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ABSTRACT 

 
Operational risk can substantially impact an insurer’s risk situation and is now 
increasingly in the focus of insurance companies, especially due to new European 
risk-based regulatory framework Solvency II. The aim of this paper is to model and 
examine the effects of operational risk on fair premiums and solvency capital 
requirements under Solvency II. In particular, three different approaches of 
deriving solvency capital requirements are analyzed: the Solvency II standard 
model, a partial internal model, and a full internal model. This analysis is not only 
of relevance for Solvency II, but also regarding an insurer’s Own Risk and 
Solvency Assessment (ORSA) that is not only planned in Solvency II, but also by 
the NAIC in the United States. The analysis emphasizes that diversification plays a 
central role and that operational risk measurement and management is highly 
relevant for insurers and should be integrated in an enterprise risk management 
framework. 

 

Keywords: Operational risk, Solvency II, ORSA, CAPM 

JEL classification: C51, G22, G31, G32 

 

1. INTRODUCTION 

 

In the context of new risk-based capital requirements for banks and insurers imposed by Basel 

II/III and Solvency II, respectively, the discussion about operational risk intensified and 

especially large insurers are now confronted with the need to develop and implement adequate 

risk measurement and management instruments to deal with operational risk. In Solvency II, 

operational risk is defined analogously as in Basel II/III as “the risk of loss arising from 

inadequate or failed internal processes, personnel or systems, or from external events. 

Operational risk […] shall include legal risks, and exclude risks arising from strategic 

decisions, as well as reputation risks” (see European Parliament and the Council, 2009, 

Article 13, No. 33, Article 101, No. 4).1 Operational risk is also of high relevance for the 
                                                 
*  Nadine Gatzert and Andreas Kolb are at the Friedrich-Alexander-University (FAU) of Erlangen-Nuremberg, 

Chair for Insurance Economics, Lange Gasse 20, 90403 Nuremberg, Germany, Tel.: +49 911 5302 884, 

nadine.gatzert@fau.de, andreas.kolb@fau.de. 
1 See also Basel Committee (2004, p. 137). In Basel II/III, operational risk is categorized into the seven event 

types “internal fraud”, “external fraud”, “employment practices and workplace safety”, “clients, products, & 

business practice”, “damage to physical assets”, “business disruption & systems failures” and “execution, 
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National Association of Insurance Commissioners (NAIC), where the potential inclusion of a 

specific charge for operational risk within the U.S. system of risk-based capital for insurers is 

discussed (see Vaughan, 2009; PwC, 2012). Besides the new regulatory requirements, cases 

of high operational losses in the recent past also strongly emphasize the importance and 

considerable risk associated with operational loss events. One of the most mentioned events in 

this context is the bankruptcy of Barings Bank in 1995, which was followed by a $1.3 billion 

loss caused by its rogue head derivatives trader in Singapore.2 The potential impact of 

operational losses on an insurer’s risk situation is also stressed by figures regarding potential 

insurance fraud by policyholders, which in the German insurance market, for instance, is 

estimated to about €4 billion per year (see Hiebl, Roedenbeck, and Kiefer, 2012). In the third 

party liability insurance only, 25% of all claims are suspected to be fraudulent and for an 

average motor liability insurance company, losses due to fraud are estimated to €32.5 million 

per year (see Hiebl, Roedenbeck, and Kiefer, 2012).3 The magnitude of these operational loss 

events in the past strongly demonstrates the need for an adequate measurement and 

management of operational risks, which is also required according to the new framework 

Solvency II. The aim of this paper is to model and quantify the effects of operational risk 

from an enterprise perspective by focusing on an insurer’s pricing and solvency capital 

requirements under Solvency II. We thereby compare the Solvency II standard formula with a 

partial and a full internal model. 

 

A large part of the academic literature concerns the modeling of operational risk. Cruz (2002), 

McNeil, Frey, and Embrechts (2005), Gourier, Farkas, and Abbate (2009), and Shevchenko 

(2010), for instance, point out the importance of extreme value theory for calculating 

aggregate losses by using the loss distribution approach. Another part of the literature 

empirically analyzes operational loss data. While most of these studies examine empirical 

data from the banking sector (see, e.g., Moscadelli, 2004; de Fontnouvelle et al., 2003; Dutta 

                                                                                                                                                         
delivery, & process management”. This categorization of operational risk is also suggested for insurers by the 

German Insurance Association (see GDV, 2007, p. 10). Note that in Basel II, operational risk was introduced 

as a third risk class in addition to market and credit risk (see Cummins, Wei, and Xie, 2011; Kamiya, Schmit, 

and Rosenberg, 2011), while in insurance, a more sophisticated risk classification system would, e.g., 

separately define financial risks (e.g., market, credit, etc.), policyholder insurance risk (e.g., property 

insurance, workers compensation insurance, health insurance, etc.), business risk (e.g., management, strategy, 

etc.) and operational risk (consistent with Basel II and Solvency II). 
2 Other examples of operational risk events include the Nasdaq odd-eighths pricing scandal in 1994 as well as 

the losses of Société Générale in 2008 and UBS in 2011, both due to rogue traders. Similar examples in the 

insurance sector include the Swiss Life investment scandal in 2002, the AIG Finite Reinsurance Accounting 

fraud in 2005, as well as the AIG credit default swap write-down in 2008. 
3 Another major issue is fraud in the context of commissions paid to agents. For example, the bankruptcy of 

the German MEG AG in 2009 caused irrecoverable losses for several insurance companies due to fraud in 

commissions (see Altenähr, 2010). 
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and Perry, 2006), Hess (2011b) also investigates operational loss data for insurance 

companies. Several studies dealing with operational risk also assess the dependencies between 

the risk cells of banks, including, e.g., Böcker and Klüppelberg (2008), Ebnöther et al. (2003), 

Frachot, Roncalli, and Salomon (2004), and Mittnik, Paterlini, and Yener (2011). 

Furthermore, Hess (2011a) examines the impact of the financial crisis on operational risk, 

while Cummins, Lewis, and Wei (2006) focus on the market value effects of operational loss 

events for U.S. banks and insurers, and spillover effects of operational risk events on banks 

and insurers are analyzed in Cummins, Wei, and Xie (2011). Different forms of insurance 

contracts for operational risk are analyzed in Peters, Byrnes, and Shevchenko (2011) for the 

case of banks. 

 

In this paper, we contribute to the literature by presenting a model for how to integrate 

operational risk from an enterprise perspective and, based on this, focus on the impact of 

operational risk on an insurer’s pricing and capital requirements under Solvency II. We 

thereby compare the Solvency II standard model with a full internal model using the risk 

sensitive loss distribution approach for operational risk and a partial internal model that only 

focuses on the operational value at risk, i.e. without taking into account diversification effects. 

In the analysis, we also study the impact of dependencies between operational risk and the 

insurer’s loss distribution, amongst others, using the concept of copulas. The model is 

calibrated based on empirical data from previous literature and the numerical analysis allows 

the identification of key characteristics that increase or decrease capital requirements above or 

below the static risk-based factor used for the Solvency II standard model. For insurers, these 

considerations are also of special relevance in the context of their Own Risk and Solvency 

Assessment (ORSA) as required by Solvency II’s Pillar 2 or the NAIC in the United States 

(see NAIC, 2011; Blanchard, 2012; Wicklund and Christopher, 2012). 

 

One main finding is that diversification plays an important role in the quantification of 

operational risk and that insurers should closely monitor and manage operational risk. In 

particular, our results reveal that the capital requirements of the Solvency II standard model 

may severely underestimate operational risk. In contrast, a partial internal model that only 

focuses on the operational value at risk, i.e. without taking into account diversification effects, 

tends to overestimate the capital requirements for operational risk. In any case, operational 

risk measurement and management is highly relevant for insurers and should be integrated in 

an enterprise risk management in order to adequately control and steer an insurance company. 

 

The remainder of the paper is structured as follows. Section 2 includes the model framework 

of the insurer including operational risk, premium calculation, and risk measurement. Section 
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3 presents the results of the numerical analyses. A discussion of further issues regarding 

measuring and managing operational risks is given in Section 4, while Section 5 concludes. 
 

2. MODEL FRAMEWORK 

 

This section describes the model framework used to quantify the effects of operational risk on 

the insurer’s risk situation and solvency capital requirements. First, we specify how 

operational risk is modeled and illustrate the model of the insurance company. Next, fair 

contracts and the determination of premiums are presented, followed by a comparison of 

different ways of how to derive solvency capital requirements. 

 

Modeling operational risk 

 

To model the operational risk of an insurer, the loss distribution approach (LDA) is used (see, 

e.g., Gourier, Farkas, and Abbate (2009) and Hess (2011a)), which implies that the total 

aggregate loss is given by 

 

1

,
tN

t i
i

Z X
=

=∑  (1) 

 

where Zt denotes the aggregate loss in the time interval [0, t], Nt the loss frequency in the 

same time period and Xi the loss severity of the i-th event. Furthermore, the losses Xi are 

independently and identically distributed random variables and the loss frequencies and loss 

severities are assumed to be independent.4 The loss frequencies are modeled by a 

homogenous Poisson process with intensity λ >  0, i.e. the distribution of the frequencies is 

given by 

 

( ) ( ) ( )
.

!

n

t
t t
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P n P N n e

n
λ λ−= = =  

 

The severities of the claims in the upper tail of the loss distribution are described by means of 

extreme value theory (EVT). In previous operational risk models (see, e.g., Gourier, Farkas, 

                                                 
4 The total operational risk of a bank or an insurer is then given by the aggregation of the dependent total 

aggregate losses (see Equation (1)) of all risk cells. To model the dependence between different operational 

risk cells the literature suggests splitting into models for frequency dependence and severity dependence. 

Hence, in this paper only one risk cell is considered and for a single risk cell the assumption of independent 

frequencies and severities is satisfied (see, e.g., Böcker and Klüppelberg, 2008). 
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and Abbate, 2009; Hess, 2011a), EVT is applied in the upper tail of the loss distribution as 

conventional distributions like the lognormal, exponential or gamma distribution are not 

capable to reproduce the heavy tails of operational losses. As EVT focuses on the tail area of 

a distribution, it provides a possibility to approximate losses that exceed a high threshold u by 

the Generalized Pareto Distribution (GPD), which is given by 

 

( ), 1/

1 exp , 0

,

1 1 , 0

y

GPD y
y

ξ β ξ

ξ
β

ξ ξ
β

−

  − − =  
 = 

  − + ≠ 
 

 

 

where β >  0, y ≥ 0 if ξ ≥ 0 and 0 ≤ y ≤ (-β/ξ) if ξ <  0, y = x – u. The parameters ξ and β are 

called the shape and the scale, respectively, where ξ is the key parameter and determines the 

heavy-tailedness of the distribution.5 To model the loss severity distribution F(x), we thus fix 

the threshold u at the qth percentile6 and construct a spliced distribution function, where the 

body of the distribution, i.e. the losses below the threshold u, follows a lognormal distribution 

Flog, and the tail, i.e. the losses over the threshold u, is modeled with the GPD, FGPD, i.e. the 

loss severity distribution is given by 

 

( ) ( )
( ) ( )

log ,
.

1 1 ,GPD

F x q x u
F x

q F x u q x u

⋅ ∀ ≤=  ⋅ + − ⋅ − ∀ >
 

 

Based on this relation, the distribution of the total aggregate loss Zt of Equation (1) in the time 

interval [0, t] can be modeled by  

 

( ) [ ] [ ] [ ] ( ) ( )*

0 0

| , 0, 0,n
t t t t t n

n n

G x P Z x P N n P Z x N n P t F x x t
∞ ∞

= =

= ≤ = = ≤ = = ≥ ≥∑ ∑  

                                                 
5 In particular, three different cases can be distinguished: for ξ = 0, the GPD equals an exponential distribution, 

whereas for ξ < 0, a short-tailed Pareto type II distribution is obtained. In the case of ξ > 0, an ordinary 

Pareto distribution is induced and, therefore, the GPD is heavy-tailed. If the chosen threshold u is reasonably 

high, the theorem of Balkema and de Haan (1974) and Pickands (1975) states that the GPD is the canonical 

distribution for modeling excess losses over the defined threshold u. Moreover, for most of the classical loss 

distributions, the excess distribution converges to the GPD when the threshold u is increased (see McNeil, 

Frey, and Embrechts, 2005, pp. 277-278), which means that the excess distribution over a high threshold u 

can be approximated by the GPD. 
6 The choice of the threshold u is a central aspect when modeling the spliced distribution function. On the one 

hand, it has to be high enough to fulfill the limit law condition. On the other hand, a sufficient number of 

observations must be ensured to properly estimate the upper tail of the distribution function (see, e.g., 

Gourier, Farkas, and Abbate, 2009). 
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where Fn*(x) denotes the n-fold convolution of F(x). 

 

Modeling the insurance company 

 

Figure 1 shows a balance sheet of the insurance company at time t, where At is the market 

value of the assets, St denotes the value of insurance claims, and Zt comprises the losses 

resulting from operational risk. The total value of liabilities is thus composed of St and Zt, and 

Et is the company’s equity, which is determined as the difference between assets and 

liabilities. 

 

Figure 1: Balance sheet of the insurance company at time t = 0, 1 

Assets Liabilities 

At Et  

 St }  =  Lt 
 Zt 

 

At time zero, the insurer receives premiums 1Sπ  paid by the policyholders for insured losses 

at time t = 1, and an initial contribution by shareholders E0. Thus, the total initial capital sums 

up to 

 
1

0 0 .SA E π= +  

 

The initial capital is invested in the capital market, whereby a fraction γ is invested in high-

risk assets, A0,high = γ · A0, and the remaining part (1–γ) is invested in low-risk assets, 

A0,low =  (1–γ) · A0. Low-risk and high-risk assets are assumed to be lognormally distributed 

with mean E(A1,j) and standard deviation σ(A1,j), for j = low,high. Thus, the total value of the 

asset portfolio A1 at time t = 1 is given by 

 

( )1 1, 1,1 .high lowA A Aγ γ= ⋅ + − ⋅  

 

The insurer becomes insolvent if assets are not sufficient to cover the liabilities, i.e. if L1 >  A1, 

as shareholders have limited liability. In this setting, operational risk will have an impact on 

the premium paid by policyholders for insured losses at time 1, as a higher default risk 

(caused by the presence of operational risk) would generally decrease the value of the 

insurance policy. Thus, to study the impact of operational risk on pricing and risk assessment, 

we compare three different cases as exhibited in Table 1. 
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Table 1: Overview of different assumptions regarding operational risk with respect to pricing 
and risk measurement  

Case No. i Operational risk taken into 
account in basic pricing 

Operational risk taken into 
account in risk measurement 

1 
(Setting without 
operational risk) 

 
No 

 
No 

2 
(Setting with 
operational risk) 

 
No 

 
Yes 

3 
(Setting with 
operational risk) 

 
Yes 

 
Yes 

 

First, we consider the setting without operational risk, i.e. where operational risk is neither 

taken into account in pricing nor in the calculation of risk measures (Case 1), i.e. Z1 = 0. This 

serves as a reference case and allows an analysis of how risk measures are wrongly assessed if 

operational risk is set to 0. In the second case, operational risk is considered in the calculation 

of risk measures, but it is not taken into account in basic pricing (Case 2). Third, operational 

risk is considered in pricing as well as in the calculation of risk measures (Case 3). We hereby 

assume that – in a world with operational risk – operational losses are covered first, as they 

occur before the insurer is able to pay out the policyholders’ claims. Thus, depending on the 

assumptions regarding operational risk laid out in Table 1 (Cases i = 1, 2, 3), one can 

distinguish between three cases (realizations) at time 1: 

 

1. 1 1 1 1 1,i i i iA S Z A Z< + ≥ : the insurer is insolvent; operational losses are paid out, but 

insured losses can only be covered partially or not at all, 

2. 1 1 1 1 1,i i i iA S Z A Z< + < : the insurer is insolvent; neither operational nor insured losses 

can be covered, 

3. 1 1 1
i iA S Z≥ + : the insurer is solvent; operational and insured losses can be covered. 

 

Hence, at time t = 1, the operational loss claims ,
1
Z iL , policyholders’ claims ,

1
S iL , and the 

equityholders’ position 1
iE , for Cases i = 1, 2, 3, are given by 

 

( ) ( ),
1 1 1 1 1 1min , max ,0Z i i i i i iL A Z Z Z A= = − − , 

 

( ) ( )( ), , ,
1 1 1 1 1 1 1 1min , max ,0S i i Z i i Z iL A L S S S A L= − = − − − , and 

 

( ), ,
1 1 1 1max , 0i i S i Z iE A L L= − − , 
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thus summing up to 1
iA . 

 

Fair contracts and determination of premiums 

 

Valuation of equityholders’ and policyholders’ claims is conducted using the capital asset 

pricing model (CAPM) (see Gründl and Schmeiser, 2002). To ensure a fair situation from the 

shareholders’ perspective, the value of equityholders’ claims must be equal to their initial 

contribution (depending on the assumptions regarding operational risk, Cases i = 1, 2, 3), i.e.  

 

( ) ( ) ( ) !

0 1 1 1 0, ,fri i i
mV E e E E Cov E r Eη−  = ⋅ − ⋅ =   (3) 

 

where Vt(.) stands for the valuation approach used to determine the market value at time t 

(here by means of the CAPM), rm denotes the return of the market portfolio at time t = 1 and 

η stands for the market price of risk, such that ( )( ) ( )2/ ,m f mE r r rη σ= −
 
where r f denotes the 

risk-free interest rate. To ensure that Equation (3) holds, the policyholders’ premiums are 

adjusted accordingly. This is done in two steps. First, the basic premium 1,S basic
iπ  is calculated 

by 

 

( ) ( ) ( )1, , , ,
0 1 1 1 ,frS basic S i S i S i

i mV L e E L Cov L rπ η−  = = ⋅ − ⋅  . 

 

Second, the fair premium 1S
iπ  is derived by adding a loading1S

iδ , 

 

( ),1
1 11 ,

S basicS S
i i iπ π δ= ⋅ +  

 

which is calibrated such that the situation is fair from the shareholders’ perspective, i.e. that 

Equation (3) is satisfied.7 

 

Note that the use of an alternative paradigm for deriving the fair premium may actually imply 

a higher (or lower) loading and thus also a larger difference between the cases with and 

without operational risk. According to the three-factor model by Froot (2007), for instance, an 

extension of the two-factor model proposed by Froot and Stein (1998), firms do not only take 

into account the systematic risk factor as in the CAPM in setting premiums, but additionally 

                                                 
7 Note that if premiums are not adjusted, the shareholder value would decrease accordingly. In the present 

setting, it is thus assumed that shareholders have alternative investment opportunities in financial assets that 

do not involve operational risk. Hence, they would not agree to carry operational losses and require a 

respective adjustment of policyholders’ premiums (see also Doherty and Garven (1986) for similar 

arguments regarding double-taxation). 
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include a second factor that reflects the covariability of the product’s returns with the firm’s 

pre-existing portfolio of non-tradable risks (driven by the insurer’s and the customers’ 

aversion to insolvency risk), and a third factor that accounts for the covariance with firm-wide 

skewed risks. The latter takes into account that negatively skewed exposures are generally 

associated with higher costs and that they cause firms to conduct more aggressive reinsurance 

and hedging activities as well as make less aggressive and more diversified underwriting and 

investment decisions (Froot, 2007, p. 276). The extent of the difference in the loading when 

using the CAPM as compared to the Froot (2007) three-factor model would generally depend 

on the extent of the two additional factors that would also be driven by possible 

concentrations of operational risk on the balance sheet (e.g., large third-party distribution 

systems) as well as the correlation between operational risks and other assets or liabilities 

(e.g., financial guaranty underwriting). Hence, with increasing correlations and increasing risk 

concentrations of operational risks on the balance sheet, the fair loading would increase, 

which in turn would imply a reduced risk level for the insurer due to a higher premium 

income (given a sufficient demand by policyholders). 

 

Solvency capital requirements (SCR) and risk measurement 

 

Based on the previously described model framework and the assumptions regarding 

operational risk, the solvency capital requirements (SCR) can be derived. Under Solvency II, 

the SCR are defined as the amount of capital needed at time t = 0 to meet future obligations 

for a required safety level α using the value at risk (VaR) with a confidence level of 99.5% 

(α = 0.5%) on the basis of the risk-bearing capital at time t = 1 (see European Parliament and 

the Council, 2009, Article 101, No. 3). The risk-bearing capital (RBC) characterizes the 

available economic capital and is defined as the difference between the value of assets and 

liabilities,8 
 

1 1 1 1 1 1
i i i i iRBC A L A S Z= − = − − , and (4) 

 

( ) ( ) ( ) ( )0 0 1 0 1 0 1 0 1 1
i i i i iRBC V A V L V A V S Z= − = − +

 
 

where i = 1, 2, 3 (see Table 1 for assumptions regarding operational risk). The solvency 

capital requirements are defined based on the VaR of the change of the RBC over one period, 

where ,
1
i jRBC  of Equation (4) is discounted with the risk-free interest rate r f (see, e.g., Gatzert 

and Schmeiser, 2008), such that 
                                                 
8 Under Solvency II, the difference between assets and liabilities is also called the net asset value (NAV) 

instead of RBC (see EIOPA, 2010, p. 91-92). 
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( )1 0 , 1, 2, 3.fri i iSCR VaR e RBC RBC iα
−= − ⋅ − =  (5) 

 

As focus is laid on the impact of operational risk on an insurer’s solvency situation and 

solvency capital requirements, three approaches for deriving the solvency capital 

requirements are compared: 1) using the Solvency II standard model for operational risk 

(“SM”), 2) a partial internal model for operational risk (“PM”), or 3) a full internal model 

(“ IM”)  for deriving the total SCR.  

 

First, we assume that the SCR for operational risk are calculated using the Solvency II 

standard model as laid out in QIS 5 (see EIOPA, 2010, p. 103). In this case, capital 

requirements for operational risk are given by 30% of the basic solvency capital requirements 

(BSCR), which are calculated without taking into account operational risk, i.e. by setting 

1 0iZ = . Note that this does not affect the calculation of premiums, which is still conducted 

according to the three cases defined in Table 1 (i.e. depending on whether operational risk is 

taken into account in pricing or not). The BSCRi is thus derived by 

 

( )1, 0,
fri i i

SM SMBSCR VaR e RBC RBCα
−= − ⋅ − 9

 
(6) 

 

where 1, 1 1
i i
SMRBC A S= −

 
and 

 

( ) ( ) ( )0, 0 1, 1, 1, ,fri i i i
SM SM SM SM mRBC V RBC e E RBC Cov RBC rη−  = = ⋅ − ⋅  . 

 

The capital requirements for the operational risk ,
i
SM OpSCR , in Cases10 i = 2, 3 can then be 

calculated by multiplying the BSCRi of Equation (6) with the risk-based factor 0.3 prescribed 

in the Solvency II standard formula, such that 

 

, 0.3 , 2,3.i i
SM OpSCR BSCR i= ⋅ = 11 (7) 

 

                                                 
9 Note that operational risk itself is not modeled in the BSCR. 
10 In Case 1 (“without operational risk”) no additional solvency capital requirements for the operational risk 

need to be calculated, i.e. 1
, 0i

SM OpSCR= = and 1 1
,

i i
SM totalSCR BSCR= == . Thus, solvency capital requirements in 

Case 1 are solely calculated with the Solvency II standard model, i.e. neither the partial internal model nor 

the full internal model are used in this case. 
11 Under Solvency II, SCRSM,Op is definied by SCRSM,Op = min(0.3·BSCR,Op) + 0.25·Expul (see EIOPA, 2010, 

p. 103). In the present setting, this can be reduced to the formula stated in Equation (7) as Expul is equal to 0 

due to consideration of a non-life insurer, and as 0.3·BSCR ≥ min(0.3·BSCR,Op), i.e. the real SCRSM,Op might 

even be smaller than the one we calculate. Thus, the derivation of SCRSM,Op may overestimate the actual one. 
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In Cases 2 and 3, the solvency capital requirements according to the standard model 

,
i
SM totalSCR  are thus given by 

 

, , , 1,2,3.i i i
SM total SM OpSCR BSCR SCR i= + =  

 

Second, we use a partial internal model that replaces the risk-based factor of 0.3 of the BSCR 

with the operational value at risk (OpVaR). Here, capital requirements are calculated for 

operational risk only, without taking into account diversification effects (see, e.g., Böcker and 

Klüppelberg, 2005; Biagini and Ulmer, 2009). The OpVaR is given by the value at risk for a 

confidence level of 99.5% of the change in operational losses within one period, where 1
iZ  is 

discounted with the risk-free interest rate r f , for i = 2, 3 ( 1
, 0i

PM OpSCR= = ). Hence, the target 

capital for operational risk ,
i
PM OpSCR  is derived by 

 

( ), 1 0 , 2,3,fri i i
PM OpSCR VaR e Z Z iα

−= ⋅ − =  (8) 

 

with ( )0 0 1 , 2,3i iZ V Z i= = . Hence, the total solvency capital requirements ,
i
PM totalSCR

 
are given 

by the sum of BSCRi (Equation (6)) and ,
i
PM OpSCR

 
(Equation (8)), 

 

, , , 2, 3.i i i
PM total PM OpSCR BSCR SCR i= + =  

 

Third, we calculate the solvency capital requirements with a full internal model, thus also 

taking into account diversification benefits. The risk-bearing capital 1
iRBC  at time t = 1 is 

calculated as the difference between 1
iA  and 1

iL , consisting of insured losses and operational 

losses, for i = 1, 2, 3. Afterwards, the solvency capital requirements ,
i
IM totalSCR  are calculated 

as defined in Equation (5), such that 

 

( ), 1 0 , 1, 2, 3.fri i i
IM totalSCR VaR e RBC RBC iα

−= − ⋅ − = 12 (9) 

 

We further calculate the residual in order to obtain the implicit operational risk capital charges 

,
i
IM OpSCR

 
by the difference between the ,

i
IM totalSCR  of Equation (9) and the BSCRi of Equation 

(6), thus 

 

, , , 1, 2, 3.i i i
IM Op IM totalSCR SCR BSCR i= − =  

 

Table 2 summarizes the three approaches for deriving solvency capital requirements. 

                                                 
12 Note that in Case 1 (“without operational risk”), 1 1

,
i i
IM totalSCR BSCR= == . 
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Table 2: Overview of the three approaches for deriving the ,
i
k totalSCR  and ,

i
k OpSCR

 
(k = SM, 

PM, IM) for Cases i = 1, 2, 3 (see Table 1: assumptions regarding operational risk with 

respect to pricing and risk measurement) 

 

Standard model 

(k = SM) 

Partial internal model 

(k = PM) 

Full internal model 

(k = IM) 

iBSCR ( )1, 0,
fr i i

SM SMVaR e RBC RBCα
−− ⋅ −

 

,
i
k totalSCR  ,

i i
SM OpBSCR SCR+  ,

i i
PM OpBSCR SCR+  ( )1 0

fr i iVaR e RBC RBCα
−− ⋅ −  

,
i
k OpSCR  0.3 iBSCR⋅  ( )1 0

fr i iVaR e Z Zα
− ⋅ −  ( ),

i i
IM totalSCR BSCR− * 

*Residually derived 

 

In addition to the SCR, the shortfall probability (SP) is calculated, which is given by 

 

( )1 1 , 1, 2, 3.i i iSP P A L i= < =  

 

3. NUMERICAL ANALYSIS 

 

This section presents numerical results with respect to operational risk measurement and 

management as well as the impact of operational risk on fair premiums, using empirical 

parameters from previous literature. In addition, sensitivity analyses are conducted to identify 

key risk drivers. 

 

Input parameters 

 

The input parameters are summarized in Table 3. The expected value and the standard 

deviation of the company’s loss are based on empirical data of a medium-sized German non-

life insurer as presented in Eling, Gatzert, and Schmeiser (2009). Furthermore, the expected 

values and standard deviations for high- and low-risk assets are based on data from 

representative indices (S&P 500, international government bond indices) following Gatzert 

and Kellner (2011). The parameters for the lognormal distribution of the operational losses as 

well as the parameter for the frequency of operational losses are also based on empirical data 

for U.S. insurance companies as presented in Hess (2011b). The parameters for scale and 

shape of the GPD as well as the quantile q (to determine the threshold u) are adapted from 

Gourier, Farkas, and Abbate (2009). Furthermore, due to the correlation between the size of 

operational losses and the firm size, the simulated operational losses have to be adjusted by 

multiplying the operational losses at time t = 1 with the factor κ to ensure that the operational 
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losses fit with the parameters of the insurance company. As we consider a medium-sized 

German insurance company in the present analyses, a factor κ of 0.30 is applied (see 

Selvaggi, 2009). In addition, a truncation point T is integrated that ensures that every single 

operational loss Xi has a minimum amount, i.e. if an operational loss occurs in the time 

interval [0, t], its amount equals the maximum of the simulated operational loss and the 

truncation point T. The implementation of a truncation point is necessary due to the fact that 

in empirical databases (e.g. Algo OpData and SAS OpRisk Global Data), only operational 

losses over a certain threshold are considered. 

 

Table 3: Input parameters for the basic simulation 
Available equity capital at time t =  0 E0 €48 million 
Parameters for the lognormal distribution of the operational 
loss 

1 1
,Z Zµ σ  1.52, 2.26 

Scale of the GPD of the operational loss β 0.01 
Shape of the GPD of the operational loss ξ 0.89 
Quantile of the threshold u for the mixed lognormal GPD q 90% 
Frequency of operational losses λ 0.15 
Truncation point T €0.1 million 
Adjustment factor of the operational losses κ 0.30 
Expected value of the company loss E(S1) €110 million 
Standard deviation of the company loss σ(S1) 

€22 million 
Expected value of high-risk assets E(A1,high) 1.12 
Standard deviation of high-risk assets σ(A1,high) 

0.23 
Expected value of low-risk assets E(A1,low) 1.06 
Standard deviation of low-risk assets σ(A1,low)

 
0.07 

Investment in high-risk assets γ 0.25 
Expected value of the market portfolio E(rm) 0.08 
Standard deviation of the market portfolio σ(rm) 0.04 
Market price of risk η 37.50 
Kendall’s tau for low-risk and high-risk investment ρτ(Ahigh,Alow) 0.20 
Kendall’s tau for high-/low risk assets and company losses ρτ(A1,S1) 0.10 
Kendall’s tau for high-/low risk assets and operational losses ρτ(Z1,A1) -0.27 
Kendall’s tau for operational losses and company losses ρτ(Z1,S1) -0.05 
Kendall’s tau for market portfolio and high-/low risk assets ρτ(rm,A1) 0.20 
Kendall’s tau for market portfolio and liabilities ρτ(rm,S1) -0.20 
Kendall’s tau for market portfolio and operational losses ρτ(rm,Z1) -0.10 
Risk-free interest rate r f 0.02 

 

When modeling insurance risks, it is important to account for dependence structures between 

the different processes (see, e.g., Gatzert and Kellner, 2011). Therefore, we explicitly model 

the dependence between high-risk and low-risk assets, between the losses resulting from 

operational risk and assets (high-risk and low-risk, respectively), between the losses resulting 

from operational risk and the losses resulting from the insurance policies (company losses), as 
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well as between the company losses and the assets (high-risk and low-risk, respectively).13 

We thereby apply the concept of the Gauss copula (see McNeil, Frey, and Embrechts, 2005, 

p. 193).14 To calibrate the Gauss copula, Kendall’s rank correlation ρτ is used due to its 

invariance against non-linear transformations. The parameter for the correlation between the 

high-risk assets (equity) and the losses resulting from operational risk is based on empirical 

data following Cummins, Lewis, and Wei (2006), where a significant negative stock price 

response to operational loss events in the U.S. insurance industry is revealed.15 We further 

assume that there is small negative correlation between the losses resulting from operational 

risk and the liabilities.16 The parameters for the correlation between the market portfolio and 

the different relevant risk factors are adopted from Gatzert, Schmeiser, and Toplek (2011). 

Numerical results are based on Monte Carlo simulation with 500,000 sample paths. In 

addition, latin hypercube sampling is used to improve the stability of the simulation (see 

Glasserman, 2010, pp. 236-243).17 The parameters were then subject to sensitivity analyses. 

 
The impact of operational risk on an insurer’s pricing, shortfall risk, and solvency capital 
requirements 

 

We first consider the three possible cases laid out in Table 1, i.e. “without operational risk” 

(Case 1), “with operational risk but not taken into account in basic pricing” (Case 2), and 

“with operational risk and taken into account in basic pricing” (Case 3). Case 1 serves as the 

reference case, which can be compared to the other cases in order to illustrate how an 

insurer’s risk level may be misestimated if operational risk is not taken into account. Table 4 

                                                 
13 Kahane and Nye (1975) and Cummins, Lin, and Phillips (2009), e.g., show that the correlation parameter 

between company losses and assets in general depends on the specific insurance line and the investment 

activities and can either be positive or negative. In this analysis, the correlation between assets and company 

losses is set to a positive value (for both high-risk and low-risk assets), but should be empirically calibrated 

for each individual insurance company. 
14 Alternatively, varying dependence structures (e.g. t-copula, Archimedean copula) and non-linear 

dependencies may be appropriate depending on the concrete setting, as they can have a substantial impact on 

results (see Ai and Wang, 2012). 
15 Their estimated correlation coefficient is used in this regard due to a lack of other available information and 

the correlation between low-risk assets and operational risk is set to the same value. Both numbers should, 

however, be subject to further empirical analysis, which holds for all correlations in regard to operational 

risk. 
16 Similar to the correlation between company losses and assets, the correlation between company losses and 

operational risk depends on the individual situation of the insurance company and on the aggregation of the 

different operational risk cells. In the following, this assumption will be subject to a specific sensitivity 

analysis in order to study the impact of different correlations between company losses and operational risk. 
17 We chose a sufficiently high number of sample paths and further implemented latin hypercube sampling to 

achieve low sample standard errors (e.g. for the basic simulation, the sample standard error of the risk-

bearing capital amounts to 0.0341) and ensured that the results remain stable for different sets of random 

numbers. 
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displays the shortfall probabilities for basic premiums (Part a) as well as for fair premiums 

(Part b). When comparing Cases 1 and 2, if the insurer only requires the basic premium 

without additional loadings, one can observe that the shortfall probability strongly increases 

from 0.67% to 1.54% in the presence of operational risk. If operational risk is taken into 

account in pricing, the basic premium decreases due to a higher default option value,18 which 

in turn implies a further increase in the shortfall probability to 1.60% in Case 3. 

 

Part b) in Table 4 displays the shortfall probability if a fair loading is added to the basic 

premiums that ensures that the situation is fair from the equityholders’ perspective (see 

Equation (3)). Operational risk is thereby always included in the calculation of the fair 

loading, but not necessarily in the basic premium. In the setting without operational risk 

(Case 1), the fair premium is considerably lower as compared to both cases with operational 

risk (Cases 2 and 3) and also lower than the basic premium. This also implies a slight increase 

in the shortfall probability from 0.67% to 0.70%. In the situation with operational risk 

(Cases 2 and 3), the fair premiums are equal due to the calibration of the fair loading risk even 

though the basic premiums differed, as shareholders require a risk-adequate compensation on 

their initial contribution and thereby account for operational risk. In line with this, the 

corresponding shortfall risk is equal as well (1.46%), which – due to the positive premium 

loading – is lower than in the case where the insurer only charges the basic premium (1.54% 

and 1.60%). Hence, if premiums are calculated fair from shareholders’ perspective, the 

policyholders are the first to cover the risk of operational losses. 
  

                                                 
18 When operational risk is taken into account in basic pricing, the default option ( )( )1 1 1max ,0ZS A L− −  

increases and, therefore, ( )( )1 1 1 1 1max ,0S ZL S S A L= − − −  is decreasing, which lowers the basic premium. 
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Table 4: Shortfall probability for basic and fair premiums for different assumptions regarding 

the consideration of operational risk in pricing and risk measurement (see Table 1)  

 

Case 1 

(without operational 
risk) 

Case 2 

(with operational risk 
but not taken into 
account in basic 
pricing) 

Case 3 

(with operational risk 
and taken into account 
in basic pricing) 

a) Basic premium 1,S basicπ  

Basic premium 1,S basicπ  117.55 117.55 116.77 

Shortfall probability SP 0.67% 1.54% 1.60% 

b) Fair premium ( )1 1 1, 1S S basic Sπ π δ= ⋅ +  

Fair loading 1Sδ  -0.6% 0.9% 1.6% 

Fair premium 1Sπ  116.86 118.63 118.63 

Shortfall probability SP 0.70% 1.46% 1.46% 

 

We next study the impact of the assumptions regarding operational risk (Cases 1 to 3) on the 

insurer’s solvency capital requirements. In Table 5, the SCR are displayed for the basic 

premiums (Part a) and the fair premiums (Part b). In Case 1 (without operational risk), no risk 

charge for operational risk is required and, therefore, the total solvency capital requirements 

SCRtotal are equal to the BSCR and the three approaches for deriving the SCR coincide. In this 

Case 1, the SCR for the basic premium are about 51.53 and only slightly higher in case of the 

fair premium with 51.54 due to the higher shortfall risk (see Table 4). 

 

In the presence of operational risk (Cases 2 and 3), SCR considerably increase for both fair 

and basic premiums. In Part a) of Table 5 (basic premium) and Case 2, for instance, it can be 

seen that when fully accounting for imperfect correlations between risk factors as in the case 

of the full internal model, diversification benefits between operational risks, insurance risks, 

and market risks result in a considerable reduction of the SCRtotal as compared to the case of 

the partial internal model, where no diversification benefits are taken into account. In 

addition, diversification effects also imply that the SCRtotal is closer to the one of the standard 

model. This diversification benefit amounts to 38.1% in both Cases 2 and 3, as the SCRtotal is 

reduced from 127.59 to 78.93 in Case 2 and from 127.60 to 78.96 in Case 3, respectively.  
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Table 5: The impact of assumptions regarding the consideration of operational risk in pricing 

on solvency capital requirements, given the basic and fair premiums in Table 4 

 Case 1 

(without 
operational 
risk) 

Case 2  

(with operational risk but not taken 
into account in basic pricing) 

Case 3 

(with operational risk and taken into 
account in basic pricing) 

  

Standard 
model 

Partial 
internal 
model 

Full 
internal 
model 

Standard 
model 

Partial 
internal 
model 

Full 
internal 
model 

a) Basic premium 1,S basicπ  

BSCR 51.53 51.53 51.53 (51.53) 51.54 51.54 (51.54) 

SCROp  0 15.46 76.06 27.40* 15.46 76.06 27.42* 

SCRtotal 51.53 66.99 127.59 78.93 67.00 127.60 78.96 

b) Fair premium ( )1 1 1, 1S S basic Sπ π δ= ⋅ +  

BSCR 51.54 51.55 51.55 (51.55) 51.55 51.55 (51.55) 

SCROp  0 15.47 76.06 27.43* 15.47 76.06 27.43* 

SCRtotal 51.54 67.02 127.61 78.98 67.02 127.61 78.98 

*Residually derived as SCRIM,Op = SCRIM,total – BSCR 

 

In Part b) of Table 5, solvency capital requirements are displayed for fair premiums and show 

very similar results as in the case of the basic premium in Part a). In addition, when premiums 

are calculated fair from the shareholders’ perspective, the solvency capital requirements are 

equal in Cases 2 and 3 due to the fair calculation of the premium loading 1Sδ  (see Table 4). 

Thus, fair pricing (using a fair loading) or the consideration of operational risk in basic 

pricing (Case 3) does not considerably impact the SCR, which is mainly due to the low overall 

shortfall probabilities in the present setting. 

 

However, this changes when looking at a setting with higher operational risk as shown in 

Figure 2, where the shortfall probabilities are displayed (right column) for basic premiums 

(upper left graph) and for fair premiums (lower left graph) for varying operational loss 

intensities λ. If the insurer does not impose a fair loading (upper row), the basic premium is 

decreasing in Case 3 for an increasing operational loss intensity λ as operational risk is 

considered in basic pricing, which increases the default risk and thus lowers the basic 

premium (see also Table 4). Therefore, the shortfall probability is increasing faster than in 

Case 2, where operational risk is not included in pricing, implying that the basic premium 

remains unchanged even if the operational loss intensity λ increases. Thus, if premiums are 

calculated without a fair loading (that accounts for operational risk), pricing assumptions 

regarding the basic premium can in fact substantially impact an insurer’s risk situation. In 
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contrast, if premiums are calculated fair from the shareholders’ perspective (bottom row), the 

premium loading adjusts the basic premium for the higher number of operational losses, such 

that the policyholders carry the higher operational risk. Hence, the fair premiums are 

increasing for higher loss intensities and are equal for Cases 2 and 3 (see also Table 4), thus 

also implying the same shortfall probability. 

 

As solvency capital requirements do not considerably differ in Cases 2 and 3, we now only 

focus on Case 3, where operational risk is taken into account in basic pricing, and further 

assume that the insurer imposes a fair premium loading. Figure 3 exhibits results of a 

sensitivity analysis regarding the SCRtotal for varying relevant parameters, including the 

frequency λ of operational losses, the correlation between company losses and operational 

losses ρτ(Z1,S1), and the expected company losses E(S1). 

 

In the upper left graph in Figure 3, the basic and the fair premiums are displayed for an 

increasing frequency λ (see also Figure 2), and the upper right graph shows the corresponding 

SCR for the standard model, the partial internal model, and the full internal model. Here, the 

BSCR is constant and equal for all three approaches, as operational risk is not taken into 

account when deriving the BSCR (see Equation (6)). This also implies that in case of the 

standard model, SCRSM,Op is constant as well due to the derivation by means of the risk-based 

factor (SCRSM,Op = 0.3 BSCR). Thus, the total SCR in case of the standard model does not 

change if the operational loss intensity is increasing. 
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Figure 2: Premiums (basic and fair) and corresponding shortfall probabilities for different 

assumptions regarding the consideration of operational risk in pricing (Cases 1 to 3, see 

Table 1) for varying operational loss intensities λ 

  

  
Notes: Case 1 = without operational risk, Case 2 = with operational risk but not taken into account in 
basic pricing, Case 3 = with operational risk and taken into account in basic pricing, basic premium 

( ) ( ) ( )1 , , , ,
0 1 1 1 ,frS basic S i S i S i

i mV L e E L Cov L rπ η−  = = ⋅ − ⋅  , fair premium ( )1 1 1, 1S S basic Sπ π δ= ⋅ + . 

 

Compared to the standard model, the SCR for operational risk derived by the partial internal 

model and the full internal model are increasing for an increasing operational loss intensity λ, 

where SCRPM,Op is increasing faster than SCRIM,Op due to the non-consideration of 

diversification benefits. Only for very low values of λ does the standard model require more 

capital for operational risk than the full internal model and thus generally appears to 

underestimate operational risk (depending on the individual firm’s operational risk). In 

contrast, the partial internal model tends to overestimate operational risk, since it does not 

account for diversification effects between risk factors. 
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Figure 3: Fair premiums and corresponding SCR for varying parameters for Case 3 (with 
operational risk and taken into account in basic pricing) 

  

  

  

  
*Residually derived as SCRIM,Op = SCRIM,total – BSCR 
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In regard to the correlation between company losses and operational losses ρτ(Z1,S1) it can be 

seen from the second row in Figure 3 that for varying correlations, the basic premiums and the 

fair premiums are slightly decreasing. As in the first row of Figure 3, the BSCR and SCRSM,Op 

remain constant. Furthermore, the same holds true for the SCRPM,Op for operational risk 

derived by the partial internal model, since the calculation of the OpVaR does not account for 

dependencies between operational losses and company losses (see Equation (8)). The full 

internal model, in contrast, fully accounts for dependencies and diversification benefits, such 

that SCRIM,Op decreases for lower correlations ρτ(Z1,S1). When varying the expected company 

losses E(S1) (lower graph in Figure 3), the basic and fair premiums are increasing linearly for 

an increasing E(S1). In the lower right graph in Figure 3 it can be seen that the BSCR and the 

SCRSM,Op are also linearly increasing due to the increasing E(S1) and since the solvency capital 

requirements for the operational risk in the standard model are calculated by the factor 0.3 of 

the BSCR. In case of the partial internal model, SCRPM,Op remains constant as it is based on 

the OpVaR only, which does not depend on the company’s losses. When looking at the 

SCRIM,Op, we again observe that this is decreasing for an increasing E(S1) due to 

diversification effects, thus implying only a slight increase in the total solvency capital 

requirements. 

 

Lastly, we study the impact of the asset allocation on the fair premium, shortfall probability 

and SCR as displayed in Figure 4 by varying the fraction γ of high-risk assets. The results 

show that if γ is increasing, the fair premium and the shortfall probability increase. With 

respect to the SCROp, the right graph in Figure 4 illustrates that in case of the partial internal 

model, the SCRPM,Op is again constant as assets do not impact the OpVaR. In case of the 

standard model, SCRSM,Op stays almost constant until γ reaches about 0.6 and then increases, 

similar to the development of the shortfall probability. In comparison to this, SCRIM,Op is 

slightly increasing for a γ smaller than 0.6 and then decreasing if γ is higher than this value. 

Thus, the development of SCRIM,Op is opposed to the one observed in case of the Solvency II 

standard formula. Hence, these results again emphasize the diversification benefits that arise 

due to imperfect correlations between assets and operational risks. One can also observe that 

as in Figure 3, the standard model may underestimate operational risk and that the partial 

internal model overestimates it due to the non-consideration of diversification benefits, which 

are taken into account in case of the full internal model. 
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Figure 4: Fair premiums, shortfall probabilities and corresponding SCROp for varying the 
fraction γ of high-risk assets for Case 3 (with operational risk and taken into account in basic 
pricing) 

  

  
*Residually derived as SCRIM,Op = SCRIM,total – BSCR 

 

4. IMPLICATIONS AND FURTHER CONSIDERATIONS IN REGARD TO MEASURING AND 

MANAGING OPERATIONAL RISKS 

 

The previous analyses emphasized the importance of adequately taking into account 

operational risk when assessing an insurer’s risk and solvency situation, thereby using an 

aggregate view of operational risk without distinguishing between different risk cells. Hence, 

in practice, two additional central aspects must be taken into account. First, the total 

operational risk of an insurer is typically given by aggregating dependent losses of all risk 

cells. Therefore, frequency dependence and severity dependence between the different risk 

cells have to be considered when calculating the solvency capital requirements for the 

operational risk of an insurance company (see, e.g., Böcker and Klüppelberg, 2008). Hence, 

an accurate framework for modeling dependent risk cells for operational risk is indispensable. 

Furthermore, in the present setting, extreme value theory is used and, therefore, the GPD has 

to be estimated for independent and identically distributed losses. In addition, an adequate 

threshold must be chosen. This involves a tradeoff between choosing a higher threshold (that 

improves the approximation of the excess distribution function) and choosing a lower 

threshold (that reduces the amount of data available for estimating the GPD, but in turn 

increases the standard errors of the GPD’s estimates) (see McNeil, 1999). Second, the model 

needs to be adequately calibrated, which requires sufficient loss data as the basis of risk 
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measurement and risk management (see Kalhoff and Haas, 2004), which is also vital for an 

adequate estimation of the correlation structure among different risk cells (see Haas and 

Kaiser, 2004). Here, in principle two different sources of operational loss data are available, 

internal and external loss data. The creation of an internal database over time thereby provides 

a more reliable assessment of an individual insurer’s operational loss events if the data set 

becomes sufficiently large. However, internal operational loss data is often limited as 

operational risk includes human errors and, thus, the willingness of employees to inform 

about operational loss events will be one crucial success factor to create an internal database 

(see Kalhoff and Haas, 2004).19 Hence, the quantification of solvency capital requirements for 

operational risk remains a challenge for many insurers, also and especially due to the small 

sample size of internal operational loss events, which is why external databases can be 

integrated to gather additional loss information and to obtain a more accurate picture of 

operational risk. External databases are either available from providers (e.g. Algo OpData and 

SAS OpRisk Global Data) or consortia of insurers,20 which must then be adapted to the size of 

the individual insurance company and the size of internal operational loss events (see 

Selvaggi, 2009). However, the occurrence of high severity operational loss events is often 

kept confidential. Therefore, loss data is typically biased towards low severity losses, and the 

true frequency of operational loss events is underestimated due to unreported large losses. 

 

Besides measuring operational risk, one major issue is its management, which includes 

prevention and insurance. Methods of preventing operational losses mainly comprise the 

monitoring and optimization of processes as well as the initialization of training for the 

employees and business continuity management. However, these methods only influence the 

probability of operational losses, but not the magnitude of single operational loss events (see 

Auer, 2008, pp. 138-141). The amount of operational losses – especially for risks with low 

frequency and high severity – can be reduced by developing emergency plans, for instance. 

Furthermore, a variety of insurance products against operational losses is available that are 

typically linked to the event type, as there is no coverage for operational risk in general. For 

example, insurance against natural hazards is available for the risk type “damage to physical 

assets”, fidelity insurance for “internal and external fraud”, errors and omissions insurance for 

                                                 
19 Even though large operational losses should typically be known by the management, the successful creation 

of an internal database depends on the cooperativeness of the employees to pass on the required information. 

According to Kalhoff and Haas (2004), a number of companies in their study tried to motivate their 

employees to relay the required data through positive and negative incentive systems. However, this method 

still did not fully solve the problem of ensuring the transmission of information (see Kalhoff and Haas, 

2004). 
20 E.g., ORIC, which was launched by the Association of British Insurers in 2005 as a response to new 

regulations of the UK Financial Services Authority (FSA) and Solvency II. 
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“clients, products & business practice” or loss of profits insurance for the event type “business 

disruption & system failures” (see Cruz, 2002, pp. 258-259; Auer, 2008, pp. 149-150). In 

addition, large industrial firms (e.g. ThyssenKrupp) have recently expressed the need for 

insurance against “cyber-attacks”, e.g. sabotage of manufacturing facilities, which is currently 

not available and can be classified in the event types “external fraud” and “business disruption 

& system failures”. As an alternative to traditional reinsurance, operational risk can be 

mitigated by issuing insurance-linked securities such as cat bonds, or by means of insurance 

derivatives. However, at least under Basel II, these risk transfers are not accepted to reduce 

the solvency capital requirements (see Auer, 2008, p. 141). In addition, when transferring 

operational risk, the recognition of insurance mitigation in the calculation of the solvency 

capital requirements under Basel II/III is limited to 20% of the total operational risk capital 

charge (see Basel Committee, 2004, p. 148), a rule that according to Hess (2009) may also be 

implemented in Solvency II. 

 

While taking preventive action and purchasing insurance against operational risk reduces the 

risk of monetary losses due to operational risk events,21 there is a considerable reputational 

risk associated with these events. In particular, although reputational risk is explicitly 

excluded in the definition of operational risk, the reputation of an insurance company can be 

damaged as a consequence of operational losses (see de Fontnouvelle et. al, 2006; Kamiya, 

Schmit, and Rosenberg, 2011). Results in a study by Fiordelisi, Soana, and Schwizer (2011), 

e.g., indicate that substantial reputational losses follow after operational loss events and that 

the highest reputational damage is caused by the operational risk type “fraud”. Moreover, 

Cummins, Lewis, and Wei (2006) show that after an operational loss event, the decrease in 

market value of banks and insurers is even higher than the pure operational loss amount. The 

studies of Gillet, Hübner, and Plunus (2010) and Perry and de Fontnouvelle (2005) also 

illustrate that at least for the event type “internal fraud”, the loss in market value is greater 

than the operational loss announced. Hence, especially for companies whose activities are 

based on trust such as banks and insurers, reputation is a key asset and, thus, prevention in 

regard to operational risk and especially with respect to fraud is vital (see Fiordelisi, Soana, 

and Schwizer, 2011). In addition, new insurance products that provide coverage for 

reputational losses are now offered in the market. For instance, insurance policies by Munich 

Re and Zurich cover profit setbacks caused by reputational damages up to €150 million, while 

Allianz developed a new product that covers the costs of communication in terms of press 

work, advertisement and media monitoring, after a reputational loss event up to €10 million 

                                                 
21 As the premium of insurance typically exceeds the expected operational losses, transferring risk through 

insurance generally does not reduce the expected losses, but it helps stabilizing losses over time, thus 

reducing risk. 
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(see Höpner, 2012). Furthermore, as legal risks are included in the definition of operational 

risk under Solvency II, operational risk depends also on the country and the individual 

situation of the insurance company. Therefore, operational risk measurement and 

management should be integrated in an enterprise risk management framework that accounts 

for all relevant factors and dependencies as well as insurance and prevention, which can imply 

a positive impact on firm value (see Hoyt and Liebenberg, 2011). 

 

5. CONCLUSION 

 

This paper examined the impact of operational risk on fair premiums and solvency capital 

requirements under Solvency II. Three different approaches were used for the latter, including 

a full internal model and a partial internal model that only focuses on the operational value at 

risk (OpVaR), i.e. without taking into account diversification effects. These were compared to 

the Solvency II standard model that uses a risk-based factor to derive capital requirements for 

operational risk.  

 

The results showed that the presence of operational risk in general does not considerably 

impact fair premiums (fair from the shareholders’ perspective) if the insurer’s safety level is 

sufficiently high. However, this observation changed for higher operational loss intensities, 

where neglecting operational risk in pricing severely impacted an insurer’s shortfall risk if 

premiums were not calculated in a fair way. 

 

Regarding solvency capital requirements, we found that the internal model considered in this 

paper led to similar results as the Solvency II standard formula as long as the operational loss 

intensity was not too high. This is a consequence of the diversification benefits taken into 

account in case of the internal model that arise due to imperfect correlations between 

operational risks, insurance risks, and market risks. For increasing operational loss intensities, 

however, the standard model clearly tended to underestimate risk as capital requirements are 

calculated based on the fixed factor 0.3 of the basic solvency capital requirements (that do not 

include operational risk). Hence, both the standard model and the partial internal model are 

not able to reflect diversification benefits due to imperfect correlations between operational 

losses and insured losses. While the solvency capital requirements derived by the Solvency II 

standard formula and the partial internal model thus remain constant for decreasing 

correlations between operational losses and insured losses, the SCR derived by the full 

internal model decreases due to an increasing diversification benefit. The same holds true 

when varying the expected company losses and the fraction invested in low-risk assets, which 
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emphasizes the potential for diversification benefits that arise due to imperfect correlations 

between assets, company losses and operational risks. 

 

Since diversification benefits are not taken into account in case of the partial internal model, 

which derives the operational value at risk separately, solvency capital requirements are 

generally overestimated in this case. One way to reduce monetary losses from operational risk 

is (re-)insurance, which, however, is only available for specific event types and not for 

operational risk in general. Furthermore, the integration of supplementary prevention methods 

in addition to reinsurance is vital in order to reduce the probability and magnitude of 

operational losses, as operational loss events can cause severe reputational damage, which can 

even worsen an insurer’s solvency situation beyond the operational loss amount and 

considerably reduce market values. Operational risk should thus be measured and managed in 

the context of a holistic enterprise risk management system with an internal risk-sensitive 

approach that accounts for dependencies between risk factors and additionally includes 

specific insurance and prevention programs. This is also relevant in the context of insurers’ 

Own Risk and Solvency Assessment (ORSA) as required according to Solvency II’s Pillar 2 

and the NAIC in the United States. Amongst other aspects, future research could focus on an 

(empirical and theoretical) analysis of the impact of operational risk (e.g., concentrations on 

the balance sheet) and correlations between operational risks and the risk profile of other 

assets and/or liabilities on pricing, risk management, and capital budgeting decisions in 

general using, e.g., a multi-factor model as proposed by Froot (2007). 
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