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ABSTRACT

Systematic mortality risk, i.e. the risk of unexygetchanges in mortality and
survival rates, can substantially impact a lifeuness’ risk and solvency situa-
tion. By using the “natural hedge” between lifeurence and annuities, insur-
ance companies have an effective tool for reduttieg net-exposure. The aim
of this paper is to analyze this risk managemeuait aod to quantify its effec-
tiveness in hedging against changes in mortalitth wespect to default risk
measures. To achieve this goal, we model the insaraompany as a whole
and take into account the interaction between sigs@l liabilities. Systematic
mortality risk is considered in two ways. Firstsgmatic mortality risk is
modeled using scenario analyses and, second, eailyirobserved changes in
mortality rates for the last 10-15 years are u¥éd.demonstrate that the con-
sideration of both the asset and liability sideifal to obtain deeper insight in-
to the impact of natural hedging on an insuresg sgituation and show how to
reach a desired safety level while simultaneoustynunizing the portfolio
against changes in mortality rates.
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1.INTRODUCTION

In recent years, life expectancy in all industredl countries has risen steadily. This poses a
serious problem to pension funds and life insuracm®panies selling annuities, since the
payouts for these products might be higher thareepen® At the same time, worldwide pan-
demics, such as the swine and bird flu, have apdeaore frequently and spread more rapid-
ly. A serious pandemic might lead to severely insegl mortality,implying high losses for a
life insurance company selling life insurance cacis with a death benefit payment. This risk
of unexpected high or low mortality is one of thajam risks to which a life insurance com-
pany is exposed through its insurance portfolio ianaf high relevance, because instruments
to hedge this risk through an external partnersaegce. However, life insurance companies
can use the “natural hedge”, which is the opposadtion in the value of liabilities and in the
amount of benefit payouts between term life insoeaproducts and annuities in response to
shifts in mortality, to lower their net-exposurénelaim of this paper is to quantify the impact
of natural hedging on a life insurance company&oivency risk using a multi-period model
framework that takes into account assets and ili@sil In contrast to previous literature, we
further focus on two issues simultaneously, nartfedyquestion of how tammunizean insur-
er's solvency situation against specific changesantality and, at the same tinfes the ab-
solute level of riskwhich we illustrate by means of the insurer'sastiment strategy.

Instruments for hedging mortality and longevitykrigspecially the possibility of hedging
through capital markets, have been discussed tgbhpun the literature. A comprehensive
overview about potential and existing capital markstruments is given in Blake, Cairns,
and Dowd (2006a). Examples for these instrumerdgsnaortality contingent bonds, first in-
troduced by Blake and Burrows (2001) as “survivonds”, mortality swaps, described by
Cox and Lin (2007) as a natural hedge between compamortality options and mortality
futures. As an application of these instruments;idno, Regis, and Vigna (2011a) propose a
Delta-Gamma hedge technique for mortality risknd@vment insurance contracts by means
of longevity bonds. They additionally hedge stoticaimterest risk through purchasing lon-
gevity and zero coupon bonds and extend their wotkiciano, Regis, and Vigna (2011b) by
combining Delta-Gamma hedging using the naturalgbeoetween life insurance contracts
and annuities. Pricing of these instruments isusised in, e.g., Lin and Cox (2008), and the

Some life insurance companies already claim tkentasses on their annuity portfolio, because tpelicy-
holders are living too long (see Blake, Cairns, Biodvd (20064, p. 154)).

Cowley and Cummins (2005) additionally refer e increased likelihood of terrorism in this comtéx
202).



current state of the market for these instrumentdescribed, e.g., in Blake et al. (2009). An
alternative for hedging mortality risk was propodsd Dahl (2004), who suggests linking

premiums and/or benefit payments to realized muytal the population, thus transferring

the risk of an increase in the general life expsxtdack to the insured.

Different aspects of natural hedging have alreagbBnldiscussed in the literature as well. Cox
and Lin (2007) use empirical data on market quiiesingle premium immediate annuities
to show that they are lower for insurance compaaféxing life insurance and annuities at
the same time as compared to “one-product” ins@razampanies. Bayraktar and Young
(2007) follow a similar approach as in Cox and [(2907). To study the effect of natural
hedging, they use the instantaneous Sharpe rapind® pure endowments and life insurances
jointly and show that the price for a portfolio mflife insurances and pure endowments is
lower than the sum of the prices of a portfolionofife insurances and a portfolio afpure
endowments. Grindl, Post, and Schulze (2006) assushareholder value maximizing strat-
egy and compare the effects of different risk managnt strategies on shareholder value dur-
ing one period with a discrete mortality modeltheir model framework, natural hedging is
the preferred risk management tool only under gediacumstances and in others might even
decrease shareholder value. Gatzert and Wesket)28amine the impact of different mor-
tality risk components on an insurer’s risk sitaatand risk management, thereby also con-
sidering natural hedging and mortality contingeonds. Their results show that adverse se-
lection can play an important role when determiramgoptimal portfolio composition to im-
munize a portfolio against changes in mortalitypeesally in case of a longevity scenario.
Wang et al. (2010) focus on the change in the vafd@bilities due to changes in mortality
rates and discuss an immunization strategy forribksthrough portfolio composition. They
apply the concept of duration to mortality and deran optimal liability mix, which is char-
acterized by a portfolio-mortality-duration of zefithe aim of Wetzel and Zwiesler (2008) is
to find a (liability) variance minimizing productirmin a stochastic interest and stochastic
mortality framework. They show that the mortalitgriance, which is the variance due to
fluctuations in mortality, can be reduced by mdrant 99% through portfolio composition.
However, while Wang et al. (2010) and Wetzel andeg¥er (2008) show that natural hedg-
ing can significantly lower the sensitivity of amsurance portfolio with respect to mortality
risk, both concentrate on the liability side andnao take into account the asset side.

We will expand their viewpoint by considering thesiirance company as a whole by taking
into account both, assets and liabilities, as agltheir interaction. In contrast to e.g. Grundl,
Post, and Schulze (2006), in considering assetsiantities we further focus on the insurer’s



risk situation in a multi-period setting over 35ay®, which corresponds approximately to the
usually observed duration of a life insurance awitand spans the majority of annuity con-
tracts as well. We dynamically take into accourdgplole default over time, as the timing of
payouts can significantly influence risk during thieservation period. Furthermore, in con-
trast to, e.g., Gatzert and Wesker (2011), we show to obtain a desired safety level while
simultaneously immunizing a portfolio against ches¢n default risk. The procedure is illus-
trated by varying the insurer’s investment strate@yerall, this approach allows a more
comprehensive view of a life insurer’s long-terrskrsituation and the risk reduction effect
attainable by means of natural hedging. It is paldirly useful in light of Solvency Il to pro-
vide insight into the possible reduction of solwermapital requirements and long-ranging
effects of management decisions concerning pootfoiimposition. It is further relevant for
the calculation of the Market Consistent Embeddedu® (MCEV), where diversification
benefits between non-hedgeable risks may be takeraccount, given that they are identifia-
ble and quantifiablé.

The distribution of mortality is based upon theession of the Lee-Carter (1992) model by
Brouhns, Denuit, and Vermunt (2002a), which haghslly more attractive theoretical features
than the original modélTo quantify the impact of systematic mortalitykrise. unexpected
changes in mortality rates, on the solvency situmatf the insurance company and thus the
extent to which this impact can be hedged througtiral hedging and to deduce the optimal
ratio of life insurance contracts to hedge agasystematic mortality risk, a simulation ap-
proach is used. We thereby distinguish betweemgelaty and a mortality scenario. Our re-
sults show that, in the present setting, systenmagitality risk can be hedged by selling about
15 — 20% term life insurance and 85 — 80% annudegsending on the risk measure and the
considered scenario. Additionally, we apply thipraach to realized changes in mortality
rates, thus incorporating adverse selection byudfitiating between mortality rates of annui-
tants and life insurance policyholders, and finat tthese can be hedged as well, but that the
optimal hedge ratio, at which the impact of chaggieath and survival probabilities can be
eliminated completely in our model setup, is dependipon the exact realization of the in- or

® The MCEV is a concept to measure shareholderevaiuife insurance companies introduced by the CFO

Forum. This is a group formed by the Chief FinahC#ficers of leading European insurance companies
(amongst others, Allianz, AXA, BNP Paribas, GeneMulnich Re, Swiss Re, Zurich) with the statedlgoa
“influence the development of financial reportinglue based reporting, and related regulatory dgvel
ments for insurance enterprises on behalf of itmb@s” (see http://www.cfoforum.nl/).

This mortality model is taken as an example aand &s well be replaced by other stochastic mortadibd-

els, depending on the concrete application of gpr@ach (and the respective country). For instaacegrd-

ing to a quantitative comparison study by Cairnale{2009), a variation by the Cairns, Blake, &wivd
(2006b) two-factor model is very suitable to explemprovements in mortality rates in England.



decrease in mortality rates. We further comparects® of continued underwriting activities
to the single portfolio case and find that the ngeaeral case of continued business activities
only results in minor changes. Our main findinghat by selling 15% to 20% life insurance
contracts, depending on the exact changes in ntgréadd the risk measure chosen, the im-
pact of mortality risk can be reduced significaniflhe optimal hedge ratio depends on the
considered scenario for systematic mortality rible, exact realization of mortality improve-
ments and the investment strategy of the insuranogany, each of which should be taken
into account by life insurers when writing new mess.

The remainder of this paper is structured as faldBection 2 presents the model framework,
including the model of the insurance company, nlitytassumptions and modifications,
product characteristics and relevant risk measuries.results of the numerical analysis are
laid out in Section 3 and Section 4 concludes.

2.MODEL FRAMEWORK

This section describes the model framework usexkémine the effects of natural hedging on

an insurer’s portfolio consisting of term life imance and annuities. To measure the effec-
tiveness of natural hedging, assets, liabilitied aonsequently the possibility of default are

taken into account.

Modeling mortality risk

As the basis for death and survival probabilitie® use the extension of the Lee-Carter
(1992) model by Brouhns, Denuit, and Vermunt (20GBaestimate and project future mor-
tality. Depending on the respective country, otmertality models may be more appropriate
to adequately forecast mortality rates of the papom® Thus, the following analysis can as
well be conducted using other stochastic mortatitydels and the model used here can be
considered as an example, as our aim is to focubeogeneral approach with respect to natu-
ral hedging, fixing the level of risk and immunigithis risk level against unexpected changes
in mortality rates, i.e. systematic mortality risk.

The Lee-Carter (1992) model consists of a demoggagid a time series part, where the cen-
tral death rate or force of mortality of aryear old male in year g, (r) is modeled through

®> In general, model risk can play an important inleortality projections (see Coppola et al., 2011



ln [ux (T)] = aX + bx Ek{ + gxr int ﬂx (T) = eax+bx[k,+€x’,

where k. is a time varying index that shows the generaktigyment of mortality over time,
a, andb, are time constant parameters indicating the gésbape of mortality over age and
the sensitivity of the mortality rate at agéo changes irk , respectively, and, , is an error
term with mean zero and constant variance. Broubesuit, and Vermunt (BDV) (2002a)
propose a modification to the model, which resuttsslightly more attractive theoretical

properties. The realized number of deaths aixeged timer, D, , is modeled as

X,7?

D, ~ Poissor{ E, u, (7)) with g, (r) =e*"™%, (1)

where E, , is the risk exposure at ageand timer defined asE,, =(n, (r-1)+ n,(7))/2
andny(7) is the number of persons (i.e., the populatiae)sstill alive at age and the end of
year .° An important advantage of the BDV (2002a) modehit the restrictive assumption
of homoscedastic errors made in the Lee-Carterjl8tbdel is given up. Furthermore, the
resulting Poisson distribution is well suited forcaunting variable such as the number of
deaths (see Brillinger (1986)). The model can lienesed via the Maximum-Likelihood ap-
proach using a uni-dimensional Newton method apgsed by Goodman (197?3‘,SinceaX
and b, are time constant, they can be used directly fac@sting mortality rates. However,
since k, is time-varying, one needs to obtain forecast& ofor predicting future mortality.
Lee and Carter (1992) propose to fit an appropdREMA process on the estimated time
series ofk,

T T’

k. =@+a,[K_+a,lk_,+.+a,[K_ +0,[k _+0,lk _,+..+9,[k_,+¢& =k +¢

kT

using Box-Jenkins time series analysis techniqlies. obtained parameters of the ARIMA
process can then be used to foredgstand, thus,u, (7). Based on the estimated, (7),
the one-year death probability, (7), which is the probability that aryear old male in year
r will die within the next year, given he has surdwventil agex-1, can be calculated using
q,(r)=1- exp(—,ux(r)) (see Brouhns, Denuit, and Vermunt (2002a, p. 378))e respec-
tive one-year survival probability of aryear old male policyholder ip, (7) =1-q,(7), and

For simulation purposest, , = -n,(t-1),/In( p,) is used instead (see Brouhns, Denuit, and Vermunt
(2002Dby)).

Standard Maximume-Likelihood methods are notifdasiue to the bilinear terik;.

The error terme, is set equal to zero in forecasting sirge, ) =0.

In this calculation, we assume a piecewise cons$tace of mortality iz, (r) .



the probability that ar-year old male policyholder will survive the nexyears,  p,, can be
calculated as p, = |_| i”:l P,.iq - IN the remainder of the paper, we omit the inica to sim-
plify the notation; however, all mortality rateatependent on age and year.

It has been observed in the past that mortaliggsrdb not remain constant but are subject to
random, unexpected changes that arise due tocergmon factors that impact all individuals
in a similar way, thus causing dependencies betwees that cannot be diversified through
enlarging the portfolio size (see e.g. Biffis, Denand Devolder (2010), Wills and Sherris
(2010), Gatzert and Wesker (2011)). This can ineganbe attributed either to unexpected
environmental or social influences, impacting mitstaositively or negatively? or to wrong
expectations about future mortality due to estioratrrors:' The impact of this so called
systematic mortality risk is defined and accourfteddifferently in the literature. Hanewald,
Piggot, and Sherris (2011) model systematic (loitgekisk as uncertain changes in mortality
applying to all individuals, while Evans and Sherf2009) define it as the uncertainty in fu-
ture survival probabilities, which imply dependesscibetween lives due to a common im-
provement in mortality rates across individualspamticular, while mortality risk may not be
hedgeable in financial markets, insurers can redungmeans of, e.g., natural hedging, rein-
surance, asset-liability management, or mortalitgyss (see Cox and Lin (2007)).

To gain comprehensive insight into the effectivenesnatural hedging for diversifying this
risk, we follow the approach in Gatzert and Wegq2811) and make different assumptions
concerning the realization of the change in mdytatites using the absolute value of the fac-
tor £, which impacts mortality at all ages in yemand thus causes dependencies between
lives> We thereby distinguish between a “longevity scieriarith unexpected low mortali-

ty, and a “mortality scenario” with unexpected higbrtality, by defining

kl{ongevity — |'<\r _ Sl:l}:r| and k{mortality — |2r + S[l]‘:r| ’

wheres is a scaling factor that influences the extenthef implied change in life expectancy
and allows a more detailed insight into the impdanortality and longevity scenarios. While
this procedure affects mortality at all ages, ksloot lead to an identical change of mortality
at all ages due to the multiplication with the telpm Therefore, the simulated change in the

10 Additionally, certain other macroeconomic varelmight have an influence on mortality (see, e.g.,

Hanewald (2010)).

An example of a potential source of estimatiaoris the choice of the appropriate sample persatte k,
is rather sensitive towards the specified period.

Due to the assumed ARIMA process fgr, subsequent years are also impacted by the réalizaf ¢, , see
Gatzert and Wesker (2011).

11
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mortality rate for arx-year old male is consistent with the sensitivitynwrtality at this age
observed in the past. The deduced mortality ragsgd onk’ for a given scaling factowill
be referred to as), and , p., fori = longevity, mortality respectively. The initial mortality
rates forecasted using the BDV (2002a) model anetee by = initial .

Second, recently observed changes in mortalitysrate modeled by simulating the change
from the old mortality tables by the Continuous kadity Investigation (CMI) dating from the
year 1992 to the updated mortality tables fromytha 2000. To take into account the possi-
bility that mortality for life insurance policyhatds and annuitants might experience a differ-
ent change in mortality, here referred to as adveedection (see, e.g., Brouhns, Denuit, and
Vermunt (2002a)), we use different mortality tabfes these two populations of insured.
Thus, we are able to analyze the usefulness ofaldtadging under actually realized changes
in mortality and in the presence of adverse sealacti

Model of a life insurance company

A simplified balance sheet of the modeled insurac@m®pany at timé is shown in Table 1,
whereAl(t) is the market value of the assets of the compariynet, L'(t) is the value of total
liabilities for the term life insurances and aniest andE'(t) is the equity of the insurance
company, which is residually determined as theed#fiice between assets and liabilities. The
development of these accounts depends on the mpdasumption and the scenario consid-
ered, i.e. whether the initial death rates arerassiuor the longevity or mortality scenana;
initial, longevity, mortality

Table 1 Balance sheet of the insurance company at tidepending on mortality assump-
tions ( = initial, longevity, mortality
Assets| Liabilities
A® | E®
L'()

A default occurs when assets are not sufficierttoleer liabilities at time, i.e., whenL'(t) >
Al(t). In this situation, the insurance company dodsholil sufficient assets to cover its future
payment obligations and the company is consequshtly down. However, we will assume
that the insurance benefits acquired by the potitddrs are guaranteed by an external institu-
tion, which takes over payment of the benefitsasecof default (see, e.g., Gatzert and Kling
(2007)). Thus, the policyholders are not affectgdhe possibility of default and the value of
their contracts does not depend upon the correspgpdobability of default.



With term life insurance, a constant death beri2fitis paid out in case the insured dies dur-
ing the contract term. We assume that policyholgessa constant annual premidtrat the
beginning of the year, while the death benbf is paid at the end of the year in which the
insured dies. With an annuity, a constant annuakfiea is paid at the end of each year as
long as the policyholder is alive in return foriagée premiumSP, which is paid it = 0. The
duration of both contract types is random, as petels upon the individual time of death,
which is limited by the maximum age implied by gtechastically forecasted mortality rates
(w = 100) and the contractually defined time to matui he initial investment made by the
shareholders of the insurance company is denotdg{®y In return for their investment, the
shareholders receive a constant dividéuil in each year the company is still active, i.e. has
not yet defaulted. In case of default, the shadrsl lose their investment, but, due to their
limited liability, do not have to compensate thifatence betweeA!(t) andL'(t).

AssetsAl(t) are invested in the capital market, and, sinceamemerely interested in the de-
velopment of the assets at an aggregate level, ¢beiposition is not considered here. Fol-
lowing most of the literature dealing with the vation of insurance liabilities (e.g. Grosen
and Jgrgensen (2000, 2002)), we assume that the wélthe asset portfolio evolves accord-
ing to a geometric Brownian motion,

dA (t) = #OA (1) t+ o DA () OdW ( }, fori = initial, longevity, mortality

wherep is the drift of the assets, the asset volatility, an®/ a standard Brownian motion
under the real-world measupeon the probability spac&, 7 ,P), where # is the filtration
generated by the Brownian motion. The solutiorhas stochastic differential equation is giv-
en by (see Bjork (2009))

A(t) = A(t-]) [EX[{,U—JZ /2+0(Wp(t)— W (t Z))] i = initial, longevity, mortality

for a givenA(0). The asset base is influenced by premium patsndeath benefit and annui-
ty payments to the policyholders as well as divid@ayments and mortality assumptions.
Figure 1 exhibits the evolution of these payments their influence on the asset base, where
t” denotes that payments are made in the beginnititgeofear, whilet* denotes those made

13" One way to define the dividend amount is to dalevit in a way that the shareholders expect ¢eive the
risk-free rate (under the risk-neutral measQyer the market rate of return (under the real digrobability
measureP) on their initial investment each year. In thiarnfrework, the shareholders assume a yearly proba-
bility of default of 1%, thus the dividend can balaulated usingr [E, = (1—0.01)div+ 0.0L1€E, in
the risk-neutral world. Under the real-world mead®yr is substituted by the market rate of retun,
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at the end. The number of survivors in the anmaiertfolio at the beginning of years de-
noted byn, (t), and the number of survivors in the life insurapeetfolio by n (t), both
dependent on the actual mortality experience irpthéolio (i = initial, longevity, mortality).
Hence,d, (t)=n ft-1)-r{ (1) is the number of deaths within th¢h year in the life insur-
ance portfolio, for which the insurance company teagay out death benefits. Assuming that
the total number of contracts initially sold is agton, the product mix is thus determined by
the portion of life insurance contracts sold, dedadbyd, such that, at time 0O, the portfolio
consists ofn, (0) = dh life insurance anch, (0) = (1-d)Ch annuity contracts, whene =
Na(0) +n.(0).

Int =0, the asset base consists of the initial eduwitthe shareholders and the premiums paid
by the policyholders. At the end of each year, @mesihave to be paid to all holders of annui-
ties who are still alive at the end of each yeal death benefits have to be paid to all heirs of
life insurance policyholders who died within eadsl Thus, assets depend crucially upon
the composition of liabilities and thus on the prodmix decisiond).

Figure 1. Evolution of asset base depending on mortalisuagtions i(= initial, longevity,

mortality)

t=0 t=1 t=1 t=2 ..o t=10 t=11 .
+ Eo -nal)-a  +n' Q)P -rda@-a ... +n'(10)-P -ra(ll)-a
+na(0)- SP  -d'(0)- DB -d (1) - DB -d\.(10)- DB
+n(0)-P  -div - div - div

Valuation

To determine a fair combination of benefits andhptens, we use risk-neutral valuation. We
thus calculate the expected cash flows under gieneutral measur® and discount them
with the risk-free rate. Mortality and market risks are assumed to bepeddent’ (see, e.g.,
Carriere (1999, p. 340), Grundl, Post, and Sch(29€6)), and we assume that the insurance

% The assumption of independence between marketramtlity risk is also supported by empirical sasd
Hanewald (2010), for instance, analyzes the reiatigp between macroeconomic variables and the litgrta
indexk; in several countries. While there are significamtrelations for the sample as a whole, for thequkri
from 1980 to 2006, the assumption of significantrelations between the two time series cannot peat-
ed by the data. Furthermore, Ribeiro, and di Pi€899) study the correlations between longevigk and
the prices of equities and bonds. Even though laibgeisk is exploited twofold, no significant calations
between stock and bond prices and longevity caolied in either case.
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company does not demand a risk-premium for moytaiigk.*® Therefore, the risk-neutral
martingale measur@ is identical to the objective probability meas®raith respect to mor-
tality.*®

Premiums and benefits of the insurance contraetsaculated using the equivalence princi-
ple. Hence, the insurance company calculates temipms and benefits such that the ex-
pected benefit payments and the expected premiymgras are equal at the inception of the
contract. The value of each contract is set equalftxed amount. Thus, using the risk-free
rater, the premiunP and death benefidB for the term life insurance can be calculated as

T- 1

Z Pm initial [ql+ r Tzl DBm p:'t'al [dlltlal [ql+ ) (t+) : (2)

and the single premiu®Pand annuitya using Equation (3) as

_|

-1

am pnmal [@1+ r)

(t+1) _

-SP= M 3)

—
1l
o

Here, the initially forecasted mortality rates frohe BDV (2002a) model are used in pricing
and reserving, since the modeled scenarios foesyatic mortality risk represent unexpected
changes in mortality. Since the volume of the elgpremium and benefit payment for an-
nuities and life insurance contracts is identiead the total number of contractgsum of
life insurance and annuities) sold by the insurazarapany is fixed, the volume of the insur-
ance portfolio does not vary for different portiblicompositions. This is intended to ensure
comparability between portfolios in terms of thegent value of cash in- and outflows and to
thus isolate the effect of portfolio composition.

The value of liabilities for one term life insurancan be calculated as

=3[ DB g g e ) - P 22 1 )] @

s=0

> This can be incorporated by, e.g., adding a lmadin the actuarially fair premium, such that theurer de-

mands an additional premium for systematic moytalgk (see, e.g., Gatzert and Wesker (2011)). gdre
eral results of natural hedging presented in thmarical analysis section remain robust in this cadgle
only the level changes.

6 See, e.g., Bacinello (2003, p. 468), Dahl (2qD4124), Gatzert, Hoermann, and Schmeiser (20089¢),
Grindl, Post, and Schulze (2006).
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and the value for one annuity contract is given by

T-t-1

B, ()= 3 al ol fa+ ) (5)

The value of liabilitiedor the whole portfolio is thus attained by mulyiplg Equations (4)
and (5) with the respective number of contracts dna still active at timg i.e.,

L' (t) =n, (t) B,(t)+ A ({)B (1), i= initial, longevity mortality,
which depends on the mortality scenario.

Risk measurement

To date, to the best of our knowledge, the litemton natural hedging has focused mainly
upon the reaction of the liability side in respotseshifts in mortality and how these can be
balanced out through portfolio composition. Althbuge conduct this study as part of our
analysis, for the main part, we are interestedénriskiness and solvency situation of the in-
surance company as a whole. Therefore, we firsthesstatic measure of the expected benefit
payouts int = 0, i.e. the contractual payment obligations GRhe insurance company for
different survival and mortality rates to analyhe impact of a change in mortality rates on
the liability side. The contractual payment obligas (CP) for given death and survival prob-
abilities are a linear function in the fractionlié® insurance contractsof the form

oP = dr). DBD pg, o+ ) +(1- 9OnY. @ prfas J
=d Y +(1- d) 0Dy, = iy + d]rﬁ@ V- )0

I = initial, longevity mortality. Vj\ are the deterministic contractual payment oblagetifor
one annuity subject depending on the scenasianitial, longevity, mortalityandVLi is de-
fined analogously for one term life insurance. 8itlce evolution of assets is considerably
influenced by the product mid, in addition to the static liability side measuves further
focus on different risk measures, which explicithke into account the interaction between
assets and liabilities and the possibility of défacapturing different default characteristics,
including the probability of default and the measd. Under the real-world measutethe
probability of default (ruin probability) is givdoy

PD'=P(T,<T), (6)
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whereT; is defined adly =inf{t: A(t)<L(t)} (see, e.g., Gerstner et al. (2008}3,initial,
longevity mortality. In the numerical analysis, the probability ofalét is further divided by
the number of years, such that it can be intergratethe mean annual probability of default
for the nextT years. The second risk measure is the mean Itgshws calculated as the dis-
counted expected loss in case of default, thusdirirast to the probability of default) taking
into account the extent of the default,

ML = E[(Li (T;)— A (T;))EQ1+ r)‘T‘j EL{T'd < 1}} ,i =initial, longevity mortality. (7)

Natural hedging

To hedge against systematic mortality risk, thenoglt portfolio composition has to be deter-
mined (for otherwise fixed contract and asset attarstics) using the natural hedge between
term life insurances and annuities. This way, thguier can immunize its portfolio against
unexpected changes in mortality rates. The opthmedpe ratiad* is thus defined as the per-
centage of life insurance contracts at which trspeetive risk measur@ (= PD, ML) does
not change. It is hence given by the root of threefionf

£1(d)=aR(d ™ (r);4 (1)) = R di™ (7)) - R o, (7))=0, ®)
wherej = mortality ,longevity
3.NUMERICAL ANALYSES

The numerical analysis is conducted in two stepshé first step, the fair benefit and premi-
ums are calculated analytically using Equationsa(®) (3) and the estimated population mor-
tality. In the second step, the obtained parametersised in a simulation analysis under dif-
ferent assumptions concerning realized mortalitarialyze the effect of natural hedging on
an insurer’s risk situation in the sense of scenamnalyses.

Mortality estimation and projections

The estimation of mortality is based on the numtifedeaths and exposure to risk for the
United Kingdom from 1950 to 2009 available throupke Human Mortality Database. The
estimated demographic parameters of the BDV (200%a)el are displayed in the Appendix
in Figure A.1. The mean central death rate forxagexpgy), increases steadily in ags; on
the other hand indicates the sensitivity of theirednleath rate at agetowards changes in the
time trendk, and is, for adult ages, highest around the ageg5@hdicating that improve-
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ments in life expectancy in recent years are mathlg to decreases of mortality rates at
“higher” ages as already stated by Blake and Busr(®001, p. 346). The estimated mortality
trend k. as well as the forecasted values obtained by appBox-Jenkins time series analy-
sis techniques on the estimated procesk, aire shown in Figure A.2 in the Appendix. Time
series analysis indicated an ARIMA (0,1,0) mddelith drift equal tog = -1.5403 (standard
error 0.3056) and the standard erroepfis estimated as 2.3474.

Input parameters

Until otherwise stated, we will assume a risk-frate ofr = 3%,r,, = 5%.° an asset volatility

o = 10% and an asset drift pf= 6%. The male term life insurance policyholdezguare the
policy at agex = 30 for a period of 35 years in the yagar 2012. The male annuity policy-
holders purchases the lifelong annuity atages5 at the same time'® The actuarial interest
rate is also set tb= 3%, and the present value of each contractuslep M = 1,000. The
parameters are chosen to illustrate central effects are subject to robustness checks and
sensitivity analyses. Using Equations (2) and (8hwW = 1,000 and the input parameters
described above, the resulting fair premiBrfor the term life insurance is 46 and the death
benefitDB is 25,032. The fair annuity amouatis 75 and the single premiu8Pis 1,000.
These numbers refer to a contract with expectedhipre payments and expected benefit
payout of 1,000 and are based on the initially mezlimortality rates forecasted through the
BDV (2002a) model. We will assume that the portdadf the insurance company consists of
a total ofn = 100,000 contracts written tr= 0. We then consider different portfolios thatywa
only in portfolio composition, i.e. in the fractiaf life insurance contractd D[O,]]. Thus,
the number of life insurance contracts sold #0 is d (h=n (0) and the number of annui-
ties is (1-d)h=n,(0). Thus, each portfolio has the same total expelsesfit payout of
n[,000= 100Mio , independent of portfolio composition.

Monte-Carlo methods are employed to assess thamdlsolvency situation of the insurance
company. To improve comparability of results, we tlee same sequence of random numbers
to simulate the number of deaths at each tifioe each simulation run and the same 100,000
simulation runs for the evolution of the asset Haseach portfolid® The number of deaths

7 The Schwarz as well as the Akaike informationecion indicated a more complex model for the ARIMA

time series. However, subsequent residual analgsigy Box-Ljung test as well as ACF and PACF analys
showed no significant residual autocorrelation.

The market rate of retumy, is relevant only for the size of the dividendlie fpresent setting.

Regarding the input parameters, sensitivity ameywgere conducted to ensure that the results avke st

The results are robust for different sets of ranchmmbers.
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are simulated using the inverse transform methoth® Poisson distribution (see Glasserman
(2008, pp. 54-58)).

Risk of an insurance company without systematicatityr risk

As a benchmark, we calculate the risk measuresruhdenitial mortality rates used in bene-
fit and premium calculation (forecasted using tHavB(2002a) models = 0), which are as-
sumed to be equal to realized mortality in the iasae portfolio. Even though the expected
benefit payouts are equal to 100 Mio. for all palitfs and independent of the portfolio com-
position, Figure 2 shows very different resultsegard to the risk situation for different port-
folios, resulting from the timing of cash flows.

Figure 2: Contractual payout obligations (CP), probabilitfy default (PD), and mean loss
(ML) plotted against the fraction of life insurancentractsl (s = 0)
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For the chosen discrete values, the mean lossnsnali approximately fod = 0.7 and the
probability of default fod = 0.9, while a portfolio consisting only of annag @ = 0) leads to
the highest risk for both risk measures in the whared setting, where term life insurances
are sold against annual premiums. The risk reducftect that can be attained via portfolio
composition ranges between 5% and 20%, dependinthpeomisk measure, and is thus not
negligible?* These results imply that the riskiness of an iasce company is not only affect-
ed by the absolute value of payment obligationsclhare identical for every portfolio as can
be seen in Figure 2, but also by the charactesisifcthese payments, such as the timing,

2L The overall level of risk can generally be redlibg means of reinsurance or other risk transfsriments.
Furthermore, these instruments might also leadshifain the risk minimizing portfolio and impattte op-
timal hedge ratio discussed in the subsequentsecti
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which in turn has a substantial impact on the dgwekent of the asset base (see Figure 1).
The risk reduction effect arises as the payoutsafmuities decrease over time, while the pay-
outs for life insurance rise almost exponentiadBince these effects counterbalance each oth-
er, the payouts for the mixed portfolios are smentwhich contributes to the risk reduction
effect observed earlier. The present results agd as a benchmark for the following analysis,
where we concentrate on the relative change oftwloerisk measures and the contractual
payment obligations in response to a change inatiyriwith respect to the risk measures
shown above.

The effect of natural hedging on the liability side

In the following, numerical results for the riskeseof the insurance company in response to
systematic mortality risk scenarios are shown. [Bhngevity scenario with a scaling factor of
s =1 corresponds to a mean increase in the rengaiifiénexpectancy of a 65 year old man of
about 1.9 years in the year 2012 from 18.5 yea9td year$? while the corresponding mor-
tality scenario implies a mean decrease in the ir@ntalife expectancy of about 1.8 years to
16.7 years. The different risk measures for thesearios are displayed in Figure 3, including
the expected discounted benefit payouts (CP, Parth@ probability of default (PD, Part b)),
and the mean loss (ML, Part c)).

The comparison clearly reveals the difference betw@P and the two risk measures, in that
the consideration of the liability side shows aeén relation for varyingl, while the risk
measures exhibit a non-linear relation. Howevdrthake graphs show at least some similar
tendencies. In particular, the results reflecteatgr sensitivity of term life insurance contracts
to mortality risk, since the relative change fottbask measures and the CP is more severe if
the insurance company sells only life insuramte= (1) as compared to a portfolio of only
annuities d = 0). Taking the expected discounted benefit ptsy(OP, see Part a) in Figure 3)
as an example, for a portfolio of term life insuranthe longevity scenario leads to a decrease
in the expected benefit payouts of about -34.3%ilexthe mortality scenario leads to an in-
crease of about 63.0%. Thus, in the mortality seenthe insurance company will have to
increase its reserve by about 60% #0 to be able to satisfy the increasing payoutsiéath
benefits. For annuities, the reaction of the caitral payment obligations to changing mor-
tality rates is considerably smaller. The differeansidered scenarios imply a change in ex-
pected benefit payouts of -7.2% and 7.3%. Simimults can be observed for the two risk
measures in Parts b) to c). These results inditatiethe value of the CP and the insurer’s

22 The life expectancg(t) is given by ex(t)zzkzorrj‘:0 p.;(t+ j) (see Brouhns, Denuit, and Vermunt
(2002b)).
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default risk are more sensitive to changes in nitrtbor a portfolio of life insurance con-
tracts than that for annuities, since the formeresponds to a low probability risk, which is
more prone to changing mortality rates. In confrashuities correspond to a high probability
risk, since survival rates are higher than corredpm mortality rate$® Therefore, to hedge
against the modeled scenarios for systematic nityrtadk, the fraction of annuities generally
should be greater than the fraction of life insgeato counterbalance their greater sensitivity.
The optimal hedge ratios at which the risk situatid the life insurance company does not
change in response to a change in mortality (iat#iens between risk measure curves in
Figure 3 of initial death rates and the risk measwurves for the longevity and the mortality
scenario, respectively), confirm this presumptiod amply that, in the present setting under
the stated assumptions and the annual term lifel lpvemiums, the insurance company
should write approximately four to five annuities every life insurance contract sold.

However, since the interaction between assets iabdities and the dynamic evolution of
payments are not taken into account in the caloulaif the contractual payment obligations
(CP), they allow only partial insight into the effeof natural hedging with regard to an insur-
er’s risk situation. In particular, when comparitng impact of mortality risk on the default
risk of an insurance company (using PD or ML) witle impact on the contractual payout
obligations (CP), one notices that the impact oftaliby risk on the company as a whole far
exceeds the impact on the value of the contragtagbut obligations. For example, for the
longevity scenario, the probability of default ieases from 0.73% to 0.85%, which corre-
sponds to a change of 17.5% (compared to the isituatth initial death rates forecasted us-
ing the BDV (2002a) model) for the portfolio of anties (i.e.d = 0) as compared to a change
of 7.3% (100 Mio. vs. 107 Mio.) for the contractyelyment obligations (CP). For the mean
loss, the relative change is even greater. Thisatels that the consideration of the contractu-
al payment obligations (CP) on the liability sideree may severely underestimate the true
impact of mortality risk on an insurance compamgsg situation.

% These results are approximately in line with ¢hémund in the previous literature. See, for examphtolin
(2007), Cox and Lin (2007), Grindl, Post, and Soa(2006).
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Figure 3: Contractual payout obligations, probability ofaldt and mean loss plotted against
portfolio composition for different realized moiitgl
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Furthermore, the impact of systematic mortalitk upon the probability of default (PD) for a
portfolio of life insurance is greater for an up@vanove in mortality rates than for a down-
ward move (+195.0% for the mortality scenario amgared to -67.0% for the longevity sce-
nario), while, for the portfolio of annuities, tledfect is reversed (-17.0% for the mortality
scenario as compared +17.5% for the longevity se@nd his effect is even stronger for the
mean loss (+373.8 for the mortality scenario aspamed to -68.1% for the longevity scenario
and a portfolio of only life insurance, -21.4% fttre mortality scenario as compared to
+23.9% for the longevity scenario and a portfolamsisting only of annuities) and can again
be ascribed to the different types of risk thatiaseired. The results imply that a high proba-
bility risk is more severely impacted by a decreasthe respective probabilities than by an
increase, while the effect is reversed for low bty risks. This indicates that the risk of a
change in mortality outweighs the chances thatammected with a move in mortality, since
the increase in the riskiness in response to ashadk outweighs the decrease in response to
a good shock.

Determining an optimal portfolio-mix with naturagtiging

Overall, the findings in Figure 3 show that systeammortality risk with the implied change
in mortality rates can lead to severely increasgkl The extent of this increase is subject to
portfolio composition and can be reduced considgrap combining term life insurance and
annuities. Thus, one faces a trade-off betweerskanminimizing portfolio composition for
given mortality rates, which are sensitive to shd&hd may thus imply a much higher default
risk level in case of changes in mortality than ¢ines originally anticipated, and a portfolio,
which is immunized against the modeled systematitatity risk scenarios but leads to a
higher absolute level of risk. In light of the siizant uncertainty in projecting mortality
rates, which makes managing mortality risk cruteala life insurance company, as well as
the scarceness of alternative instruments to hadgast mortality risk, we will first concen-
trate on the immunization effect of natural hedgamy secondly show how to proceed to
immunize a portfolio at a certain desired safetseldor a given scenario of systematic mor-
tality risk.

We thus next display the optimal ratio of life insnice contracts to hedge against the mod-
eled scenarios for systematic mortality risk inUfeg4 (for a given asset portfolio) as implied
by Equation (8)). The optimal hedge ratib corresponds to the respective intersection of the
risk measure curves for the modeled scenarios yfstesatic mortality risk with the risk
measure curve for the initial death rates forechgteng the BDV (2002a) model in Figure 3.
In addition, to gain further insight into the moeklscenarios and into the effect of the extent
of the change in life expectancy, different scaliactorss are assumed for the longevity and
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the mortality scenario wite = 0.5 ands = 1, respectively. The scaling fac®mfluences the
extent of the implied change in life expectancycdse of the longevity scenario, for instance,
a scaling factor of = 1 leads to a mean increase in life expectancy 66 year old of 1.9
years, while a factor af= 0.5 implies an increase of only 0.9 years.

Figure 4 shows that in general the optimal hedgje rs higher for the longevity scenario as
compared to the mortality scenario. In line witk firevious results this implies that, in order
to hedge the impact of the mortality scenario,a.decrease in life expectancy, less life insur-
ance has to be written than in case of a longesggnario. The values faoi* for the two risk
measures PD and ML lie within the range of 11% %Z2éhd are thus generally higher than
the ones for the CP ranging between 10% and 17%eneral, when considering the insurer’s
risk situation, one seems to need a higher pergentd life insurance to hedge against a
downward move in mortality, i.e. a longevity sceaawhich is in line with the observation
that annuities are more sensitive with respechésé changes in mortality rates. Therefore,
more life insurance contracts are needed to balentcthis effect.

Figure 4: Optimald* for hedging against changes in the discountedatefddenefit payouts
(CP), the probability of default (PD) and the méass (ML) in response to the modeled sce-
narios for systematic mortality risk for differesttaling factors, with k" =k - sil,|

and kTmortaIity - |2[ + Sl:l}:r|
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Overall, the difference in the optimal hedge ratios the considered scenarios is almost
twelve percentage points for the ML and seven peage points for the PD, which is not
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negligible considering the volume and number & iffsurance contracts and annuities. Thus,
the choice of an adequate risk measure that casdidth assets and liabilities is vital, and, to
hedge against systematic mortality risk, the exealization of the change in mortality is im-
portant. Nevertheless, the impact of an unknowmgban mortality on the payout obliga-
tions and the risk situation of a life insurancenpany can still be greatly reduced in the pre-
sent analysis through natural hedging by writingragimately 20% life insurance contracts
when hedging the ML and 15% life insurance congréat hedging the PD.

The impact of the investment strategy on optimefqm-mix

In a second step, we propose a procedure to redekii@d safety level, while simultaneously
choosing an optimal portfolio-mix by varying thesasbase. Hence, in Part a) of Figures 5
and 6, we investigate the impact of the investnstraitegy on the optimal hedge ratio and
then calculate the corresponding level of risk gdtb and ML for the optimal hedge ratio
derived in the first step (Part b) of Figure 5 &)dor a longevity scenario and a mortality
scenario. For completeness, the optimal hedge datio hedge against changes in the value
of the contractual payment obligations CP is digpthas well, which is independent of the
investment strategy and thus constant. Seven diftenvestment strategies from low risk/low
return (4 = 4%, o0 = 2%, implying a Sharpe ratio @ = 0.50) to high risk/high returnu(=
10%, 0 = 26%, implying a Sharpe rat= 0.27) are considered to conduct a sensitivigl-an
ysis?*

The results show how the investment strategy ofiiearance company substantially influ-
ences the optimal hedge ratd (see Part a) of Figure 5 and 6). In turn and asomstrated

in Figure 1, the portfolio composition has an intpac the development of the assets due to
an altered timing and amount of cash-in- and owsloThese complex interactions make an
interpretation of results difficult. An increasethre expected return and standard deviation of
the investment portfolio leads to an increase edptimal hedge ratio, i.e. more life insur-
ances are needed to hedge against the modelednayistenortality risk. This effect is less
pronounced when hedging the probability of def#udin for the mean loss. However, even
for the probability of default in case of the lomgg scenario in Figure 6, a change from the

* The investment strategies assumed here are pasilv a constant expected return and standarcatiewi
over the contract term. The Sharpe rglio («—r) / o provides an indication for the riskiness of theeist-
ment strategy, as it relates excess return toamgk since funds with the same Sharpe ratio impdysdime
evolution of the underlying assets (see Gerrardhertaan, and Vigna, 2004). Results may differ wiadimig
into account dynamic solvency driven investmenatsgies. However, the results displayed here itelica
that, with a dynamic investment strategy, eachagging of asset investments should be accomparyiea b
analysis of portfolio composition to ensure thatteynatic mortality risk is still hedged successfull
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formerly assumed investment strategy witk- 6% ando = 10% to the more conservative
strategy withy = 4% andos = 2% leads to a decrease in the optimal hedge oatapproxi-
mately 1 percentage point, whit¥ decreases by about 12 percentage points whenrigedgi
the mean loss. For the mortality scenario in Figyrthe effects smaller for both, the proba-
bility of default and the mean loss, for which th@imal hedge ratio decreases by about 7.7
percentage points. For a riskier investment styatdgt = 10% andos = 26% the described
effect is even more pronounced. The optimal hedgfje mcreases by more than 5 percentage
points in the longevity scenario (Figure 6) for firebability of default and by more than 20
percentage points for the mean loss compared tdotingerly assumed investment strategy
with g = 6% ands = 10%. The results imply that annuities are moxeessly impacted by the
combination of riskier investment and mortalitykritian term life insurances and that the risk
measure plays an important role. Hence, the fraaifderm life insurances to hedge a portfo-
lio against a given change in mortality rates stiontrease for riskier investment strategies.
Since the value of liabilities is not affected I tinvestment strategy, this effect is not cap-
tured when considering the CP. Thus, especiallyifsurance companies with a riskier in-
vestment strategy, the consideration of the ligbgide alone can lead to a misestimation of
the optimal hedge ratio. For example, for the laitgescenario and an investment strategy
with p = 10% ands = 26% (Figure 6), the difference in the optimal geedatio between the
CP and the considered risk measures is about éqtage points for the PD and more than 30
percentage points for the ML.

In Part a) of Figures 5 and @* is defined as that fraction of life insurance dich a given
risk level is not sensitive to the modeled changesortality rates for different investment
strategies. As an example of an adjustment of patensito achieve a certain desired risk lev-
el, which can then be immunized against shifts antality, we next calculate the correspond-
ing default risk of the insurance company for tpéiroal hedge ratial* for investment strate-
gies and risk measures given in Part a) of Figuemé 6 and display the resulting (corre-
sponding) risk levels in Part b) of Figures 5 andré@r both, the PD and the ML, for the low
risk/low return combinations, the effect of the dneapected return outweighs and increases
the risk of the insurance company, while, for tighhrisk/high return combinations, the effect
of the increased volatility implies an increaseigk.
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Figure 5. Optimal hedge ratiod* and the corresponding risk level for differenteéstment
strategies in the mortality scenargo=1) for probability of default, mean loss, anchiractu-
al payout obligations
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Figure 6: Optimal hedge ratiod* and the corresponding risk level for different@stment
strategies in the longevity scenarso=(1) for probability of default, mean loss, andhizactu-
al payout obligations
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Thus, based upon Part b) of Figures 5 and 6, onaleeide on the desired risk le¥efor a
chosen risk measure and then turn to Part a) afrésg5 and 6 to read out the corresponding
d*, thus immunizing this risk level against changesniortality. These results underline that
the asset side and thus the intended investmeategyr should be taken into account when
determining the optimal hedge ratio and when amadyhe effect of natural hedging on an
insurer’s risk situation. It can even be used toode a desired safety level while simultane-
ously ensuring an optimal portfolio-mix. Our find® indicate that a rather conservative in-
vestment strategy leads to a lower percentagerof liée insurances, while an aggressive
strategy implies that fewer annuities should bel.sAk an alternative to managing the asset
base, life insurers can also arrange contract ctaistics, reinsurance, or leverdyeo
achieve a certain safety level, while simultaneptigldging against changes in mortality rates
by portfolio composition.

In general, one can deduce that, in our model gesystematic mortality risk can be hedged
completely, but that the optimal hedge ratio degem the direction and the extent of the
change in life expectancy and on the insurer'sstiment strategy. The level of risk, however,
is driven mainly by the investment strategy andasvery sensitive to changes in the system-
atic mortality risk scenario when the portfolio qoosition is calibrated to immunize the giv-
en risk level (see Part b) of Figure 5 and 6). Thsle the considered scenario for systemat-
ic mortality risk has an impact upon the optimaitfudio composition, it does not substantial-
ly influence the level of risk of the immunized golio, if the latter is calibrated accordingly.
To check the robustness of this approach with dpahe assumption of systematic mortali-
ty risk scenarios, in the following, we examine #ffect in response to actually experienced
changes in mortality rates.

Natural hedging under realized changes of mortality

An often cited argument against the effectivendssatural hedging is that improvements in
life expectancy do not stem from a uniform decreaseortality rates over all ages, e.g. in
the last decade improvements in life expectancy lessentially been observed at older ages
(see e.g. Blake and Burrows (2001, p. 346)). Singgeneral life insurance contracts mature
when the insured enters retirement, the improvenmentortality rates beyond the usual re-
tirement age will not influence the value of lifesurance liabilities. Therefore, a life insur-
ance company would not be able to hedge its expasusystematic mortality risk through

% The investment strategy is merely one examplbosf to adjust the risk level. The risk level cascabe
influenced as already mentioned by contract paramptemium loadings, or equity capital.
% See e.g. Grindl, Post, and Schulze (2006).
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natural hedging. To assess the validity of thisiargnt in more detail in the present setting,
we apply our model to recently observed changesartality and analyze the effectiveness of
active product mix under these mortality assumjstion

To reflect an insurance company’s actual experi@iaghanging mortality, an approach tak-
ing into account empirically observed changes intality and mortality adverse selection—
which does not only refer to the fact that the lesfemortality between term life insurance
policyholders and annuitants might differ but ateers to the risk that the development of
mortality rates might not be identical—is appropiaVe thus apply our model to the chang-
es observed in the UK and the Republic of Irelaenivben 1992 and 2000 by using the mor-
tality tables of the Continuous Mortality Investiga?’ (CMI), thereby distinguishing be-
tween tables for annuitants and life insurancecghbblders and thus accounting for adverse
selection. Here, the exchange of the old for the lfe tables accounts for an increase in life
expectancy in the last decade, i.e., a longevignago. Hence, realized mortality will be low-
er than assumed mortality, thus increasing anmafouts and decreasing term life insurance
payouts.

The fair premium and fair benefits are calculatethg the death rates from the 1992 table.
The resulting annuity is 81, while the annual pramifor the term life insurance contracts is
46 and the death benefit 19,739. These input paeasare used for the same simulation
analysis conducted before. The numerical resuftthi®two risk measures and the CP as well
as the optimal hedge ratily for the experienced changes in mortality betwe23Pland 2000
as implied by the CMI tables are shown in Figur@he blue line with stars shows the risk of
an insurance company when mortality is equal toaily assumed mortality, while the red
dash-dotted line reflects the new risk situatioremwinealized mortality is equal to the rates
implied by the 2000 mortality table and thus lowsan expected. In line with the analysis in
the previous section, the random numbers of desdthgex, Dy, is simulated from a Poisson-
distribution with D, ~ Poissor{ ELk,), where the exposure to rigk is determined by the
size of the insurance portfolio ang, is calculated byy, =-In (l—qx) with g, given by the
CMl tables.

2’ The CMI is an institution which carries out mdittaresearch for the population of the UK and Bepublic
of Ireland on the basis of data provided by liféaefs. It regularly publishes mortality tables fbe popula-
tion of, e.g., life insurance policyholders and gieners, taking basis risk into account. CMI's lifbles
have also been adopted by the Actuarial Professitire UK.
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Figure 7. Contractual payout obligations, probability ofaldt and mean loss subject to port-
folio composition and optimal hedge rati for a change of mortality corresponding to the

exchange of mortality table CMI from 1992 to 2000
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Comparing these results with the ones presentdi@reéine higher sensitivity of a portfolio of
life insurance d = 1) to changes in life expectancy compared toréqio of annuitiesd =

0) is considerably reduced or even eliminated, deéjpg on the risk measure. The relative
change in the probability of default is 24.1% fopaertfolio of annuities and -33.6% for a
portfolio of term life insurances, while the changea portfolio of life insuranced(= 1) was
multiple times that of a change in a portfolio @flyoannuities § = 0) before. For the mean
loss, the effect is even reversed such that aghartbf annuities is more sensitive to changes
in mortality (+46.0% for a portfolio with only anitiés as compared to -33.3% for a portfolio
with only life insurance). This can be ascribedhe realized improvement in mortality rates
implied by the change in mortality tables, becanggrovements in mortality rates occurred
mainly at older ages in the last decade. Theretbeemortality rates relevant to life insurance
changed less than those applicable to annuitiespifgethese different changes in the respec-
tive relevant range of mortality rates, the impaicthe change on the expected benefit pay-
outs and on the risk of the life insurance compaaystill be hedged. The optimal hedge ratio
d* increases substantially and now lies between 338%8% depending on the risk measure
chosen (compared to 10% — 28% in the previousnggttirhe optimal hedge ratio calculated
in this setting is considerably larger than thesoabserved for the previously modeled sce-
narios. However, since one cannot generalize #sslr based on one example, further anal-
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yses seem necessary to examine in depth the inpdbe exact changes of mortality and
adverse selection on the optimal hedge ratio (s¢ee@ and Wesker, 2011).

In particular, differences compared to the previcesults may stem from adverse selection
effects and the different implementation of systeenaortality risk. The modeled scenarios
for systematic mortality risk in the previous sags imply a gradual decrease (increase) of
mortality below (above) the expected level, sifweérror terms, impacts mortality cumula-
tively over time. Thus, this implies a larger déiaa between expected mortality and realized
mortality towards the end of the contract term, allhimpacts life insurance more severely
than annuities due to the different timing of pagoand thus leads to a lower fraction of life
insurances needed for natural hedging. In the étap@nalysis, using the data from CMI, in
contrast, we assume an immediate decrease in mpottathe level implied by the 2000 CMI
table, which is not entirely realistic since thebanges occurred gradually during the covered
time span. However, due to lack of data for thery@a between, this effect cannot be taken
into account. Thus, this assumption contributethéohigher hedge ratios found in this analy-
sis since the effect of the greater deviation oftality towards the end of the contract term is
not reflected. The differences in results mightHar be reducible when implementing a dif-
ferent mortality model that specifically fits U.Knortality data, as, e.g., the Cairns, Blake,
and Dowd (2006b) two-factor model. Yet, our anaysd the effectiveness of natural hedging
under empirical changes in mortality rates stilll atready demonstrates that changes in mor-
tality can be diversified by an active product management, even if an improvement does
not occur evenly across ages and the life insurandeannuities tables are impacted differ-
ently. The optimal hedge ratio, however, does yending on the exact realized changes,
indicating that the quality of an estimate abowt &xpected improvement in mortality rates
will be vital for a perfect hedge of mortality risk this estimate is not available or is unrelia-
ble, the effect of mortality risk can still be reda substantially by means of natural hedging
by signing approximately 20% life insurance cortsand, by conducting scenario analyses
as presented in the present analysis, the extatgwsitions in risk measures can be estimated
to obtain a more holistic picture of the life ingtis risk situation.

Further analyses and robustness checks

To check the robustness of our results with resfmethe restrictive assumption of business
being written only once, we repeat our analysistiier situation in which the insurance com-
pany writes business repeatedly every five years.thNéreby first investigate the impact of
the modeled scenarios if premiums and benafissnotadapted to new mortality rates, and,
second, the reaction in the risk measures whenfite@®d premiumsare adapted to new
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mortality rates for new business immediately, i@, business written frorh=5 on. The re-
sults of these analyses are shown in Figure AtBamppendix.

Our main finding is that the natural hedging efédoétween term life insurance and annuities
do not substantially differ compared to the setiiigere business is written only once. In par-
ticular, the reaction in all risk measures is meggere when new business is written and pre-
miums and benefits are not adapted (for examptehBomortality scenario, the probability of
default increases more than twofold for a portfafoonly life insurance). Considering the
intersection points of all graphs, these are dhiftevards more annuities and are roughly at
d = 40% for the probability of default arti= 50% for the mean loss (see Figure A.3 a)). The
same is true for the case in which the contracarpaters are adapted to realized mortality.
While the impact of mortality risk can be reducezhsiderably by immediately adjusting
premiums and benefits to realized mortality, thpaet of mortality risk is still not negligible.
For instance for a portfolio with only life insur@ the mean loss still changes by -67.9% and
+281.3% in response to the modeled scenarios, whicthe longevity scenario is approxi-
mately the same as in the single portfolio casé.(%), while for the mortality scenario, the
impact is still greater than in the single portiotiase (+195.0%). The intersection and thus
the hedge ratio at which mortality risk can be legtldecreases as compared to the case when
premiums and benefits are not adapted and thus smdweser to the optimal hedge ratio ob-
served for the single portfolio case (see Figui2#).

Thus, our investigation confirms that the effeatiess of natural hedging as discussed in the
previous subsections is in general not restriateitié single portfolio case and that in the pre-
sent model setup, the consideration of a singl&giar seems sufficient to obtain central in-
sight on the effectiveness of natural hedging.

4. SUMMARY

In this paper, we investigate the effectivenesgaitiral hedging for immunizing a portfolio

of actuarially modeled term life insurance and atiesiagainst changes in mortality rates in a
multi-period setting over 35 years. We extend presianalyses by including assets and lia-
bilities in a dynamic framework and explicitly focwn assessing the risk situation of a life
insurer with respect to mortality risk, therebyngsthe probability of default and mean loss.
Systematic mortality risk is first assessed byrigkinto account the uncertainty in the time
trend, where scenario analyses were conducted asloggevity scenario, i.e. an increase in
life expectancy, and a mortality scenario, resglim a lower than expected life expectancy,
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and, second, by comparing actually experiencedgdgsmim mortality rates. To isolate the ef-
fect of natural hedging on risk, we fix the totaintract volume with regard to the present
value of premiums and benefits for different pdif@ompositions of term life insurance and
annuities. In this setting, we determine the optipraduct mix that eliminates the risk of
changes in the respective risk measure for chaingesrtality rates. In addition, we simulta-
neously consider the absolute level of risk assediavith an optimal, immunizing portfolio
by means of the insurer’s asset portfolio.

Our results demonstrate that the impact of moytalgk on the company as a whole is con-
siderably higher than its impact on contractualquaiyobligations on the liability side, which
has been focused in previous studies. In the ceraidexample, the modeled longevity sce-
nario implies a change of 17.5% in the probabitifydefault for a portfolio of annuities as
compared to a change of 7.3% for the contractughpat obligations. This indicates that the
one-sided consideration of the latter may seriousbjudge the true impact of mortality risk
on the risk situation of a life insurance company.

Furthermore, the overall risk of an insurance camgpé@bsolute level and with regard to
changes in mortality rates) can be considerablyaed through portfolio composition due to
the adverse time structure of payouts for term ilifeurance and annuities, but the risk-
minimizing portfolio and the portfolio hedging agat shifts in mortality are not identical,
implying that the insurer consequently faces adraffl between risk minimization and mor-
tality hedging. In this work, we focus on the effeeness of natural hedging for immunizing
a portfolio against mortality risk due to the seamess of alternative instruments to manage
and the potential severe impact of this risk. Wereby extend previous studies by showing
how to choose a desired company safety level hystédg the investment strategy while sim-
ultaneously having an immunizing portfolio.

One main finding is that the insurer’s initial irfiment strategy can have a substantial impact
on the effectiveness of natural hedging and shthuld be taken into account when determin-
ing the optimal natural hedge ratio. In particuaGgonservative asset management generally
requires a lower portion of term life insuranceslala more aggressive investment strategy
implies that more term life insurances should bd.d6ven though the absolute level of risk
associated with an immunizing portfolio compositican vary substantially for different in-
vestment strategies and different risk measuras,rédlatively stable when comparing differ-
ent scenarios for systematic mortality risk for evhthe portfolio is immunized. Thus, while
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the considered scenario has an impact upon thenapportfolio composition, it does not
substantially influence the level of risk of thenmanized portfolio.

To check the robustness of the results based wpmisdenarios for systematic mortality risk,
we further studied the effect of natural hedgingewhusing actually experienced changes in
mortality rates. The general observations do nathhdiffer from the previous ones, implying
that, in our setting, adverse selection is in gaineot an impediment to the effectiveness of
natural hedging. However, the optimal hedge ratib\saries considerably depending upon
the exact realized changes in age groups, indgdhiat the quality of an estimate about the
expected improvement in mortality rates will beaitor the hedging success with regard to
mortality risk. In this context, future researchultbfurther study the impact of adding rein-
surance and other risk transfer instruments inctirgext of natural hedging, since this may
reduce the overall risk level and shift the optilmedige ratio. This might be particularly help-
ful if a change in the composition of an insurapoefolio is not easily achievable in sales. In
any case, the consideration of natural hedgingnimunizing a portfolio against changes in
mortality appears vital for insurers, and risk ngeraent programs should take these consid-
erations into account to avoid adverse effects fsgstematic mortality risk.

Overall, our analysis emphasizes the importanaeatifral hedging for managing systematic
mortality risk, as changes in mortality rates candiversified by an active product mix man-
agement, even if it does not occur evenly acrosagas. Furthermore, the consideration of
assets and liabilities and the comparison of diffierisk measures by means of scenario anal-
yses allowed new insight in the effectiveness dtirzh hedging and the immunization of a
fixed risk level, which is of relevance not only tine context of diversification benefits in
Solvency Il that reduce solvency capital requiretsebut also when calculating the Market
Consistent Embedded Value of life insurers.
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APPENDIX

Figure A.1: Estimated value of exa( andby over all ages
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Figure A.3: Probability of default and mean loss subject tafpbo composition for a lon-
gevity and a mortality scenario with and withouapting premiums and benefits to new mor-

tality rates when new business is written everg frears
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