid 

by the policyholders. At the end of each year, annuities have to be paid to all holders of annui-

ties who are still alive at the end of each year and death benefits have to be paid to all heirs of 

life insurance policyholders who died within each year. Thus, assets depend crucially upon 

the composition of liabilities and thus on the product-mix decision (d).  

 

Figure 1: Evolution of asset base depending on mortality assumptions (i = initial, longevity, 

mortality) 

t = 0+ t = 1- t = 1+ t = 2- … t = 10+ t = 11- …  

+ E0 

+ nA(0) · SP 

+ nL(0) · P 

- ni
A(1) · a 

-di
L(0) · DB 

- div 

+ ni
L(1) · P - ni

A(2) · a 

-di
L(1) · DB 

- div 

… + ni
L(10) · P - ni

A(11) · a 

- di
L(10) · DB 

- div 

… 

 

Valuation 

To determine a fair combination of benefits and premiums, we use risk-neutral valuation. We 

thus calculate the expected cash flows under the risk-neutral measure Q and discount them 

with the risk-free rate r. Mortality and market risks are assumed to be independent14 (see, e.g., 

Carriere (1999, p. 340), Gründl, Post, and Schulze (2006)), and we assume that the insurance 

                                              
14  The assumption of independence between market and mortality risk is also supported by empirical studies. 

Hanewald (2010), for instance, analyzes the relationship between macroeconomic variables and the mortality 

index kτ in several countries. While there are significant correlations for the sample as a whole, for the period 

from 1980 to 2006, the assumption of significant correlations between the two time series cannot be support-

ed by the data. Furthermore, Ribeiro, and di Pietro (2009) study the correlations between longevity risk and 

the prices of equities and bonds. Even though longevity risk is exploited twofold, no significant correlations 

between stock and bond prices and longevity can be found in either case.  
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company does not demand a risk-premium for mortality risk.15 Therefore, the risk-neutral 

martingale measure Q is identical to the objective probability measure P with respect to mor-

tality.16 

 

Premiums and benefits of the insurance contracts are calculated using the equivalence princi-

ple. Hence, the insurance company calculates the premiums and benefits such that the ex-

pected benefit payments and the expected premium payments are equal at the inception of the 

contract. The value of each contract is set equal to a fixed amount M. Thus, using the risk-free 

rate r, the premium P and death benefit DB for the term life insurance can be calculated as 
 

( ) ( ) ( )1 1 !1

0 0

1 1
T T

t tinitial initial initial
t x t x x t

t t

P p r DB p q r M
− −

− − +
+

= =
⋅ ⋅ + = ⋅ ⋅ ⋅ + =∑ ∑                             (2) 

 

and the single premium SP and annuity a using Equation (3) as 

 

( ) ( )1 !1

0

1 .
T

tinitial
t x

t

a p r SP M
−

− +

=

⋅ ⋅ + = =∑
                                                                                       

(3)
 

 

Here, the initially forecasted mortality rates from the BDV (2002a) model are used in pricing 

and reserving, since the modeled scenarios for systematic mortality risk represent unexpected 

changes in mortality. Since the volume of the expected premium and benefit payment for an-

nuities and life insurance contracts is identical, and the total number of contracts n (sum of 

life insurance and annuities) sold by the insurance company is fixed, the volume of the insur-

ance portfolio does not vary for different portfolio compositions. This is intended to ensure 

comparability between portfolios in terms of the present value of cash in- and outflows and to 

thus isolate the effect of portfolio composition. 

 

The value of liabilities for one term life insurance can be calculated as 

 

( ) ( ) ( ) ( )
1

1

0

1 1
T t

s sinitial initial initial
L s x t s x t s x t

s

B t DB p q i P p i
− −

− + −
+ + + +

=

 = ⋅ ⋅ ⋅ + − ⋅ ⋅ +
 ∑                         (4) 

 

                                              
15  This can be incorporated by, e.g., adding a loading on the actuarially fair premium, such that the insurer de-

mands an additional premium for systematic mortality risk (see, e.g., Gatzert and Wesker (2011)). The gen-

eral results of natural hedging presented in the numerical analysis section remain robust in this case, while 

only the level changes. 
16  See, e.g., Bacinello (2003, p. 468), Dahl (2004, p. 124), Gatzert, Hoermann, and Schmeiser (2009, p. 890), 

Gründl, Post, and Schulze (2006). 
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and the value for one annuity contract is given by 

 

( ) ( ) ( )1
1

0

1
T t

sinitial
A s x t

s

B t a p i
− −

− +
+

=
= ⋅ ⋅ +∑  .                                                 (5) 

 

The value of liabilities for the whole portfolio is thus attained by multiplying Equations (4) 

and (5) with the respective number of contracts that are still active at time t, i.e.,  

 

( ) ( ) ( ) ( ) ( ) , , ,i i i
A A L LL t n t B t n t B t i initial longevity mortality= ⋅ + ⋅ = , 

 

which depends on the mortality scenario. 
 

Risk measurement 

To date, to the best of our knowledge, the literature on natural hedging has focused mainly 

upon the reaction of the liability side in response to shifts in mortality and how these can be 

balanced out through portfolio composition. Although we conduct this study as part of our 

analysis, for the main part, we are interested in the riskiness and solvency situation of the in-

surance company as a whole. Therefore, we first use the static measure of the expected benefit 

payouts in t = 0, i.e. the contractual payment obligations CP of the insurance company for 

different survival and mortality rates to analyze the impact of a change in mortality rates on 

the liability side. The contractual payment obligations (CP) for given death and survival prob-

abilities are a linear function in the fraction of life insurance contracts d of the form 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1
1 1

0 0

1 1 1

1 ,

T T
t ti i i i

t x x t t x
t t

i i i i i
L A A L A

CP d n DB p q r d n a p r

d n V d n V n V d n V V

− −
− + − +

+
= =

= ⋅ ⋅ ⋅ ⋅ ⋅ + + − ⋅ ⋅ ⋅ ⋅ +

= ⋅ ⋅ + − ⋅ ⋅ = ⋅ + ⋅ ⋅ −

∑ ∑
 

 

i = initial , longevity, mortality. i
AV  are the deterministic contractual payment obligations for 

one annuity subject depending on the scenario i = initial , longevity, mortality, and i
LV  is de-

fined analogously for one term life insurance. Since the evolution of assets is considerably 

influenced by the product mix d, in addition to the static liability side measure, we further 

focus on different risk measures, which explicitly take into account the interaction between 

assets and liabilities and the possibility of default, capturing different default characteristics, 

including the probability of default and the mean loss. Under the real-world measure P, the 

probability of default (ruin probability) is given by  

 

( )i i
dPD P T T= ≤  ,                                                              (6) 
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where i
dT  is defined as ( ) ( ){ }inf :i i i

dT t A t L t= <
 
(see, e.g., Gerstner et al. (2008)), i = initial , 

longevity, mortality. In the numerical analysis, the probability of default is further divided by 

the number of years, such that it can be interpreted as the mean annual probability of default 

for the next T years. The second risk measure is the mean loss, which is calculated as the dis-

counted expected loss in case of default, thus (in contrast to the probability of default) taking 

into account the extent of the default, 

 

( ) ( )( ) ( ) { }1 1
i
dTi i i i i i

d d dML E L T A T r T T
− = − ⋅ + ⋅ ≤  

, i = initial , longevity, mortality.          (7) 

 

Natural hedging 

To hedge against systematic mortality risk, the optimal portfolio composition has to be deter-

mined (for otherwise fixed contract and asset characteristics) using the natural hedge between 

term life insurances and annuities. This way, the insurer can immunize its portfolio against 

unexpected changes in mortality rates. The optimal hedge ratio d* is thus defined as the per-

centage of life insurance contracts at which the respective risk measure R (= PD, ML) does 

not change. It is hence given by the root of the function f 

 

( ) ( ) ( )( ) ( )( ) ( )( )
!

; ; ; ; 0j initial j initial j
x x x xf d R d R d R dµ τ µ τ µ τ µ τ= ∆ = − = ,               (8) 

 

where j = mortality ,longevity. 

 

3. NUMERICAL ANALYSES 

 

The numerical analysis is conducted in two steps. In the first step, the fair benefit and premi-

ums are calculated analytically using Equations (2) and (3) and the estimated population mor-

tality. In the second step, the obtained parameters are used in a simulation analysis under dif-

ferent assumptions concerning realized mortality to analyze the effect of natural hedging on 

an insurer’s risk situation in the sense of scenario analyses. 

 

Mortality estimation and projections 

The estimation of mortality is based on the number of deaths and exposure to risk for the 

United Kingdom from 1950 to 2009 available through the Human Mortality Database. The 

estimated demographic parameters of the BDV (2002a) model are displayed in the Appendix 

in Figure A.1. The mean central death rate for age x, exp(ax), increases steadily in age; bx on 

the other hand indicates the sensitivity of the central death rate at age x towards changes in the 

time trend kτ  and is, for adult ages, highest around the ages 50-70, indicating that improve-
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ments in life expectancy in recent years are mainly due to decreases of mortality rates at 

“higher” ages as already stated by Blake and Burrows (2001, p. 346). The estimated mortality 

trend kτ  as well as the forecasted values obtained by applying Box-Jenkins time series analy-

sis techniques on the estimated process of kτ  are shown in Figure A.2 in the Appendix. Time 

series analysis indicated an ARIMA (0,1,0) model17 with drift equal to φ = -1.5403 (standard 

error 0.3056) and the standard error of τε  is estimated as 2.3474.  

 

Input parameters 

Until otherwise stated, we will assume a risk-free rate of r = 3%, rm = 5%,18 an asset volatility 

σ = 10% and an asset drift of µ = 6%. The male term life insurance policyholders acquire the 

policy at age x = 30 for a period of 35 years in the year τ = 2012. The male annuity policy-

holders purchases the lifelong annuity at age x = 65 at the same time τ.19 The actuarial interest 

rate is also set to i = 3%, and the present value of each contract is equal to M = 1,000. The 

parameters are chosen to illustrate central effects and are subject to robustness checks and 

sensitivity analyses. Using Equations (2) and (3) with M = 1,000 and the input parameters 

described above, the resulting fair premium P for the term life insurance is 46 and the death 

benefit DB is 25,032. The fair annuity amount a is 75 and the single premium SP is 1,000. 

These numbers refer to a contract with expected premium payments and expected benefit 

payout of 1,000 and are based on the initially assumed mortality rates forecasted through the 

BDV (2002a) model. We will assume that the portfolio of the insurance company consists of 

a total of n = 100,000 contracts written in t = 0. We then consider different portfolios that vary 

only in portfolio composition, i.e. in the fraction of life insurance contracts [ ]0,1d ∈ . Thus, 

the number of life insurance contracts sold in t = 0 is ( )0Ld n n⋅ =  and the number of annui-

ties is ( ) ( )1 0Ad n n− ⋅ = . Thus, each portfolio has the same total expected benefit payout of 

1,000 100 .n Mio⋅ = , independent of portfolio composition.  

 

Monte-Carlo methods are employed to assess the risk and solvency situation of the insurance 

company. To improve comparability of results, we use the same sequence of random numbers 

to simulate the number of deaths at each time t for each simulation run and the same 100,000 

simulation runs for the evolution of the asset base for each portfolio.20 The number of deaths 

                                              
17  The Schwarz as well as the Akaike information criterion indicated a more complex model for the ARIMA 

time series. However, subsequent residual analysis using Box-Ljung test as well as ACF and PACF analysis 

showed no significant residual autocorrelation. 
18 The market rate of return rM is relevant only for the size of the dividend in the present setting. 
19 Regarding the input parameters, sensitivity analyses were conducted to ensure that the results are stable. 
20 The results are robust for different sets of random numbers. 
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are simulated using the inverse transform method for the Poisson distribution (see Glasserman 

(2008, pp. 54–58)).  

 

Risk of an insurance company without systematic mortality risk 

As a benchmark, we calculate the risk measures under the initial mortality rates used in bene-

fit and premium calculation (forecasted using the BDV (2002a) model, s = 0), which are as-

sumed to be equal to realized mortality in the insurance portfolio. Even though the expected 

benefit payouts are equal to 100 Mio. for all portfolios and independent of the portfolio com-

position, Figure 2 shows very different results in regard to the risk situation for different port-

folios, resulting from the timing of cash flows. 

 

Figure 2: Contractual payout obligations (CP), probability of default (PD), and mean loss 

(ML) plotted against the fraction of life insurance contracts d (s = 0) 
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For the chosen discrete values, the mean loss is minimal approximately for d = 0.7 and the 

probability of default for d = 0.9, while a portfolio consisting only of annuities (d = 0) leads to 

the highest risk for both risk measures in the considered setting, where term life insurances 

are sold against annual premiums. The risk reduction effect that can be attained via portfolio 

composition ranges between 5% and 20%, depending on the risk measure, and is thus not 

negligible.21 These results imply that the riskiness of an insurance company is not only affect-

ed by the absolute value of payment obligations, which are identical for every portfolio as can 

be seen in Figure 2, but also by the characteristics of these payments, such as the timing, 

                                              
21  The overall level of risk can generally be reduced by means of reinsurance or other risk transfer instruments. 

Furthermore, these instruments might also lead to a shift in the risk minimizing portfolio and impact the op-

timal hedge ratio discussed in the subsequent section.  
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which in turn has a substantial impact on the development of the asset base (see Figure 1). 

The risk reduction effect arises as the payouts for annuities decrease over time, while the pay-

outs for life insurance rise almost exponentially. Since these effects counterbalance each oth-

er, the payouts for the mixed portfolios are smoother, which contributes to the risk reduction 

effect observed earlier. The present results are used as a benchmark for the following analysis, 

where we concentrate on the relative change of the two risk measures and the contractual 

payment obligations in response to a change in mortality with respect to the risk measures 

shown above. 

 

The effect of natural hedging on the liability side 

In the following, numerical results for the riskiness of the insurance company in response to 

systematic mortality risk scenarios are shown. The longevity scenario with a scaling factor of 

s = 1 corresponds to a mean increase in the remaining life expectancy of a 65 year old man of 

about 1.9 years in the year 2012 from 18.5 years to 20.4 years,22 while the corresponding mor-

tality scenario implies a mean decrease in the remaining life expectancy of about 1.8 years to 

16.7 years. The different risk measures for these scenarios are displayed in Figure 3, including 

the expected discounted benefit payouts (CP, Part a)), the probability of default (PD, Part b)), 

and the mean loss (ML, Part c)).  

 

The comparison clearly reveals the difference between CP and the two risk measures, in that 

the consideration of the liability side shows a linear relation for varying d, while the risk 

measures exhibit a non-linear relation. However, all three graphs show at least some similar 

tendencies. In particular, the results reflect a greater sensitivity of term life insurance contracts 

to mortality risk, since the relative change for both risk measures and the CP is more severe if 

the insurance company sells only life insurance (d = 1) as compared to a portfolio of only 

annuities (d = 0). Taking the expected discounted benefit payouts (CP, see Part a) in Figure 3) 

as an example, for a portfolio of term life insurance, the longevity scenario leads to a decrease 

in the expected benefit payouts of about -34.3% , while the mortality scenario leads to an in-

crease of about 63.0%. Thus, in the mortality scenario, the insurance company will have to 

increase its reserve by about 60% in t = 0 to be able to satisfy the increasing payouts for death 

benefits. For annuities, the reaction of the contractual payment obligations to changing mor-

tality rates is considerably smaller. The different considered scenarios imply a change in ex-

pected benefit payouts of -7.2% and 7.3%. Similar results can be observed for the two risk 

measures in Parts b) to c). These results indicate that the value of the CP and the insurer’s 

                                              
22  The life expectancy ex(t) is given by ( ) ( )

0 0

k

x x jk j
e t p t j+≥ =

= +∑ ∏  (see Brouhns, Denuit, and Vermunt 

(2002b)). 
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default risk are more sensitive to changes in mortality for a portfolio of life insurance con-

tracts than that for annuities, since the former corresponds to a low probability risk, which is 

more prone to changing mortality rates. In contrast, annuities correspond to a high probability 

risk, since survival rates are higher than corresponding mortality rates.23 Therefore, to hedge 

against the modeled scenarios for systematic mortality risk, the fraction of annuities generally 

should be greater than the fraction of life insurance to counterbalance their greater sensitivity. 

The optimal hedge ratios at which the risk situation of the life insurance company does not 

change in response to a change in mortality (intersections between risk measure curves in 

Figure 3 of initial death rates and the risk measure curves for the longevity and the mortality 

scenario, respectively), confirm this presumption and imply that, in the present setting under 

the stated assumptions and the annual term life level premiums, the insurance company 

should write approximately four to five annuities for every life insurance contract sold. 

 

However, since the interaction between assets and liabilities and the dynamic evolution of 

payments are not taken into account in the calculation of the contractual payment obligations 

(CP), they allow only partial insight into the effect of natural hedging with regard to an insur-

er’s risk situation. In particular, when comparing the impact of mortality risk on the default 

risk of an insurance company (using PD or ML) with the impact on the contractual payout 

obligations (CP), one notices that the impact of mortality risk on the company as a whole far 

exceeds the impact on the value of the contractual payout obligations. For example, for the 

longevity scenario, the probability of default increases from 0.73% to 0.85%, which corre-

sponds to a change of 17.5% (compared to the situation with initial death rates forecasted us-

ing the BDV (2002a) model) for the portfolio of annuities (i.e. d = 0) as compared to a change 

of 7.3% (100 Mio. vs. 107 Mio.) for the contractual payment obligations (CP). For the mean 

loss, the relative change is even greater. This indicates that the consideration of the contractu-

al payment obligations (CP) on the liability side alone may severely underestimate the true 

impact of mortality risk on an insurance company’s risk situation. 

 

                                              
23  These results are approximately in line with those found in the previous literature. See, for example, Antolin 

(2007), Cox and Lin (2007), Gründl, Post, and Schulze (2006). 
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Furthermore, the impact of systematic mortality risk upon the probability of default (PD) for a 

portfolio of life insurance is greater for an upward move in mortality rates than for a down-

ward move (+195.0% for the mortality scenario as compared to -67.0% for the longevity sce-

nario), while, for the portfolio of annuities, the effect is reversed (-17.0% for the mortality 

scenario as compared +17.5% for the longevity scenario). This effect is even stronger for the 

mean loss (+373.8 for the mortality scenario as compared to -68.1% for the longevity scenario 

and a portfolio of only life insurance, -21.4% for the mortality scenario as compared to 

+23.9% for the longevity scenario and a portfolio consisting only of annuities) and can again 

be ascribed to the different types of risk that are insured. The results imply that a high proba-

bility risk is more severely impacted by a decrease in the respective probabilities than by an 

increase, while the effect is reversed for low probability risks. This indicates that the risk of a 

change in mortality outweighs the chances that are connected with a move in mortality, since 

the increase in the riskiness in response to a bad shock outweighs the decrease in response to 

a good shock. 

 

Determining an optimal portfolio-mix with natural hedging 

Overall, the findings in Figure 3 show that systematic mortality risk with the implied change 

in mortality rates can lead to severely increased risk. The extent of this increase is subject to 

portfolio composition and can be reduced considerably by combining term life insurance and 

annuities. Thus, one faces a trade-off between a risk-minimizing portfolio composition for 

given mortality rates, which are sensitive to shifts and may thus imply a much higher default 

risk level in case of changes in mortality than the ones originally anticipated, and a portfolio, 

which is immunized against the modeled systematic mortality risk scenarios but leads to a 

higher absolute level of risk. In light of the significant uncertainty in projecting mortality 

rates, which makes managing mortality risk crucial for a life insurance company, as well as 

the scarceness of alternative instruments to hedge against mortality risk, we will first concen-

trate on the immunization effect of natural hedging and secondly show how to proceed to 

immunize a portfolio at a certain desired safety level for a given scenario of systematic mor-

tality risk. 

 

We thus next display the optimal ratio of life insurance contracts to hedge against the mod-

eled scenarios for systematic mortality risk in Figure 4 (for a given asset portfolio) as implied 

by Equation (8)). The optimal hedge ratio d* corresponds to the respective intersection of the 

risk measure curves for the modeled scenarios for systematic mortality risk with the risk 

measure curve for the initial death rates forecasted using the BDV (2002a) model in Figure 3. 

In addition, to gain further insight into the modeled scenarios and into the effect of the extent 

of the change in life expectancy, different scaling factors s are assumed for the longevity and 
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the mortality scenario with s = 0.5 and s = 1, respectively. The scaling factor s influences the 

extent of the implied change in life expectancy. In case of the longevity scenario, for instance, 

a scaling factor of s = 1 leads to a mean increase in life expectancy of a 65 year old of 1.9 

years, while a factor of s = 0.5 implies an increase of only 0.9 years. 

 

Figure 4 shows that in general the optimal hedge ratio is higher for the longevity scenario as 

compared to the mortality scenario. In line with the previous results this implies that, in order 

to hedge the impact of the mortality scenario, i.e. a decrease in life expectancy, less life insur-

ance has to be written than in case of a longevity scenario. The values for d* for the two risk 

measures PD and ML lie within the range of 11% – 28% and are thus generally higher than 

the ones for the CP ranging between 10% and 17%. In general, when considering the insurer’s 

risk situation, one seems to need a higher percentage of life insurance to hedge against a 

downward move in mortality, i.e. a longevity scenario, which is in line with the observation 

that annuities are more sensitive with respect to these changes in mortality rates. Therefore, 

more life insurance contracts are needed to balance out this effect. 

 

Figure 4: Optimal d* for hedging against changes in the discounted expected benefit payouts 

(CP), the probability of default (PD) and the mean loss (ML) in response to the modeled sce-

narios for systematic mortality risk for different scaling factors s, with ˆlongevityk k sτ τ τε= − ⋅  

and ˆmortalityk k sτ τ τε= + ⋅
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Overall, the difference in the optimal hedge ratios for the considered scenarios is almost 

twelve percentage points for the ML and seven percentage points for the PD, which is not 
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negligible considering the volume and number of life insurance contracts and annuities. Thus, 

the choice of an adequate risk measure that considers both assets and liabilities is vital, and, to 

hedge against systematic mortality risk, the exact realization of the change in mortality is im-

portant. Nevertheless, the impact of an unknown change in mortality on the payout obliga-

tions and the risk situation of a life insurance company can still be greatly reduced in the pre-

sent analysis through natural hedging by writing approximately 20% life insurance contracts 

when hedging the ML and 15% life insurance contracts for hedging the PD.  

 

The impact of the investment strategy on optimal portfolio-mix 

In a second step, we propose a procedure to reach a desired safety level, while simultaneously 

choosing an optimal portfolio-mix by varying the asset base. Hence, in Part a) of Figures 5 

and 6, we investigate the impact of the investment strategy on the optimal hedge ratio and 

then calculate the corresponding level of risk using PD and ML for the optimal hedge ratio 

derived in the first step (Part b) of Figure 5 and 6) for a longevity scenario and a mortality 

scenario. For completeness, the optimal hedge ratio d* to hedge against changes in the value 

of the contractual payment obligations CP is displayed as well, which is independent of the 

investment strategy and thus constant. Seven different investment strategies from low risk/low 

return (µ = 4%, σ = 2%, implying a Sharpe ratio of β = 0.50) to high risk/high return (µ = 

10%, σ = 26%, implying a Sharpe ratio β = 0.27) are considered to conduct a sensitivity anal-

ysis.24 

 

The results show how the investment strategy of the insurance company substantially influ-

ences the optimal hedge ratio d* (see Part a) of Figure 5 and 6). In turn and as demonstrated 

in Figure 1, the portfolio composition has an impact on the development of the assets due to 

an altered timing and amount of cash-in- and outflows. These complex interactions make an 

interpretation of results difficult. An increase in the expected return and standard deviation of 

the investment portfolio leads to an increase in the optimal hedge ratio, i.e. more life insur-

ances are needed to hedge against the modeled systematic mortality risk. This effect is less 

pronounced when hedging the probability of default than for the mean loss. However, even 

for the probability of default in case of the longevity scenario in Figure 6, a change from the 

                                              
24  The investment strategies assumed here are passive with a constant expected return and standard deviation 

over the contract term. The Sharpe ratio β = (µ – r) / σ provides an indication for the riskiness of the invest-

ment strategy, as it relates excess return to risk and since funds with the same Sharpe ratio imply the same 

evolution of the underlying assets (see Gerrard, Haberman, and Vigna, 2004). Results may differ when taking 

into account dynamic solvency driven investment strategies. However, the results displayed here indicate 

that, with a dynamic investment strategy, each regrouping of asset investments should be accompanied by an 

analysis of portfolio composition to ensure that systematic mortality risk is still hedged successfully. 
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formerly assumed investment strategy with µ = 6% and σ = 10% to the more conservative 

strategy with µ = 4% and σ = 2% leads to a decrease in the optimal hedge ratio of approxi-

mately 1 percentage point, while d* decreases by about 12 percentage points when hedging 

the mean loss. For the mortality scenario in Figure 5, the effect is smaller for both, the proba-

bility of default and the mean loss, for which the optimal hedge ratio decreases by about 7.7 

percentage points. For a riskier investment strategy of µ = 10% and σ = 26% the described 

effect is even more pronounced. The optimal hedge ratio increases by more than 5 percentage 

points in the longevity scenario (Figure 6) for the probability of default and by more than 20 

percentage points for the mean loss compared to the formerly assumed investment strategy 

with µ = 6% and σ = 10%. The results imply that annuities are more severely impacted by the 

combination of riskier investment and mortality risk than term life insurances and that the risk 

measure plays an important role. Hence, the fraction of term life insurances to hedge a portfo-

lio against a given change in mortality rates should increase for riskier investment strategies. 

Since the value of liabilities is not affected by the investment strategy, this effect is not cap-

tured when considering the CP. Thus, especially for insurance companies with a riskier in-

vestment strategy, the consideration of the liability side alone can lead to a misestimation of 

the optimal hedge ratio. For example, for the longevity scenario and an investment strategy 

with µ = 10% and σ = 26% (Figure 6), the difference in the optimal hedge ratio between the 

CP and the considered risk measures is about 6 percentage points for the PD and more than 30 

percentage points for the ML. 

 

In Part a) of Figures 5 and 6, d* is defined as that fraction of life insurance at which a given 

risk level is not sensitive to the modeled changes in mortality rates for different investment 

strategies. As an example of an adjustment of parameters to achieve a certain desired risk lev-

el, which can then be immunized against shifts in mortality, we next calculate the correspond-

ing default risk of the insurance company for the optimal hedge ratio d* for investment strate-

gies and risk measures given in Part a) of Figure 5 and 6 and display the resulting (corre-

sponding) risk levels in Part b) of Figures 5 and 6. For both, the PD and the ML, for the low 

risk/low return combinations, the effect of the small expected return outweighs and increases 

the risk of the insurance company, while, for the high risk/high return combinations, the effect 

of the increased volatility implies an increase in risk.  
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Thus, based upon Part b) of Figures 5 and 6, one can decide on the desired risk level25 for a 

chosen risk measure and then turn to Part a) of Figures 5 and 6 to read out the corresponding 

d*, thus immunizing this risk level against changes in mortality. These results underline that 

the asset side and thus the intended investment strategy should be taken into account when 

determining the optimal hedge ratio and when analyzing the effect of natural hedging on an 

insurer’s risk situation. It can even be used to choose a desired safety level while simultane-

ously ensuring an optimal portfolio-mix. Our findings indicate that a rather conservative in-

vestment strategy leads to a lower percentage of term life insurances, while an aggressive 

strategy implies that fewer annuities should be sold. As an alternative to managing the asset 

base, life insurers can also arrange contract characteristics, reinsurance, or leverage26 to 

achieve a certain safety level, while simultaneously hedging against changes in mortality rates 

by portfolio composition.  

 

In general, one can deduce that, in our model set-up, systematic mortality risk can be hedged 

completely, but that the optimal hedge ratio depends on the direction and the extent of the 

change in life expectancy and on the insurer’s investment strategy. The level of risk, however, 

is driven mainly by the investment strategy and is not very sensitive to changes in the system-

atic mortality risk scenario when the portfolio composition is calibrated to immunize the giv-

en risk level (see Part b) of Figure 5 and 6). Thus, while the considered scenario for systemat-

ic mortality risk has an impact upon the optimal portfolio composition, it does not substantial-

ly influence the level of risk of the immunized portfolio, if the latter is calibrated accordingly. 

To check the robustness of this approach with respect to the assumption of systematic mortali-

ty risk scenarios, in the following, we examine the effect in response to actually experienced 

changes in mortality rates. 

 

Natural hedging under realized changes of mortality 

An often cited argument against the effectiveness of natural hedging is that improvements in 

life expectancy do not stem from a uniform decrease in mortality rates over all ages, e.g. in 

the last decade improvements in life expectancy have essentially been observed at older ages 

(see e.g. Blake and Burrows (2001, p. 346)). Since in general life insurance contracts mature 

when the insured enters retirement, the improvement in mortality rates beyond the usual re-

tirement age will not influence the value of life insurance liabilities. Therefore, a life insur-

ance company would not be able to hedge its exposure to systematic mortality risk through 

                                              
25  The investment strategy is merely one example of how to adjust the risk level. The risk level can also be 

influenced as already mentioned by contract parameter, premium loadings, or equity capital. 
26  See e.g. Gründl, Post, and Schulze (2006). 
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natural hedging. To assess the validity of this argument in more detail in the present setting, 

we apply our model to recently observed changes in mortality and analyze the effectiveness of 

active product mix under these mortality assumptions. 

 

To reflect an insurance company’s actual experience of changing mortality, an approach tak-

ing into account empirically observed changes in mortality and mortality adverse selection—

which does not only refer to the fact that the level of mortality between term life insurance 

policyholders and annuitants might differ but also refers to the risk that the development of 

mortality rates might not be identical—is appropriate. We thus apply our model to the chang-

es observed in the UK and the Republic of Ireland between 1992 and 2000 by using the mor-

tality tables of the Continuous Mortality Investigation27 (CMI), thereby distinguishing be-

tween tables for annuitants and life insurance policyholders and thus accounting for adverse 

selection. Here, the exchange of the old for the new life tables accounts for an increase in life 

expectancy in the last decade, i.e., a longevity scenario. Hence, realized mortality will be low-

er than assumed mortality, thus increasing annuity payouts and decreasing term life insurance 

payouts.  

 

The fair premium and fair benefits are calculated using the death rates from the 1992 table. 

The resulting annuity is 81, while the annual premium for the term life insurance contracts is 

46 and the death benefit 19,739. These input parameters are used for the same simulation 

analysis conducted before. The numerical results for the two risk measures and the CP as well 

as the optimal hedge ratio d* for the experienced changes in mortality between 1992 and 2000 

as implied by the CMI tables are shown in Figure 7. The blue line with stars shows the risk of 

an insurance company when mortality is equal to initially assumed mortality, while the red 

dash-dotted line reflects the new risk situation when realized mortality is equal to the rates 

implied by the 2000 mortality table and thus lower than expected. In line with the analysis in 

the previous section, the random numbers of deaths at age x, Dx, is simulated from a Poisson-

distribution with ( )~x x xD Poisson E µ⋅ , where the exposure to risk Ex is determined by the 

size of the insurance portfolio and xµ  is calculated by ( )ln 1x xqµ = − −  with xq  given by the 

CMI tables. 

 

 

                                              
27  The CMI is an institution which carries out mortality research for the population of the UK and the Republic 

of Ireland on the basis of data provided by life offices. It regularly publishes mortality tables for the popula-

tion of, e.g., life insurance policyholders and pensioners, taking basis risk into account. CMI’s life tables 

have also been adopted by the Actuarial Profession in the UK.  
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Figure 7: Contractual payout obligations, probability of default and mean loss subject to port-

folio composition and optimal hedge ratio d* for a change of mortality corresponding to the 

exchange of mortality table CMI from 1992 to 2000 
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Comparing these results with the ones presented earlier, the higher sensitivity of a portfolio of 

life insurance (d = 1) to changes in life expectancy compared to a portfolio of annuities (d = 

0) is considerably reduced or even eliminated, depending on the risk measure. The relative 

change in the probability of default is 24.1% for a portfolio of annuities and -33.6% for a 

portfolio of term life insurances, while the change in a portfolio of life insurance (d = 1) was 

multiple times that of a change in a portfolio of only annuities (d = 0) before. For the mean 

loss, the effect is even reversed such that a portfolio of annuities is more sensitive to changes 

in mortality (+46.0% for a portfolio with only annuities as compared to -33.3% for a portfolio 

with only life insurance). This can be ascribed to the realized improvement in mortality rates 

implied by the change in mortality tables, because improvements in mortality rates occurred 

mainly at older ages in the last decade. Therefore, the mortality rates relevant to life insurance 

changed less than those applicable to annuities. Despite these different changes in the respec-

tive relevant range of mortality rates, the impact of the change on the expected benefit pay-

outs and on the risk of the life insurance company can still be hedged. The optimal hedge ratio 

d* increases substantially and now lies between 33% and 53% depending on the risk measure 

chosen (compared to 10% – 28% in the previous setting). The optimal hedge ratio calculated 

in this setting is considerably larger than the ones observed for the previously modeled sce-

narios. However, since one cannot generalize this result based on one example, further anal-
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yses seem necessary to examine in depth the impact of the exact changes of mortality and 

adverse selection on the optimal hedge ratio (see Gatzert and Wesker, 2011). 

 

In particular, differences compared to the previous results may stem from adverse selection 

effects and the different implementation of systematic mortality risk. The modeled scenarios 

for systematic mortality risk in the previous settings imply a gradual decrease (increase) of 

mortality below (above) the expected level, since the error term τε  impacts mortality cumula-

tively over time. Thus, this implies a larger deviation between expected mortality and realized 

mortality towards the end of the contract term, which impacts life insurance more severely 

than annuities due to the different timing of payouts, and thus leads to a lower fraction of life 

insurances needed for natural hedging. In the empirical analysis, using the data from CMI, in 

contrast, we assume an immediate decrease in mortality to the level implied by the 2000 CMI 

table, which is not entirely realistic since these changes occurred gradually during the covered 

time span. However, due to lack of data for the years in between, this effect cannot be taken 

into account. Thus, this assumption contributes to the higher hedge ratios found in this analy-

sis since the effect of the greater deviation of mortality towards the end of the contract term is 

not reflected. The differences in results might further be reducible when implementing a dif-

ferent mortality model that specifically fits U.K. mortality data, as, e.g., the Cairns, Blake, 

and Dowd (2006b) two-factor model. Yet, our analysis of the effectiveness of natural hedging 

under empirical changes in mortality rates still and already demonstrates that changes in mor-

tality can be diversified by an active product mix management, even if an improvement does 

not occur evenly across ages and the life insurance and annuities tables are impacted differ-

ently. The optimal hedge ratio, however, does vary depending on the exact realized changes, 

indicating that the quality of an estimate about the expected improvement in mortality rates 

will be vital for a perfect hedge of mortality risk. If this estimate is not available or is unrelia-

ble, the effect of mortality risk can still be reduced substantially by means of natural hedging 

by signing approximately 20% life insurance contracts and, by conducting scenario analyses 

as presented in the present analysis, the extent of deviations in risk measures can be estimated 

to obtain a more holistic picture of the life insurer’s risk situation. 

 

Further analyses and robustness checks 

To check the robustness of our results with respect to the restrictive assumption of business 

being written only once, we repeat our analysis for the situation in which the insurance com-

pany writes business repeatedly every five years. We thereby first investigate the impact of 

the modeled scenarios if premiums and benefits are not adapted to new mortality rates, and, 

second, the reaction in the risk measures when benefits and premiums are adapted to new 
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mortality rates for new business immediately, i.e., for business written from t = 5 on. The re-

sults of these analyses are shown in Figure A.3 in the Appendix.  

 

Our main finding is that the natural hedging effects between term life insurance and annuities 

do not substantially differ compared to the setting where business is written only once. In par-

ticular, the reaction in all risk measures is more severe when new business is written and pre-

miums and benefits are not adapted (for example, for the mortality scenario, the probability of 

default increases more than twofold for a portfolio of only life insurance). Considering the 

intersection points of all graphs, these are shifted towards more annuities and are roughly at 

d = 40% for the probability of default and d = 50% for the mean loss (see Figure A.3 a)). The 

same is true for the case in which the contract parameters are adapted to realized mortality. 

While the impact of mortality risk can be reduced considerably by immediately adjusting 

premiums and benefits to realized mortality, the impact of mortality risk is still not negligible. 

For instance for a portfolio with only life insurance, the mean loss still changes by -67.9% and 

+281.3% in response to the modeled scenarios, which for the longevity scenario is approxi-

mately the same as in the single portfolio case (-67.0%), while for the mortality scenario, the 

impact is still greater than in the single portfolio case (+195.0%). The intersection and thus 

the hedge ratio at which mortality risk can be hedged decreases as compared to the case when 

premiums and benefits are not adapted and thus moves closer to the optimal hedge ratio ob-

served for the single portfolio case (see Figure A.3 b)).  

 

Thus, our investigation confirms that the effectiveness of natural hedging as discussed in the 

previous subsections is in general not restricted to the single portfolio case and that in the pre-

sent model setup, the consideration of a single portfolio seems sufficient to obtain central in-

sight on the effectiveness of natural hedging.  

 

4. SUMMARY  

 

In this paper, we investigate the effectiveness of natural hedging for immunizing a portfolio 

of actuarially modeled term life insurance and annuities against changes in mortality rates in a 

multi-period setting over 35 years. We extend previous analyses by including assets and lia-

bilities in a dynamic framework and explicitly focus on assessing the risk situation of a life 

insurer with respect to mortality risk, thereby using the probability of default and mean loss. 

Systematic mortality risk is first assessed by taking into account the uncertainty in the time 

trend, where scenario analyses were conducted using a longevity scenario, i.e. an increase in 

life expectancy, and a mortality scenario, resulting in a lower than expected life expectancy, 
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and, second, by comparing actually experienced changes in mortality rates. To isolate the ef-

fect of natural hedging on risk, we fix the total contract volume with regard to the present 

value of premiums and benefits for different portfolio compositions of term life insurance and 

annuities. In this setting, we determine the optimal product mix that eliminates the risk of 

changes in the respective risk measure for changes in mortality rates. In addition, we simulta-

neously consider the absolute level of risk associated with an optimal, immunizing portfolio 

by means of the insurer’s asset portfolio. 

 

Our results demonstrate that the impact of mortality risk on the company as a whole is con-

siderably higher than its impact on contractual payout obligations on the liability side, which 

has been focused in previous studies. In the considered example, the modeled longevity sce-

nario implies a change of 17.5% in the probability of default for a portfolio of annuities as 

compared to a change of 7.3% for the contractual payment obligations. This indicates that the 

one-sided consideration of the latter may seriously misjudge the true impact of mortality risk 

on the risk situation of a life insurance company.  

 

Furthermore, the overall risk of an insurance company (absolute level and with regard to 

changes in mortality rates) can be considerably reduced through portfolio composition due to 

the adverse time structure of payouts for term life insurance and annuities, but the risk-

minimizing portfolio and the portfolio hedging against shifts in mortality are not identical, 

implying that the insurer consequently faces a trade-off between risk minimization and mor-

tality hedging. In this work, we focus on the effectiveness of natural hedging for immunizing 

a portfolio against mortality risk due to the scarceness of alternative instruments to manage 

and the potential severe impact of this risk. We thereby extend previous studies by showing 

how to choose a desired company safety level by adjusting the investment strategy while sim-

ultaneously having an immunizing portfolio. 

 

One main finding is that the insurer’s initial investment strategy can have a substantial impact 

on the effectiveness of natural hedging and should thus be taken into account when determin-

ing the optimal natural hedge ratio. In particular, a conservative asset management generally 

requires a lower portion of term life insurances while a more aggressive investment strategy 

implies that more term life insurances should be sold. Even though the absolute level of risk 

associated with an immunizing portfolio composition can vary substantially for different in-

vestment strategies and different risk measures, it is relatively stable when comparing differ-

ent scenarios for systematic mortality risk for which the portfolio is immunized. Thus, while 
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the considered scenario has an impact upon the optimal portfolio composition, it does not 

substantially influence the level of risk of the immunized portfolio. 

 

To check the robustness of the results based upon two scenarios for systematic mortality risk, 

we further studied the effect of natural hedging when using actually experienced changes in 

mortality rates. The general observations do not much differ from the previous ones, implying 

that, in our setting, adverse selection is in general not an impediment to the effectiveness of 

natural hedging. However, the optimal hedge ratio still varies considerably depending upon 

the exact realized changes in age groups, indicating that the quality of an estimate about the 

expected improvement in mortality rates will be vital for the hedging success with regard to 

mortality risk. In this context, future research could further study the impact of adding rein-

surance and other risk transfer instruments in the context of natural hedging, since this may 

reduce the overall risk level and shift the optimal hedge ratio. This might be particularly help-

ful if a change in the composition of an insurance portfolio is not easily achievable in sales. In 

any case, the consideration of natural hedging in immunizing a portfolio against changes in 

mortality appears vital for insurers, and risk management programs should take these consid-

erations into account to avoid adverse effects from systematic mortality risk.  

 

Overall, our analysis emphasizes the importance of natural hedging for managing systematic 

mortality risk, as changes in mortality rates can be diversified by an active product mix man-

agement, even if it does not occur evenly across all ages. Furthermore, the consideration of 

assets and liabilities and the comparison of different risk measures by means of scenario anal-

yses allowed new insight in the effectiveness of natural hedging and the immunization of a 

fixed risk level, which is of relevance not only in the context of diversification benefits in 

Solvency II that reduce solvency capital requirements, but also when calculating the Market 

Consistent Embedded Value of life insurers.  
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APPENDIX 
 

Figure A.1: Estimated value of exp(ax) and bx over all ages 
 

 
 

 

Figure A.2: Level of estimated mortality index kτ  and forecasted values of kτ   
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Figure A.3: Probability of default and mean loss subject to portfolio composition for a lon-

gevity and a mortality scenario with and without adapting premiums and benefits to new mor-

tality rates when new business is written every five years  
a) Premiums and benefits are not adapted to new mortality rates 
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b) Premiums and benefits are adapted to new mortality rates 
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