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ABSTRACT

Operational risk can substantially impact an insgresk situation and is now
increasingly in the focus of insurance companispeeially due to new European
risk-based regulatory framework Solvency Il. Tha aif this paper is to model and
examine the effects of operational risk on fairnprens and solvency capital
requirements under Solvency Il. In particular, ¢hrdifferent approaches of
deriving solvency capital requirements are analyzbé Solvency Il standard
model, a partial internal model, and a full intédmmedel. This analysis is not only
of relevance for Solvency II, but also regarding iasurer's Own Risk and
Solvency Assessment (ORSA) that is not only plarine8olvency I, but also by
the NAIC in the United States. The analysis empegsihat diversification plays a
central role and that operational risk measurenzmt management is highly
relevant for insurers and should be integratednreaterprise risk management

framework.

Keywords Operational risk, Solvency I, ORSA, CAPM
JEL classificationC51, G22, G31, G32

1. INTRODUCTION

In the context of new risk-based capital requiretméor banks and insurers imposed by Basel
[I/lll and Solvency I, respectively, the discussi@bout operational risk intensified and
especially large insurers are now confronted withrieed to develop and implement adequate
risk measurement and management instruments toadiabperational risk. In Solvency I,
operational risk is defined analogously as in BdB#l as “the risk of loss arising from
inadequate or failed internal processes, persoonetystems, or from external events.
Operational risk [...] shall include legal risks, aedclude risks arising from strategic
decisions, as well as reputation risks” (see EwanpPBarliament and the Council, 2009,
Article 13, No. 33, Article 101, No. 4)Operational risk is also of high relevance for the
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! See also Basel Committee (2004, p. 137). In Blk#) operational risk is categorized into thevea event
types “internal fraud”, “external fraud”, “employmiepractices and workplace safety”, “clients, prctsu &
business practice”, “damage to physical assetalsitiess disruption & systems failures” and “exeauti



National Association of Insurance Commissioners IB)Awhere the potential inclusion of a
specific charge for operational risk within the Us$stem of risk-based capital for insurers is
discussed (see Vaughan, 2009; PwC, 2012). Bedigesew regulatory requirements, cases
of high operational losses in the recent past atsongly emphasize the importance and
considerable risk associated with operational és&nts. One of the most mentioned events in
this context is the bankruptcy of Barings Bank 93, which was followed by a $1.3 billion
loss caused by its rogue head derivatives tradeBimapore. The potential impact of
operational losses on an insurer’s risk situat®also stressed by figures regarding potential
insurance fraud by policyholders, which in the Ganmnsurance market, for instance, is
estimated to about €4 billion per year (see HiBloedenbeck, and Kiefer, 2012). In the third
party liability insurance only, 25% of all claimseasuspected to be fraudulent and for an
average motor liability insurance company, losses to fraud are estimated to €32.5 million
per year (see Hiebl, Roedenbeck, and Kiefer, 28 TR magnitude of these operational loss
events in the past strongly demonstrates the needah adequate measurement and
management of operational risks, which is also irequaccording to the new framework
Solvency Il. The aim of this paper is to model anpdhntify the effects of operational risk
from an enterprise perspective by focusing on aurer's pricing and solvency capital
requirements under Solvency Il. We thereby compaeSolvency Il standard formula with a
partial and a full internal model.

A large part of the academic literature conceresniodeling of operational risk. Cruz (2002),
McNeil, Frey, and Embrechts (2005), Gourier, Farkasl Abbate (2009), and Shevchenko
(2010), for instance, point out the importance afreame value theory for calculating
aggregate losses by using the loss distributiorrcagh. Another part of the literature
empirically analyzes operational loss data. Whilestmof these studies examine empirical
data from the banking sector (see, e.g., Mosca@€li4; de Fontnouvelle et al., 2003; Dutta

delivery, & process management”. This categorizatiboperational risk is also suggested for insubgrthe
German Insurance Association (see GDV, 2007, p.N6fe that in Basel Il, operational risk was igimoed

as a third risk class in addition to market andlitnésk (see Cummins, Wei, and Xie, 2011; Kamig$ahmit,
and Rosenberg, 2011), while in insurance, a mogphisticated risk classification system would, e.g.,
separately define financial risks (e.g., markegddr etc.), policyholder insurance risk (e.g., pedy
insurance, workers compensation insurance, headtirance, etc.), business risk (e.g., manageniesegy,
etc.) and operational risk (consistent with Bakahid Solvency II).

Other examples of operational risk events inclideNasdaq odd-eighths pricing scandal in 1994 edkas
the losses of Société Générale in 2008 and UB®111 ,2both due to rogue traders. Similar exampldfen
insurance sector include the Swiss Life investnseandal in 2002, the AIG Finite Reinsurance Accimgnt
fraud in 2005, as well as the AIG credit defaulapwvrite-down in 2008.

Another major issue is fraud in the context of atssions paid to agents. For example, the bankyupitc
the German MEG AG in 2009 caused irrecoverableckod$sr several insurance companies due to fraud in
commissions (see Altenadhr, 2010).



and Perry, 2006), Hess (2011b) also investigatesratipnal loss data for insurance
companies. Several studies dealing with operatioskakalso assess the dependencies between
the risk cells of banks, including, e.qg., Bocked &tlppelberg (2008), Ebndther et al. (2003),
Frachot, Roncalli, and Salomon (2004), and MittniRaterlini, and Yener (2011).
Furthermore, Hess (2011a) examines the impact effittancial crisis on operational risk,
while Cummins, Lewis, and Wei (2006) focus on tharket value effects of operational loss
events for U.S. banks and insurers, and spilloffeces of operational risk events on banks
and insurers are analyzed in Cummins, Wei, and(X@d1). Different forms of insurance
contracts for operational risk are analyzed in Ret®yrnes, and Shevchenko (2011) for the
case of banks.

In this paper, we contribute to the literature bhesenting a model for how to integrate
operational risk from an enterprise perspective, draded on this, focus on the impact of
operational risk on an insurer's pricing and cdpiequirements under Solvency Il. We
thereby compare the Solvency Il standard model withull internal model using the risk
sensitive loss distribution approach for operatioisk and a partial internal model that only
focuses on the operational value at risk, i.e. @uthaking into account diversification effects.
In the analysis, we also study the impact of depeo@s between operational risk and the
insurer's loss distribution, amongst others, usthg concept of copulas. The model is
calibrated based on empirical data from previolgsdiure and the numerical analysis allows
the identification of key characteristics that e&@se or decrease capital requirements above or
below the static risk-based factor used for thes&ady 1l standard model. For insurers, these
considerations are also of special relevance inctrmgext of their Own Risk and Solvency
Assessment (ORSA) as required by Solvency II'saPfl or the NAIC in the United States
(see NAIC, 2011; Blanchard, 2012; Wicklund and €topher, 2012).

One main finding is that diversification plays amportant role in the quantification of

operational risk and that insurers should closebnimor and manage operational risk. In
particular, our results reveal that the capitauresments of the Solvency Il standard model
may severely underestimate operational risk. Intresty a partial internal model that only
focuses on the operational value at risk, i.e. @uthaking into account diversification effects,
tends to overestimate the capital requirementoparational risk. In any case, operational
risk measurement and management is highly reldeamisurers and should be integrated in
an enterprise risk management in order to adequedeitrol and steer an insurance company.

The remainder of the paper is structured as foll@&extion 2 includes the model framework
of the insurer including operational risk, premigaiculation, and risk measurement. Section



3 presents the results of the numerical analysedisfussion of further issues regarding
measuring and managing operational risks is giae®ection 4, while Section 5 concludes.

2. MODEL FRAMEWORK

This section describes the model framework usephtmtify the effects of operational risk on
the insurer's risk situation and solvency capitaguirements. First, we specify how
operational risk is modeled and illustrate the nhaafethe insurance company. Next, fair
contracts and the determination of premiums arsgmted, followed by a comparison of
different ways of how to derive solvency capitajugements.

Modeling operational risk

To model the operational risk of an insurer, thesldistribution approach (LDA) is used (see,
e.g., Gourier, Farkas, and Abbate (2009) and H268%1@)), which implies that the total
aggregate loss is given by

Z=y X, @

where Z; denotes the aggregate loss in the time intervdl,[0l; the loss frequency in the
same time period an¥; the loss severity of theth event. Furthermore, the lossésare
independently and identically distributed randomialles and the loss frequencies and loss
severities are assumed to be indepentiefihe loss frequencies are modeled by a
homogenous Poisson process with intensity O, i.e. the distribution of the frequencies is
given by

R()=p(N=1= e 1)

The severities of the claims in the upper tailh& toss distribution are described by means of
extreme value theory (EVT). In previous operationsk models (see, e.g., Gourier, Farkas,

*  The total operational risk of a bank or an instisethen given by the aggregation of the depentizat

aggregate losses (see Equation (1)) of all risks.c€b model the dependence between different tipasd
risk cells the literature suggests splitting intodals for frequency dependence and severity depeede
Hence, in this paper only one risk cell is constdeand for a single risk cell the assumption oepehdent
frequencies and severities is satisfied (see, Bagker and Klippelberg, 2008).



and Abbate, 2009; Hess, 2011a), EVT is appliechenupper tail of the loss distribution as
conventional distributions like the lognormal, erpatial or gamma distribution are not
capable to reproduce the heavy tails of operatimssles. As EVT focuses on the tail area of
a distribution, it provides a possibility to appimmate losses that exceed a high threshidig
the Generalized Pareto Distribution (GPD), whichiien by

1- —lj, =0
exp(,e ¢

GPD; 4 (y)= g
1—(1+Qj , £20
B

wheref > 0,y>0if{>0and <y < (-p/¢) if £< 0,y = X — u The parameter§andg are
called the shape and the scale, respectively, whexr¢he key parameter and determines the
heavy-tailedness of the distributidif.o model the loss severity distributi6ifx), we thus fix
the thresholdi at theq™ percentil® and construct a spliced distribution function, vehthe
body of the distribution, i.e. the losses below ttim@sholdu, follows a lognormal distribution
Fiog, @and the tail, i.e. the losses over the threshpid modeled with the GPFgpp, i.€. the
loss severity distribution is given by

_ Fog (X) (8, Ox< u
F(X)_{1E]+ Foro (X—U)[{1-q), Ox>u

Based on this relation, the distribution of thelta@tggregate losg of Equation (1) in the time
interval [0,t] can be modeled by

G(=Fz= =2 AN= DBz k1e e X )P x0 20

® In particular, three different cases can be distished: for = 0, the GPD equals an exponential distribution,

whereas forg < 0, a short-tailed Pareto type Il distribution istaibed. In the case af> 0, an ordinary
Pareto distribution is induced and, therefore,GRD is heavy-tailed. If the chosen threshold reasonably
high, the theorem of Balkema and de Haan (1974)Rackiands (1975) states that the GPD is the caabnic
distribution for modeling excess losses over thindd thresholdi. Moreover, for most of the classical loss
distributions, the excess distribution convergesh® GPD when the thresholdis increased (see McNeil,
Frey, and Embrechts, 2005, pp. 277-278), which mehat the excess distribution over a high threshol
can be approximated by the GPD.

The choice of the thresholdis a central aspect when modeling the splicedildigton function. On the one
hand, it has to be high enough to fulfill the lirdiv condition. On the other hand, a sufficient ib@mof
observations must be ensured to properly estintegeupper tail of the distribution function (seeg.g.
Gourier, Farkas, and Abbate, 2009).



whereF" (x) denotes the-fold convolution ofF(x).
Modeling the insurance company

Figure 1 shows a balance sheet of the insuranc@aoynat timet, whereA; is the market
value of the asset§ denotes the value of insurance claims, @hdomprises the losses
resulting from operational risk. The total valudiabilities is thus composed & andZ;, and

E; is the company’'s equity, which is determined as thifference between assets and
liabilities.

Figure 1: Balance sheet of the insurance company at time, 1

Assets Liabilities
A E
S

=L

zt} '

At time zero, the insurer receives premium3 paid by the policyholders for insured losses
at timet = 1, and an initial contribution by shareholdB&gs Thus, the total initial capital sums
up to

A=+

The initial capital is invested in the capital mettkwhereby a fraction is invested in high-
risk assetsAgnigh =y - Ao, and the remaining part {1) is invested in low-risk assets,
Aotow = (1) - Ao. Low-risk and high-risk assets are assumed toogadrmally distributed
with meanE(A.;) and standard deviatiar(Aq), for j = low,high. Thus, the total value of the
asset portfolid; at timet = 1 is given by

A=yALnt (1_ V) LA o

The insurer becomes insolvent if assets are nétmuit to cover the liabilities, i.e. lf; > Ay,

as shareholders have limited liability. In thistef, operational risk will have an impact on
the premium paid by policyholders for insured Iesse time 1, as a higher default risk
(caused by the presence of operational risk) waydderally decrease the value of the
insurance policy. Thus, to study the impact of afienal risk on pricing and risk assessment,
we compare three different cases as exhibited loheTh



Table 1: Overview of different assumptions regarding operetl risk with respect to pricing
and risk measurement

Case Noi Operational risk taken into | Operational risk taken into
account irbasic pricing account irrisk measurement

1

(Settingwithout No No

operational risk)

2

(Settingwith No Yes

operational risk)

3

(Settingwith Yes Yes

operational risk)

First, we consider the setting without operationsk, i.e. where operational risk is neither
taken into account in pricing nor in the calculatwf risk measures (Case 1), iZg.= 0. This
serves as a reference case and allows an analysisvaisk measures are wrongly assessed if
operational risk is set to 0. In the second cageraiional risk is considered in the calculation
of risk measures, but it is not taken into accanrasic pricing (Case 2). Third, operational
risk is considered in pricing as well as in thecaddtion of risk measures (Case 3). We hereby
assume that — in a world with operational risk eragional losses are covered first, as they
occur before the insurer is able to pay out thécgbblders’ claims. Thus, depending on the
assumptions regarding operational risk laid outTable 1 (Cases =1, 2, 3), one can
distinguish between three cases (realizationsjna 1:

1. A<S+Z, A= Z: the insurer is insolvent; operational losses paéd out, but
insured losses can only be covered partially oranail,

2. A <S+2Z, A< Z: the insurer is insolvent; neither operational imsured losses
can be covered,

3. A =S+ Z: the insurer is solvent; operational and insuesés can be covered.

Hence, at timda = 1, the operational loss cIaimlsf’i, policyholders’ claimsl_f"i, and the
equityholders’ positiorEi, for Cases = 1, 2, 3, are given by

Lf"=min(Aj,Z‘1)=Z‘1—max(Zl— A()
3 =min(A - 15".s)= §-ma{ $-( & ¥).,and

E, =max(A‘L— 5= L2 ,O),



thus summing up td{.
Fair contracts and determination of premiums

Valuation of equityholders’ and policyholders’ ates is conducted using the capital asset
pricing model (CAPM) (see Grundl and Schmeiser,22000 ensure a fair situation from the
shareholders’ perspective, the value of equityhsldelaims must be equal to their initial
contribution (depending on the assumptions reggrdperational risk, Cases 1, 2, 3), i.e.

Vo(E)=€" § § E)-nOCo( £ 4)|= E 3)

whereV(.) stands for the valuation approach used to deter the market value at tinte
(here by means of the CAPM),; denotes the return of the market portfolio at tirrel and
n stands for the market price of risk, such that(E(rm)—rf)/oz(rm), wherers denotes the
risk-free interest rate. To ensure that Equationh@ds, the policyholders’ premiums are
adjusted accordingly. This is done in two stepsstFthebasicpremium 77+ *** is calculated

by

e (L) = L E(1) - teof 1 )]

Second, théair premium 77* is derived by adding a loadidg ,
o ),

which is calibrated such that the situation is fe@m the shareholders’ perspective, i.e. that
Equation (3) is satisfied.

Note that the use of an alternative paradigm foivdey the fair premium may actually imply
a higher (or lower) loading and thus also a lardiference between the cases with and
without operational risk. According to the threetta model by Froot (2007), for instance, an
extension of the two-factor model proposed by Fayat Stein (1998), firms do not only take
into account the systematic risk factor as in t#dP® in setting premiums, but additionally

" Note that if premiums are not adjusted, the shaddeh value would decrease accordingly. In the ges

setting, it is thus assumed that shareholders altiwmative investment opportunities in financiasets that

do not involve operational risk. Hence, they woulot agree to carry operational losses and require a
respective adjustment of policyholders’ premiumse(salso Doherty and Garven (1986) for similar
arguments regarding double-taxation).



include a second factor that reflects the covalitstof the product’s returns with the firm’s
pre-existing portfolio of non-tradable risks (dnwvéy the insurer's and the customers’
aversion to insolvency risk), and a third factatthccounts for the covariance with firm-wide
skewed risks. The latter takes into account thgateely skewed exposures are generally
associated with higher costs and that they causes fio conduct more aggressive reinsurance
and hedging activities as well as make less aggeessid more diversified underwriting and
investment decisions (Froot, 2007, p. 276). Themxof the difference in the loading when
using the CAPM as compared to the Froot (2007 )etfimetor model would generally depend
on the extent of the two additional factors thatuldo also be driven by possible
concentrations of operational risk on the balantees (e.g., large third-party distribution
systems) as well as the correlation between opeatirisks and other assets or liabilities
(e.g., financial guaranty underwriting). Hence,hniicreasing correlations and increasing risk
concentrations of operational risks on the balastweet, the fair loading would increase,
which in turn would imply a reduced risk level fure insurer due to a higher premium
income (given a sufficient demand by policyholders)

Solvency capital requirements (SCR) and risk mesamsant

Based on the previously described model framewaonkl #he assumptions regarding
operational risk, the solvency capital requiremdBISRH can be derived. Under Solvency I,
the SCRare defined as the amount of capital needed &ttim0 to meet future obligations
for a required safety level using the value at riskV@R with a confidence level of 99.5%
(o = 0.5%) on the basis of the risk-bearing capitalret = 1 (see European Parliament and
the Council, 2009, Article 101, No. 3). The riskabeg capital RBO characterizes the
available economic capital and is defined as tlfieréince between the value of assets and
liabilities

RBG = A- L,

A- S Z and “
RBG =V (A)-y( W)=y -y s 9

wherei = 1, 2, 3 (see Table 1 for assumptions regardipgragional risk). The solvency
capital requirements are defined based orvidie of the change of thRBC over one period,

where RBC}"j of Equation (4) is discounted with the risk-fraéerest rate; (see, e.g., Gatzert
and Schmeiser, 2008), such that

8 Under Solvency I, the difference between assat$ labilities is also called the net asset valNAY)

instead oRBC(see EIOPA, 2010, p. 91-92).
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SCR=-VaR( & DREG RBE =i, 2,3 (5)

As focus is laid on the impact of operational rsk an insurer’s solvency situation and
solvency capital requirements, three approaches deriving the solvency capital
requirements are compared: 1) using the Solvencstaihdard model for operational risk
(“SM), 2) a partial internal model for operationalkri¢'PM”), or 3) a full internal model
(“IM™) for deriving the totaSCR

First, we assume that thHe@CR for operational risk are calculated using tBelvency Il
standard modelas laid out in QIS 5 (see EIOPA, 2010, p. 103).this case, capital
requirements for operational risk are given by 3@0the basic solvency capital requirements
(BSCR, which are calculated without taking into accowmerational risk, i.e. by setting
Z, =0. Note that this does not affect the calculatiorpmiums, which is still conducted
according to the three cases defined in Tableel depending on whether operational risk is
taken into account in pricing or not). TBECRis thus derived by

BSCR=-VaR( & O REG, - RBG,)° (6)
where RBG ¢, = A—- Sand
RBQ},SM = \6( RBQSM) = ¢ [E (E RBl,gM) -nu va RB,QO! M

The capital requirements for the operational r&@Fngop, in Case¥ i = 2, 3 can then be
calculated by multiplying thBSCR of Equation (6) with the risk-based factor 0.3serébed
in the Solvency Il standard formula, such that

SCR,. 0, =0.30BSCR # 2,3 7)

Note that operational risk itself is not modeladtieBSCR

In Case 1 (“without operational risk”) no additadrsolvency capital requirements for the operafioisk
need to be calculated, i.éCF'g}’Op=0and SCR}; = BSCR'. Thus, solvency capital requirements in
Case 1 are solely calculated with the Solvencydhdard model, i.e. neither the partial internadeianor
the full internal model are used in this case.

' Under Solvency [ISCRy.opis definied bySCRy 0= min(0.3BSCR,Op+ 0.25Exp, (see EIOPA, 2010,
p. 103). In the present setting, this can be rediteeghe formula stated in Equation (7)E&q, is equal to 0
due to consideration of a non-life insurer, an@® 88SCR> min(0.3BSCR,Op, i.e. the reaBCRy op Might

even be smaller than the one we calculate. Thagjehivation oSCRy o, may overestimate the actual one.

10
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In Cases 2 and 3, the solvency capital requiremeantording to the standard model
SCRy. o are thus given by

SCRy, o = BSCRF SCR,, =i1,2,3

Second, we userartial internal modekhat replaces the risk-based factor of 0.3 oBBER
with the operational value at risk (OpVaR). Herapital requirements are calculated for
operational risk only, without taking into accoutinersification effects (see, e.g., Bécker and
Kluppelberg, 2005; Biagini and Ulmer, 2009). TheV@R is given by the value at risk for a
confidence level of 99.5% of the change in operatidosses within one period, WheZé is
discounted with the risk-free interest raig fori = 2, 3 (SCF‘{A}Op =0). Hence, the target
capital for operational risISCF'gM’Op is derived by

SCRyo,= VaR( € 0Z- 3, #23 (8)

with Z, :VO( Zl) i=2,3. Hence, the total solvency capital requireme®@R,, ., are given
by the sum 0BSCR(Equation (6)) andSCR,, o, (Equation (8)),

SCFgM,totaI: BSCR+ Sgﬁop, =i2, 3.

Third, we calculate the solvency capital requiretsewith a full internal model thus also
taking into account diversification benefits. Thekfbearing capitaIRBQ at timet=1is
calculated as the difference betwedh and L}, consisting of insured losses and operational
losses, foi = 1, 2, 3. Afterwards, the solvency capital requientsSCFﬁA’mta, are calculated
as defined in Equation (5), such that

SCRyua =~ VaR( & ORBG RB =i1,2,3% 9)

We further calculate the residual in order to abthie implicit operational risk capital charges
SCR, o, by the difference between tH&CR, ., of Equation (9) and thBSCR of Equation
(6), thus

SCFSV' Op = SCB,total - BSCR:IL 21 3.

Table 2 summarizes the three approaches for dgraoivency capital requirements.

2 Note that in Case 1 (“without operational risk9CR; ... = BSCR'.
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Table 2: Overview of the three approaches for deriving Sféﬁ?’mtal and SCF'g,Op (k = SM,
PM, IM) for Casesi= 1, 2, 3 (see Table 1. assumptions regarding opedtirisk with
respect to pricing and risk measurement)

Standard model Partial internal model Full internal model

(k = SM) (k = PM) (k = IM)
BSCR ~VaR, (€" ORBGy - RBGw)
SCR.. |BSCR+ SCR o, BSCR+ SCR o, —VaR,( " ORBE- RB@
SCRo, | 0.3BSCR VaR,( e 0Z- %) (SCRy 1o — BSCR*

*Residually derived

In addition to theSCR the shortfall probability§P) is calculated, which is given by

sP=P A< L) =123
3. NUMERICAL ANALYSIS

This section presents numerical results with respemperational risk measurement and
management as well as the impact of operation&l ars fair premiums, using empirical
parameters from previous literature. In additi@msstivity analyses are conducted to identify
key risk drivers.

Input parameters

The input parameters are summarized in Table 3. &tpected value and the standard
deviation of the company’s loss are based on eogbidata of a medium-sized German non-
life insurer as presented in Eling, Gatzert, andnsaiser (2009). Furthermore, the expected
values and standard deviations for high- and l®sk-rassets are based on data from
representative indices (S&P 500, international goweent bond indices) following Gatzert
and Kellner (2011). The parameters for the logndwmiisribution of the operational losses as
well as the parameter for the frequency of openafitosses are also based on empirical data
for U.S. insurance companies as presented in H¥¥Kklb). The parameters for scale and
shape of the GPD as well as the quardilgo determine the thresholg are adapted from
Gourier, Farkas, and Abbate (2009). Furthermore, tduthe correlation between the size of
operational losses and the firm size, the simulaigerational losses have to be adjusted by
multiplying the operational losses at time 1 with the factot to ensure that the operational
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losses fit with the parameters of the insurance paomi. As we consider a medium-sized
German insurance company in the present analysdactar x of 0.30 is applied (see
Selvaggi, 2009). In addition, a truncation polnis integrated that ensures that every single
operational lossX; has a minimum amount, i.e. if an operational lossurs in the time
interval [0,t], its amount equals the maximum of the simulatpérational loss and the
truncation poinfT. The implementation of a truncation point is neeeg due to the fact that
in empirical databases (e.g. Algo OpData and SARiSp Global Data), only operational
losses over a certain threshold are considered.

Table 3: Input parameters for the basic simulation

Available equity capital at time= 0 Eo €48 million
Parameters for the lognormal distribution of thesragpional Hy O 1.52,2.26
loss

Scale of the GPD of the operational loss S 0.01
Shape of the GPD of the operational loss ¢ 0.89
Quantile of the thresholdfor the mixed lognormal GPD q 90%
Frequency of operational losses A 0.15
Truncation point T €0.1 million
Adjustment factor of the operational losses K 0.30
Expected value of the company loss E(S) €110 million
Standard deviation of the company loss a(S) €22 million
Expected value of high-risk assets E(A1 high) 1.12
Standard deviation of high-risk assets o(Ashigh) 0.23
Expected value of low-risk assets E(Aqj0n) 1.06
Standard deviation of low-risk assets (A jow) 0.07
Investment in high-risk assets y 0.25
Expected value of the market portfolio E(rm) 0.08
Standard deviation of the market portfolio o(rm) 0.04
Market price of risk n 37.50
Kendall's tau for low-risk and high-risk investment P:(PnighAow) 0.20
Kendall’s tau for high-/low risk assets and complrsges (A1, S) 0.10
Kendall’s tau for high-/low risk assets and openadil losses pZ1,A1) -0.27
Kendall’s tau for operational losses and compasgds p(Z1,S) -0.05
Kendall’s tau for market portfolio and high-/loveki assets PrmA1) 0.20
Kendall's tau for market portfolio and liabilities P(rmS) -0.20
Kendall’s tau for market portfolio and operatiof@dses prm,Z1) -0.10
Risk-free interest rate Iy 0.02

When modeling insurance risks, it is important ¢cocunt for dependence structures between
the different processes (see, e.g., Gatzert anbhé¢e2011). Therefore, we explicitly model
the dependence between high-risk and low-risk as$stween the losses resulting from
operational risk and assets (high-risk and low;riskpectively), between the losses resulting
from operational risk and the losses resulting ftbminsurance policies (company losses), as
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well as between the company losses and the assgtsrisk and low-risk, respectivelyy.
We thereby apply the concept of the Gauss copela KécNeil, Frey, and Embrechts, 2005,
p. 193)* To calibrate the Gauss copula, Kendall's rank elation p, is used due to its
invariance against non-linear transformations. pammeter for the correlation between the
high-risk assets (equity) and the losses resuftiogn operational risk is based on empirical
data following Cummins, Lewis, and Wei (2006), wher significant negative stock price
response to operational loss events in the U.Siranse industry is revealéd We further
assume that there is small negative correlatiowdrn the losses resulting from operational
risk and the liabilities® The parameters for the correlation between théetamortfolio and
the different relevant risk factors are adoptednfrGatzert, Schmeiser, and Toplek (2011).
Numerical results are based on Monte Carlo simadatvith 500,000 sample paths. In
addition, latin hypercube sampling is used to impréhe stability of the simulation (see
Glasserman, 2010, pp. 236-243)The parameters were then subject to sensitiviayyaes.

The impact of operational risk on an insurer’s pmig, shortfall risk, and solvency capital
requirements

We first consider the three possible cases laididiable 1, i.e. “without operational risk”
(Case 1), “with operational risk but not taken imocount in basic pricing” (Case 2), and
“with operational risk and taken into account irsisgoricing” (Case 3). Case 1 serves as the
reference case, which can be compared to the aths®s in order to illustrate how an
insurer’s risk level may be misestimated if openadil risk is not taken into account. Table 4

13 Kahane and Nye (1975) and Cummins, Lin, and Pkil[2009), e.g., show that the correlation paramete

between company losses and assets in general depenthe specific insurance line and the investment
activities and can either be positive or negatimehis analysis, the correlation between assaiscampany
losses is set to a positive value (for both high-and low-risk assets), but should be empiricediijbrated
for each individual insurance company.

Alternatively, varying dependence structures (etg:opula, Archimedean copula) and non-linear
dependencies may be appropriate depending on tiwate setting, as they can have a substantialdhgra
results (see Ai and Wang, 2012).

Their estimated correlation coefficient is usedhis regard due to a lack of other available infation and
the correlation between low-risk assets and opmratirisk is set to the same value. Both numbeosilsh
however, be subject to further empirical analysibjch holds for all correlations in regard to operaal
risk.

Similar to the correlation between company losaes assets, the correlation between company laswks
operational risk depends on the individual situaid the insurance company and on the aggregafitimeo
different operational risk cells. In the followinthis assumption will be subject to a specific #arity
analysis in order to study the impact of differeatrelations between company losses and operatishal

We chose a sufficiently high number of sample pathd further implemented latin hypercube sampting
achieve low sample standard errors (e.g. for th&cbsimulation, the sample standard error of tls&-ri
bearing capital amounts to 0.0341) and ensuredtligatesults remain stable for different sets ofdcan
numbers.
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displays the shortfall probabilities for basic prems (Part a) as well as for fair premiums
(Part b). When comparing Cases 1 and 2, if ther@msanly requires the basic premium
without additional loadings, one can observe thatghortfall probability strongly increases
from 0.67% to 1.54% in the presence of operatioisk. If operational risk is taken into

account in pricing, the basic premium decreasestaiaehigher default option vald&which

in turn implies a further increase in the shortfabbability to 1.60% in Case 3.

Part b) in Table 4 displays the shortfall probapilf a fair loading is added to the basic
premiums that ensures that the situation is faamfrthe equityholders’ perspective (see
Equation (3)). Operational risk is thereby alwawgsluded in the calculation of the fair
loading, but not necessarily in the basic premilimthe setting without operational risk
(Case 1), the fair premium is considerably lowecaspared to both cases with operational
risk (Cases 2 and 3) and also lower than the lpmsimium. This also implies a slight increase
in the shortfall probability from 0.67% to 0.70%n the situation with operational risk
(Cases 2 and 3), the fair premiums are equal dtleetoalibration of the fair loading risk even
though the basic premiums differed, as shareholaepgire a risk-adequate compensation on
their initial contribution and thereby account foperational risk. In line with this, the
corresponding shortfall risk is equal as well (286which — due to the positive premium
loading — is lower than in the case where the msanly charges the basic premium (1.54%
and 1.60%). Hence, if premiums are calculated filam shareholders’ perspective, the
policyholders are the first to cover the risk oeogtional losses.

8 When operational risk is taken into account inibgsicing, the default optiormax(s—(,q— Lf) 0)
increases and, therefork; = Sl—max( Q—( A- ﬁ) 0) is decreasing, which lowers the basic premium.



Table 4: Shortfall probability for basic and fair premiunt tifferent assumptions regarding
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the consideration of operational risk in pricinglaisk measurement (see Table 1)

Case 1l Case 2 Case 3
(without operational | (with operational risk | (with operational risk
risk) but not taken into and taken into account
account in basic in basic pricing)
pricing)
a) Basic premiunyr> "¢
Basic premiunvr>"° 117.55 117.55 116.77
Shortfall probabilitySP 0.67% 1.54% 1.60%
b) Fair premiumz® = 77% *[f1+ 5 %)
Fair loadingo™ -0.6% 0.9% 1.6%
Fair premiumsr> 116.86 118.63 118.63
Shortfall probabilitySP 0.70% 1.46% 1.46%

We next study the impact of the assumptions reggrdperational risk (Cases 1 to 3) on the
insurer's solvency capital requirements. In Tabletie SCR are displayed for the basic
premiums (Part a) and the fair premiums (PartrblCase 1 (without operational risk), no risk
charge for operational risk is required and, theefthe total solvency capital requirements
SCRuta are equal to thBSCRand the three approaches for deriving $i@Rcoincide. In this
Case 1, th&CRfor the basic premium are about 51.53 and onghslly higher in case of the
fair premium with 51.54 due to the higher shortfadk (see Table 4).

In the presence of operational risk (Cases 2 an&@Rconsiderably increase for both fair
and basic premiums. In Part a) of Table 5 (bastenum) and Case 2, for instance, it can be
seen that when fully accounting for imperfect clatiens between risk factors as in the case
of the full internal model, diversification bensfibetween operational risks, insurance risks,
and market risks result in a considerable reduabiothhe SCR,y as compared to the case of
the partial internal model, where no diversificatibenefits are taken into account. In
addition, diversification effects also imply thaetSCRy is closer to the one of the standard
model. This diversification benefit amounts to 38.ih both Cases 2 and 3, as 8€Ru, IS
reduced from 127.59 to 78.93 in Case 2 and from@IRf 78.96 in Case 3, respectively.
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Table5: The impact of assumptions regarding the consimeratf operational risk in pricing

on solvency capital requirements, given the basitcfair premiums in Table 4

Case 1l Case 2 Case 3
(without | (with operational risk but not taker] (with operational risk and taken info
operationaj into account in basic pricing) account in basic pricing)
risk)
Standard | Partial Full Standard | Partial Full
model internal internal model internal internal
model model model model
a) Basic premiunyr> "¢
BSCR 51.53 51.53 51.53 (51.53) 51.54 51.54 (51.54)
SCRyp 0 15.46 76.06 27.40* 15.46 76.06 27.42*
SCRuta 51.53 66.99 127.59 78.93 67.00 127.60 78.96
b) Fair premiums> = 7% baSicEQ1+ o §)
BSCR 51.54 51.55 51.55 (51.55) 51.55 51.55 (51.55)
SCRyp 0 15.47 76.06 27.43* 15.47 76.06 27.43*
SCRuta 51.54 67.02 127.61] 78.98 67.02 127.61 78.98

*Residually derived aSCRy,0p = SCRy ot —BSCR

In Part b) of Table 5, solvency capital requiremseare displayed for fair premiums and show
very similar results as in the case of the basorum in Part a). In addition, when premiums
are calculated fair from the shareholders’ perspecthe solvency capital requirements are
equal in Cases 2 and 3 due to the fair calculatfotihe premium loadingd® (see Table 4).
Thus, fair pricing (using a fair loading) or thensaderation of operational risk in basic
pricing (Case 3) does not considerably impact36& which is mainly due to the low overall
shortfall probabilities in the present setting.

However, this changes when looking at a settindn Wigher operational risk as shown in
Figure 2, where the shortfall probabilities arepthyged (right column) for basic premiums
(upper left graph) and for fair premiums (lowertlgfaph) for varying operational loss
intensities/. If the insurer does not impose a fair loadingp@mprow), the basic premium is
decreasing in Case 3 for an increasing operatitoss intensityd as operational risk is

considered in basic pricing, which increases th&aue risk and thus lowers the basic
premium (see also Table 4). Therefore, the shopfabability is increasing faster than in
Case 2, where operational risk is not included ricimy, implying that the basic premium
remains unchanged even if the operational losssitied increases. Thus, if premiums are
calculated without a fair loading (that accounts éperational risk), pricing assumptions
regarding the basic premium can in fact substdptiaipact an insurer’s risk situation. In



18

contrast, if premiums are calculated fair from sh@reholders’ perspective (bottom row), the
premium loading adjusts the basic premium for tgldér number of operational losses, such
that the policyholders carry the higher operationak. Hence, the fair premiums are
increasing for higher loss intensities and are efpraCases 2 and 3 (see also Table 4), thus
also implying the same shortfall probability.

As solvency capital requirements do not considgrdiifer in Cases 2 and 3, we now only
focus on Case 3, where operational risk is takém atcount in basic pricing, and further
assume that the insurer imposes a fair premiumirgad=igure 3 exhibits results of a
sensitivity analysis regarding th®CR,y for varying relevant parameters, including the
frequencyZ of operational losses, the correlation betweenpaom losses and operational
lossew.(Z1,S), and the expected company l0sEES)).

In the upper left graph in Figure 3, the basic #mel fair premiums are displayed for an
increasing frequency (see also Figure 2), and the upper right graplstibe corresponding
SCRfor the standard model, the partial internal mpdat the full internal model. Here, the
BSCRis constant and equal for all three approachegypasational risk is not taken into
account when deriving thBSCR(see Equation (6)). This also implies that in caéd¢he
standard modeBCRywv,0pis constant as well due to the derivation by mesribe risk-based
factor SCRwm,0p = 0.3BSCR. Thus, the totaBCRin case of the standard model does not
change if the operational loss intensity is incirggs
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Figure 2: Premiums (basic and fair) and corresponding shlbpprobabilities for different
assumptions regarding the consideration of operatioisk in pricing (Cases 1 to 3, see
Table 1) for varying operational loss intensities
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Compared to the standard model, 8@Rfor operational risk derived by the partial intairn
model and the full internal model are increasingdio increasing operational loss intendgity
where SCRw,0p IS increasing faster thailSCRuop, due to the non-consideration of
diversification benefits. Only for very low value$ /. does the standard model require more
capital for operational risk than the full internalodel and thus generally appears to
underestimate operational risk (depending on thdvidual firm’s operational risk). In
contrast, the partial internal model tends to ostmeate operational risk, since it does not
account for diversification effects between risktéas.
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Figure 3. Fair premiums and correspondiSgRfor varying parameters for Case 3 (with
operational risk and taken into account in basicirmg)
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In regard to the correlation between company loasésoperational lossegZ;,S) it can be
seen from the second row in Figure 3 that for vagygorrelations, the basic premiums and the
fair premiums are slightly decreasing. As in thstfrow of Figure 3, thBSCRandSCRwv,0p
remain constant. Furthermore, the same holds wuoethle SCRw op for operational risk
derived by the partial internal model, since thiewation of the OpVaR does not account for
dependencies between operational losses and conpssgs (see Equation (8)). The full
internal model, in contrast, fully accounts for degdencies and diversification benefits, such
that SCRv,0p decreases for lower correlation$Z;,S). When varying the expected company
lossesE(S) (lower graph in Figure 3), the basic and fairmpiems are increasing linearly for
an increasinde(S;). In the lower right graph in Figure 3 it can leeg that th@SCRand the
SCRw,opare also linearly increasing due to the increakif®) and since the solvency capital
requirements for the operational risk in the staddaodel are calculated by the factor 0.3 of
the BSCR In case of the partial internal mod8ICRwm,0p remains constant as it is based on
the OpVaR only, which does not depend on the coripaosses. When looking at the
SCRu,0p, We again observe that this is decreasing for mereasing E(S;) due to
diversification effects, thus implying only a sligincrease in the total solvency capital
requirements.

Lastly, we study the impact of the asset allocatiarthe fair premium, shortfall probability
and SCRas displayed in Figure 4 by varying the fractjoof high-risk assets. The results
show that ify is increasing, the fair premium and the shortfathbability increase. With
respect to th&CRy, the right graph in Figure 4 illustrates that ase of the partial internal
model, theSCRwm,0p iS again constant as assets do not impact the Rplfacase of the
standard modelSCRyw,0p Stays almost constant ungilreaches about 0.6 and then increases,
similar to the development of the shortfall proligi In comparison to thisSCRwu,op iS
slightly increasing for a smaller than 0.6 and then decreasing ig higher than this value.
Thus, the development &ICRv,op is opposed to the one observed in case of theeBoyvll
standard formula. Hence, these results again engghtee diversification benefits that arise
due to imperfect correlations between assets ardatipnal risks. One can also observe that
as in Figure 3, the standard model may underestiroperational risk and that the partial
internal model overestimates it due to the non-clamation of diversification benefits, which
are taken into account in case of the full intemabel.
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Figure 4: Fair premiums, shortfall probabilities and cor@sging SCRy, for varying the
fractiony of high-risk assets for Case 3 (with operatiomst and taken into account in basic

pricing)
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4. IMPLICATIONS AND FURTHER CONSIDERATIONS IN REGARD TO MEASURING AND
MANAGING OPERATIONAL RIsSKS

The previous analyses emphasized the importancedeuately taking into account
operational risk when assessing an insurer’s rigk solvency situation, thereby using an
aggregate view of operational risk without distirsiping between different risk cells. Hence,
in practice, two additional central aspects musttdéleen into account. First, the total
operational risk of an insurer is typically givey aggregating dependent losses of all risk
cells. Therefore, frequency dependence and seveeipendence between the different risk
cells have to be considered when calculating tHgesoy capital requirements for the
operational risk of an insurance company (see, Bdirker and Klippelberg, 2008). Hence,
an accurate framework for modeling dependent ridls ¢or operational risk is indispensable.
Furthermore, in the present setting, extreme vtiaery is used and, therefore, the GPD has
to be estimated for independent and identicallyrithisted losses. In addition, an adequate
threshold must be chosen. This involves a tradeetiiveen choosing a higher threshold (that
improves the approximation of the excess distrdoutfunction) and choosing a lower
threshold (that reduces the amount of data aveail&n estimating the GPD, but in turn
increases the standard errors of the GPD’s estanégee McNeil, 1999). Second, the model
needs to be adequately calibrated, which requinécient loss data as the basis of risk
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measurement and risk management (see Kalhoff aag,2804), which is also vital for an
adequate estimation of the correlation structureragndifferent risk cells (see Haas and
Kaiser, 2004). Here, in principle two different sces of operational loss data are available,
internal and external loss data. The creation ahternal database over time thereby provides
a more reliable assessment of an individual in&i@gperational loss events if the data set
becomes sufficiently large. However, internal ofieral loss data is often limited as
operational risk includes human errors and, thbs, willingness of employees to inform
about operational loss events will be one cruaigcsss factor to create an internal database
(see Kalhoff and Haas, 2004)Hence, the quantification of solvency capital iegments for
operational risk remains a challenge for many iessyralso and especially due to the small
sample size of internal operational loss eventsiclwlis why external databases can be
integrated to gather additional loss informatiord do obtain a more accurate picture of
operational risk. External databases are eithatadla from providers (e.g. Algo OpData and
SAS OpRisk Global Data) or consortia of insur@nshich must then be adapted to the size of
the individual insurance company and the size ®érival operational loss events (see
Selvaggi, 2009). However, the occurrence of highesty operational loss events is often
kept confidential. Therefore, loss data is typigdliased towards low severity losses, and the
true frequency of operational loss events is urslenated due to unreported large losses.

Besides measuring operational risk, one major issugs management, which includes
prevention and insurance. Methods of preventingradmmal losses mainly comprise the
monitoring and optimization of processes as wellttes initialization of training for the
employees and business continuity management. Hawthese methods only influence the
probability of operational losses, but not the nmiagle of single operational loss events (see
Auer, 2008, pp. 138-141). The amount of operatidosses — especially for risks with low
frequency and high severity — can be reduced bgldping emergency plans, for instance.
Furthermore, a variety of insurance products agaipsrational losses is available that are
typically linked to the event type, as there isaowerage for operational risk in genefabr
example, insurance against natural hazards isadlaifor the risk type “damage to physical
assets”, fidelity insurance for “internal and extrfraud”, errors and omissions insurance for

19 Even though large operational losses should tijigibe known by the management, the successfutiorea

of an internal database depends on the cooperatisesf the employees to pass on the required iafiwm
According to Kalhoff and Haas (2004), a number ofmpanies in their study tried to motivate their
employees to relay the required data through pesdnd negative incentive systems. However, thithoak
still did not fully solve the problem of ensuringet transmission of information (see Kalhoff and $jaa
2004).

E.g., ORIC, which was launched by the AssociatidnBritish Insurers in 2005 as a response to new
regulations of the UK Financial Services Autho(iB5A) and Solvency Il.

20
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“clients, products & business practice” or losuaifits insurance for the event type “business
disruption & system failures” (see Cruz, 2002, @p8-259; Auer, 2008, pp. 149-150). In
addition, large industrial firms (e.g. ThyssenKryugmave recently expressed the need for
insurance against “cyber-attacks”, e.g. sabotageasfufacturing facilities, which is currently
not available and can be classified in the evgmtdy'external fraud” and “business disruption
& system failures”. As an alternative to traditibmainsurance, operational risk can be
mitigated by issuing insurance-linked securitieshsas cat bonds, or by means of insurance
derivatives. However, at least under Basel Il, ¢hesk transfers are not accepted to reduce
the solvency capital requirements (see Auer, 2@08,41). In addition, when transferring
operational risk, the recognition of insurance gation in the calculation of the solvency
capital requirements under Basel Il/lll is limitenl 20% of the total operational risk capital
charge (see Basel Committee, 2004, p. 148), atmateaccording to Hess (2009) may also be
implemented in Solvency Il

While taking preventive action and purchasing iasge against operational risk reduces the
risk of monetary losses due to operational risknes/e there is a considerable reputational
risk associated with these events. In particuldthoagh reputational risk is explicitly
excluded in the definition of operational risk, tfegutation of an insurance company can be
damaged as a consequence of operational lossesddeentnouvelle et. al, 2006; Kamiya,
Schmit, and Rosenberg, 2011). Results in a studyitrglelisi, Soana, and Schwizer (2011),
e.g., indicate that substantial reputational logelew after operational loss events and that
the highest reputational damage is caused by tleeatpnal risk type “fraud”. Moreover,
Cummins, Lewis, and Wei (2006) show that after perational loss event, the decrease in
market value of banks and insurers is even hidtem the pure operational loss amount. The
studies of Gillet, Hubner, and Plunus (2010) andryPand de Fontnouvelle (2005) also
illustrate that at least for the event type “intdrfraud”, the loss in market value is greater
than the operational loss announced. Hence, edlyefba companies whose activities are
based on trust such as banks and insurers, reputatia key asset and, thus, prevention in
regard to operational risk and especially with ee$fo fraud is vital (see Fiordelisi, Soana,
and Schwizer, 2011). In addition, new insurancedpects that provide coverage for
reputational losses are now offered in the market.instance, insurance policies by Munich
Re and Zurich cover profit setbacks caused by egfpumial damages up to €150 million, while
Allianz developed a new product that covers theésco§ communication in terms of press
work, advertisement and media monitoring, afteeputational loss event up to €10 million

2L As the premium of insurance typically exceeds ¢mpected operational losses, transferring riskuitino
insurance generally does not reduce the expectesbdp but it helps stabilizing losses over timesth
reducing risk.
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(see Hopner, 2012). Furthermore, as legal risksraladed in the definition of operational
risk under Solvency Il, operational risk dependsoabn the country and the individual
situation of the insurance company. Therefore, afpmral risk measurement and
management should be integrated in an enterpskamanagement framework that accounts
for all relevant factors and dependencies as vealhsurance and prevention, which can imply
a positive impact on firm value (see Hoyt and Ligierg, 2011).

5. CONCLUSION

This paper examined the impact of operational dskfair premiums and solvency capital

requirements under Solvency Il. Three differentrapphes were used for the latter, including
a full internal model and a partial internal mottedt only focuses on the operational value at
risk (OpVaR), i.e. without taking into account disiication effects. These were compared to
the Solvency Il standard model that uses a risleddasctor to derive capital requirements for
operational risk.

The results showed that the presence of operatidsialin general does not considerably
impact fair premiums (fair from the shareholderstgpective) if the insurer’'s safety level is
sufficiently high. However, this observation chadder higher operational loss intensities,
where neglecting operational risk in pricing selieiempacted an insurer’s shortfall risk if
premiums were not calculated in a fair way.

Regarding solvency capital requirements, we founad the internal model considered in this
paper led to similar results as the Solvency Ihdéad formula as long as the operational loss
intensity was not too high. This is a consequericth® diversification benefits taken into
account in case of the internal model that arise tu imperfect correlations between
operational risks, insurance risks, and markesrisior increasing operational loss intensities,
however, the standard model clearly tended to wstienate risk as capital requirements are
calculated based on the fixed factor 0.3 of thecbs®vency capital requirements (that do not
include operational risk). Hence, both the standaatiel and the partial internal model are
not able to reflect diversification benefits dueitgperfect correlations between operational
losses and insured losses. While the solvencyalapquirements derived by the Solvency Il
standard formula and the partial internal modelstinemain constant for decreasing
correlations between operational losses and insilosses, theSCR derived by the full
internal model decreases due to an increasing dfieation benefit. The same holds true
when varying the expected company losses and déleédn invested in low-risk assets, which



26

emphasizes the potential for diversification besefinat arise due to imperfect correlations
between assets, company losses and operationsl risk

Since diversification benefits are not taken intoaunt in case of the partial internal model,
which derives the operational value at risk sepgdyatsolvency capital requirements are
generally overestimated in this case. One waydaae monetary losses from operational risk
is (re-)insurance, which, however, is only avakalibr specific event types and not for
operational risk in general. Furthermore, the irdégn of supplementary prevention methods
in addition to reinsurance is vital in order to wed the probability and magnitude of
operational losses, as operational loss eventsaase severe reputational damage, which can
even worsen an insurer's solvency situation beydmel operational loss amount and
considerably reduce market values. Operationalgisluld thus be measured and managed in
the context of a holistic enterprise risk managensistem with an internal risk-sensitive
approach that accounts for dependencies betwe&nfators and additionally includes
specific insurance and prevention programs. Thiglge relevant in the context of insurers’
Own Risk and Solvency Assessment (ORSA) as reqaicedrding to Solvency II's Pillar 2
and the NAIC in the United States. Amongst oth@eats, future research could focus on an
(empirical and theoretical) analysis of the impakcbperational risk (e.g., concentrations on
the balance sheet) and correlations between opeahtrisks and the risk profile of other
assets and/or liabilities on pricing, risk managetend capital budgeting decisions in
general using, e.g., a multi-factor model as prepdsy Froot (2007).
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