

Global Optimization Algorithms with Application to Non-Life In-

surance Problems

Ralf Kellner

Working Paper

Chair for Insurance Economics

Friedrich-Alexander-University of Erlangen-Nürnberg

Version: June 2012

1

GLOBAL OPTIMIZATION ALGORITHMS WITH APPLICATION TO

NON-LIFE INSURANCE PROBLEMS

Ralf Kellner

ABSTRACT

If optimization problems cannot be solved through analytical methods, global op-

timization algorithms constitute useful tools to derive numerical solutions. Global

optimization methods are often applied to non-life insurance optimization prob-

lems. The aim of this paper is to analyze the application of four global optimization

algorithms to insurance optimization problems and compare the results with respect

to the algorithm‟s fitness, which reflects the ability to reach the highest/lowest ob-

jective function value, and the computational intensity. The insurance problems ex-

amined in the analysis include typical optimal decisions concerning the insurer‟s

investment choice and risk management instruments. The results show that for the

problems and methods considered within the simulation analysis, genetic optimiza-

tion leads to the best objective function values, while particle swarm optimization

exhibits the lowest computational intensity.

1. INTRODUCTION

In the past decades, many optimization algorithms have been developed with the purpose to

numerically optimize functions for which analytical methods are not available. Most of these

method‟s functionalities are derived from principles of nature and biology, such as evolution

or swarm intelligence. Analyses comparing the performance of these algorithms for typical

optimization problems exist for different fields of science, e.g. statistics, engineering or bioin-

formatics (see, e.g. Vesterstrøm and Thomson, 2004; Paterlini and Krink, 2006), in which

results regarding the algorithms‟ performance differ for each field of science due to differ-

ences in optimization and objective functions. However, even though these algorithms are

applied to several insurance optimization problems (always only one algorithm to a specified

optimization problem), a comparison of global optimization algorithms has not been conduct-

ed in the field of non-life insurance. Thus, it seems to be an important topic to conduct such

an analysis in the field of non-life insurance. Hence, the aim of this paper is to compare the

performance of global optimization algorithms with respect to non-life insurance optimization

problems.

 Ralf Kellner is at the Friedrich-Alexander-University (FAU) of Erlangen-Nuremberg, Chair for

Insurance Economics, Lange Gasse 20, 90403 Nuremberg, Germany, Tel.: +49 911 5302884,

ralf.kellner@wiso.uni-erlangen.de.

 2

Early literature in the field of optimization of non-life insurance problems is often based on

assumptions such as normality for risk processes to derive analytical solutions (see, e.g. Ka-

hane and Nye, 1975; Cummins and Nye, 1981) and focuses on optimization problems in a

mean-variance framework, simultaneously considering the asset and liability side. Kahane

and Nye (1975) estimate parameters for the distributions of nineteen lines of business of an

insurer and two asset classes as well as the correlation matrix for the risk process and follow a

mean-variance approach to simultaneously optimize investment and underwriting decisions.

As the approach applied in Kahane and Nye (1975) is very sensitive to parameter estimation,

an alternative is applied in Kahane (1977) by using Sharpe‟s Single-Index Model, where each

of the insurer‟s return on investment and underwriting decisions is explained through a rela-

tionship with a market performance index. This reduces the extent of parameter estimation, as

instead of estimating the relationships between all of the insurer‟s underwriting and invest-

ment activities, only the relationship with the index has to be estimated for each activity.

Cummins and Nye (1981) also derive mean-variance efficient frontiers for an underwriting

and investment decision problem and determine how decision rules, such as ruin or utility

theory, can be used to select mean-variance efficient points on the deduced frontier. Further

examples for analyses concerning mean-variance efficient portfolio optimization of assets and

liabilities are amongst others Krouse (1970) and Eisenberg and Kahane (1978).

Moreover, in the recent literature on non-life insurance, making simplifying assumptions, e.g.

normality of risk processes, is usually avoided in order to capture the insurance optimization

problems in a more realistic manner. Furthermore, the optimization problems‟ objective func-

tions become more complex than mean-variance efficient problems and often include risk

management instruments with complex payoff structures as well as tail risk measures within

the constraints. As a consequence, analytical solutions are not easily available and solutions

have to be analyzed through simulation analysis and numerical methods. Several applications

of global optimization algorithms can be found in the non-life insurance literature. Zeng

(2003, 2005) uses a genetic algorithm to search for the optimal quantity of industry loss war-

ranty contracts, while Cummins, Lalonde and Phillips (2004) apply a hybrid genetic algorithm

to solve an optimization problem searching for the optimal use of call spreads based on cata-

strophic loss indices. A pattern search method is employed by Yow and Sherris (2008), who

optimize the firm value in a model allowing market imperfections, while Gatzert and Kellner

(2011b) use differential evolution to search for the optimal usage of alternative risk transfer

instruments in order to maximize the net shareholder value of a non-life insurer. In addition,

Lei (2011) illustrates how genetic algorithms and Monte Carlo simulation can be used to de-

rive solutions for cost minimization. Even though these methods are applied in the field of

 3

non-life insurance, other popular global optimization algorithms, e.g. particle swarm optimi-

zation, have not been applied. Furthermore, global optimization algorithms are usually ap-

plied to the optimization problem without comparing their effectiveness to other global opti-

mization methods.

However, with respect to other fields of science, the comparison of the global optimization

algorithms‟ performance has been subject to several analyses. Storn and Price (1997) compare

differential evolution to other evolutionary algorithms, annealing methods, and methods of

stochastic differential equations within selected benchmark functions and detect differential

evolution to be superior with respect to find the global optimum in a required number of func-

tion evaluations. Vesterstrøm and Thomson (2004) and Panduro et al. (2009) compare the

performance of particle swarm optimization, genetic optimization and differential evolution.

Vesterstrøm and Thomson (2004) observe that differential evolution outperforms particle

swarm optimization and the genetic algorithm in 32 of 34 benchmark cases, while Panduro et

al. (2009) find particle swarm optimization and differential evolution to be better than the

genetic algorithm for an optimization problem in the field of electromagnetism. Moreover,

differential evolution also proves to be more efficient in comparison to particle swarm opti-

mization within an analysis by Paterlini and Krink (2006), examining the application to parti-

tional clustering. While Pham and Wilamowski (2011) refine the Nelder-Mead simplex meth-

od and compare results of the newer to the original version, Bera and Mukherjee (2010) detect

the latter to be inferior to a hybrid simulated annealing method for a multiple response opti-

mization problem. However, Katari et al. (2007) detect the Nelder-Mead simplex method to

be superior for certain cases of data clustering problems in comparison to an improved genetic

algorithm.

Hence, in this paper, we expand previous work in the following way. We choose four global

optimization algorithms, which are frequently used in the optimization literature as laid out

above and apply them to various insurance optimization problems, which focus on optimal

investment and risk management decisions. We first start with an optimization problem that is

expressed in a mean-variance framework, analyzing an insurer‟s risk management decisions

on the asset and liability side. This problem exhibits an analytical solution which can be com-

pared to the solutions provided by the numerical methods of the global optimization algo-

rithms. Furthermore, optimization problems maximizing the insurer‟s surplus or the net

shareholder value under constraints accounting for the insurer‟s solvency situation are formu-

lated. The optimization algorithm‟s results are compared with respect to the optimization al-

gorithm‟s fitness, which describes the algorithm‟s ability to reach the highest/lowest objective

 4

function value in case of a maximization/minimization problem (see, e.g. Paterlini and Krink,

2006) and the computational intensity. In addition, sensitivity analyses with respect to differ-

ent input parameters of the global optimization algorithms and different starting values for the

optimization algorithms are conducted.

Concerning the global optimization algorithms, we choose the Nelder-Mead simplex method,

particle swarm optimization, differential evolution and genetic optimization. The Nelder-

Mead simplex is one of the oldest optimization algorithms (see Nelder and Mead, 1965), but

despite its age is still often applied (see, e.g. Price, Coope and Byatt, 2002; Katari et al.,

2007). Due to the characteristic of having just one starting point instead of conducting a paral-

lel search technique of multiple vectors, it exhibits advantages concerning the computational

intensity, but also increases the likelihood of getting trapped in a local optimum. To avoid this

potential drawback, modern optimization algorithms like particle swarm optimization, differ-

ential evolution and genetic optimization usually apply parallel search techniques. Within our

analysis, our results show that genetic optimization leads to the highest objective function

values, while particle swarm optimization exhibits the lowest computational intensity. Over-

all, our results show that the type of search technique (direct or parallel) and the number of

heuristic rules that are applied during the optimization are crucial for the algorithms‟ perfor-

mance.

The remainder of this paper is structured as follows. In Section 2, the optimization algorithms

are presented, while Section 3 illustrates the optimization problems. Section 4 contains nu-

merical analyses and Section 5 concludes.

2. GLOBAL OPTIMIZATION ALGORITHMS

In the following analysis, we compare the performance of four global optimization algo-

rithms, the Nelder-Mead simplex method, differential evolution, genetic optimization and

particle swarm optimization. The Nelder-Mead simplex is a simplex-based direct search

method, while differential evolution and genetic optimization belong to the class of evolu-

tionary algorithms, and particle swarm optimization follows the approach of swarm intelli-

gence computation. While the Nelder-Mead simplex starts its search for a global optimum at

one starting point, the remaining algorithms use sets of initial trial vectors and, thus, exhibit-

ing a parallel search technique. All four optimization algorithms are applied to solve an opti-

mization problem, which in general can be formulated as

 5

 min f x , dx ,

and, if necessary, be complemented with additional constraints

0
, 1, , , 1, ,

0

i

cg ch

j

g x
c i n j n

h x

,

where x represents a vector with d parameters to be optimized, f x the objective function

to be minimized, ig x and ih x the constraint functions and ,cg chn n the number of con-

straints (see Marti, 2005). Depending on the characteristics and the progression of f x , dif-

ferent algorithms may lead to diverse results, which is based on different heuristic rules that

are applied during the optimization.

2.1 Nelder-Mead simplex method

The Nelder-Mead method was first published in 1965 (see Nelder and Mead, 1965) and is a

method to optimize an unconstrained function f x of d variables, dx . To find an op-

timum, only function values are used. Thus, it represents a derivative-free method.

Each iteration step starts with a set of 1d points, building a simplex,
1
 which converts itself

according to operation rules (see Lagarias et al., 1998). These rules are constructed to improve

the best function‟s value at each iteration step or to stop if a stopping condition, e.g. the best

function‟s value cannot be improved for more than a predefined amount of iteration steps, is

reached. In particular, at the i th – iteration step 0i , 1d points, given through 1d

vertices from the simplex i , are ordered according to their function values f x for
dx . Based on the order of the points jx , 1, , 1j d , the operations reflection, expan-

sion, contraction and shrink step as illustrated in Figure 1a), which illustrates the four opera-

tions for a 2-dimensional problem, are conducted (see Lagarias et al., 1998).

1
 A simplex is a d-dimensional polytope, in which each simplex is defined by 1d vertices, e.g. a

simplex of dimension two is a triangle (see, e.g. Price, Coope and Byatt, 2002).

 6

Figure 1: Operator functions and procedure for the Nelder-Mead simplex method

a) Operator functions for the Nelder-Mead simplex method

1

ix
2

ix

3

ix

cx

rx

1

ix
2

ix

3

ix

cx

rx

ex

1

ix
2

ix

3

ix

cx

rx

,c outx

1

ix
2

ix

3

ix

cx

,c inx

1

ix
2

NMv

3

NMv

(1) Reflection (2) Expansion (3) Contraction (4) Shrink Step

Outside Inside

b) Procedure for the Nelder-Mead simplex method

 1 2 1

k k k

df x f x f x

 1

k

rf x f x k

r df x f x 1

k k

r df x f x f x

Expansion (see (2)) Contraction (see (3))

Reflection (see (1))

accept xr and

terminate iteration

 e rf x f x e rf x f x

accept xe and

terminate iteration

accept xr and

terminate iteration

 , , 1/ i

c out r c in df x f x f x f x

accept xc,out /xc,in

and terminate

iteration

perform a shrink

step (see (4))

 , , 1/ i

c out r c in df x f x f x f x

 7

According to the order of function values 1 2 1

i i i

df x f x f x , 1

ix denotes the best

point, 2

ix the second best point and 1

i

dx the worst point, if the aim is to minimize f . After

sorting the function values, reflection is applied, whereas the reflection point
rx is given

through

 1

NM

r c c dx x x x ,

where cx is the centroid
2
 of the d best points (see Lagrias et al., 1998) and NM represents

the reflection factor of the Nelder-Mead simplex method NM , which satisfies 0NM . The

higher the value for NM is chosen, the further away moves the new reflection point from the

centroid. Figure 1b) illustrates the three possibilities for the further development of the itera-

tion. If the function value rf x of rx lies between the best and the second worst function

values 1

i i

r df x f x f x , rx is accepted to replace 1

i

dx and the first iteration step is

terminated. In case of 1

i

rf x f x , the expansion point ex is calculated using

 NM

e c r cx x x x ,

with NM as the expansion factor, satisfying 1NM and NM NM (see, e.g. Price, Coope

and Byatt, 2002). If the function value of ex is higher or equal to the reflection point‟s func-

tion value, rx is chosen to be the new vertex, otherwise ex replaces 1

i

dx . For the third possi-

ble case i

r df x f x , an outside contraction is performed if 1

i i

d r df x f x f x and

the outside contraction point ,c outx is calculated according to

 ,

NM

c out c r cx x x x ,

or an inside contraction is conducted, determining the inside contraction point ,c inx

 , 1

NM i

c in c c dx x x x ,

if 1

i

r df x f x , with NM representing the contraction factor, satisfying 0 1NM . If

 ,c out rf x f x or , 1c in df x f x , respectively, the contraction point ,c outx or ,c inx , re-

spectively, is accepted to be the new vertex for the next iteration step (see Lagrias et al.,

1998). Otherwise, a shrink step is performed and the vertices for the simplex in the next itera-

tion, 1 2 1, , ,NM NM

dx v v , are calculated according to

2
 The centroid is the center of mass and in the example illustrated in Figure 1a) the point whose co-

ordinates are the weighted means of the 1

ix and 2

ix coordinates, respectively.

 8

 1 1

NM NM

i jv x x x ,

with NM being the shrink step factor, satisfying 0 1NM . Summing up, each iteration

step starts through reflecting the worst point at the centroid of the remaining points. If the

function value of the new reflection point falls between the function values of the remaining

point, the iteration step is closed. If the function value of the new reflection point leads to bet-

ter results than the results of the remaining points, the search is extended through expansion,

otherwise, if the function value of the reflection point is still worse than the function values of

the remaining points, the search is narrowed down through contraction.

The algorithm explained above is repeated until a stopping criterion is satisfied, e.g. a maxi-

mum number of iterations is reached or the best objective function‟s value could not be im-

proved for a predefined absolute or relative value. Accordingly, the algorithm must not lead to

the global optimum, but can lead to results close to the global optimum in a lower computa-

tional time than, e.g. exhaustive testing in the search space. The method‟s quality depends on

the choice of starting values, which must be set with the initialization of the method, opera-

tion factors , , ,NM NM NM NM and stopping conditions.

Due to its user-friendly application, the Nelder-Mead algorithm is frequently applied in the

fields of statistics, engineering, physical and medical sciences (see Price, Coope and Bryatt,

2002). Nevertheless, a drawback of the Nelder-Mead algorithm is that its search for the global

optimum could be trapped in a local optimum. This can be solved through trying different

starting points for the algorithm. As an alternative, other optimization algorithms avoid this

problem through simultaneously running several trial vectors. Examples are differential evo-

lution, genetic optimization and particle swarm optimization, which are explained in detail in

the next paragraphs.

2.2 Differential evolution

Differential evolution (DE) belongs to the class of evolutionary algorithms and is a parallel

direct search method (see Storn and Price, 1997). It starts with a set of p d - dimensional

trial vectors ,

DE

i gx , 1,2, ,i p , representing the population, and modifies its p trial vectors

through the operation functions mutation, crossover and selection for a number of generations

g , until a stopping condition is satisfied. Before the initialization, lower and upper bounds for

each parameter, which should be used for the optimization, must be defined. The initial set of

 9

trial vectors is then randomly drawn on a uniform probability space. Subsequently, for each

trial vector ,

DE

i gx , a mutant vector ,

DE

i gv is created through

0 1 2, , , ,

DE DE DE DE

i g r g r g r gv x F x x ,

with random indices 0 1 2, , 1,2, ,r r r p , which have to be different to i , and F as the step

size, satisfying 0F (see Price, Storn and Lampinen, 2006).
3
 In the next step, an initial gen-

eration is created through crossing over the trial vector ,

DE

i gx and the mutant vector ,

DE

i gv ,

whereas the trial vectors , 1 , 2 , ,, , ,DE DE DE DE

i g i g i g di gu u u u are created according to

,

,

,

DE

ji gDE

ji g DE

ji g

v if randb j CR or j rnbr i
u

x if randb j CR and j rnbr i

, 1,2, ,j d ,

where 0,1CR is the predefined crossover constant, 0,1randb j a uniform random

number generator and 1,2, ,rnbr i d a random index, ensuring that the trial vector ,

DE

i gu

gets at least one parameter of the mutant vector ,

DE

i gv (see Storn and Price, 1997). The next

generation of trial vectors , 1

DE

i gx is then generated by comparing the objective function values

of the initial vectors ,

DE

i gf x and the trial vectors ,

DE

i gf u . Hence, , 1

DE

i gx is created through

 , , ,

, 1

,

DE DE DE

i g i g i gDE

i g DE

i g

u if f u f x
x

x otherwise

,

(see Price, Storn and Lampinen, 2006). The process of mutation, crossover and selection is

repeated until a stopping condition is satisfied. Through the parallel search technique, the dis-

tress of getting trapped in a local optimum is significantly reduced. However, at the same time

this search technique increases the computational intensity in comparison to the Nelder-Mead

simplex. While the mutation and crossover operators cause trial solutions to scan the objective

function‟s surface, the selection operator memorizes good solutions from the previous genera-

tion.

2.3 Genetic optimization

The functionality of genetic optimization (GO) is derived from the mechanics of natural se-

lections and natural genetics and proceeds over a number of generations g to reach the objec-

3
 As the index i has to be different to 0 1 2, , 1,2, ,r r r p , p must be greater or equal to four.

 10

tive function‟s maximum (see Goldberg, 1989). Similar to differential evolution, a genetic

algorithm starts with a set of d - dimensional initial vectors ,

GO

i gx , 1,2, ,i p , representing

the population.

With each vector ,

GO

i gx , the objective function‟s value ,

GO

i gf x is calculated. The population in

the following generation g is created according to operator functions, which use data from

the former generation to generate a new population and adopt rules to increase each genera-

tion‟s average objective function‟s value (see, e.g. Panduro et al., 2009). Thus, in contrast to

differential evolution, the initial trial vectors are not passed to the next generation.
4
 Operator

functions among the genetic algorithm can differ (see, e.g. Filho, Alippi and Treleaven,

1994). In our analysis, we conduct a genetic algorithm based on Mebane and Sekhon (2011).

The operator functions are displayed in Table 1. Even though the general procedure applied in

differential evolution and genetic optimization is identical (parallel search of initial trial vec-

tors, representing the population, is evolved over a number of generations through operator

functions), results which are obtained may differ due to the different operator functions.

Especially the usage of an initial generation and the selection operation within differential

evolution leads to new generations with identical vectors , , 1

DE DE

i g i gx x , thus memorizing solu-

tions from previous generations, whereas within the genetic algorithm, only a predefined

number of vectors, which lead to the best objective function‟s values, is kept for the next gen-

eration through the cloning operation (see Mebane and Sekhon, 2011). For both methods, the

choice of the population size p and the number of generations g is crucial for the optimiza-

tion‟s quality. Nevertheless, due to the different operator functions, the optimal choices for p

and g may also differ between differential evolution and genetic optimization. In addition, a

tradeoff between a higher optimization‟s quality and a longer running time, coming along

with an increase in p and g , exists.

4
 The cloning operator (see Table 1) constitutes an exception, as it copies a predefined amount of the

best trial vector solutions from the previous generation into the next generation. Usually, only a

few population members are generated through cloning, i.e. Mebane and Sekhon (2011) recom-

mend to solely copy the current generation‟s best trial vector in the next generation.

 11

Table 1: Operator functions for the genetic algorithm by Mebane and Sekhon (2011)

Cloning Copy ,

GO

i gx in the next generation , 1

GO

i gx

Uniform

mutation

Randomly choose 1,2, ,j d . Select a value according to

 ,~ , ,

, , ,~ ,GO GO lower GO upper

ji g ji g ji gx U x x , where ,

,

GO lower

ji gx and ,

,

GO upper

ji gx represent the lower

and upper bounds for the values of ,

GO

ji gx . Set ,~

, , 1

GO GO

ji g ji gx x .

Boundary

mutation

Randomly choose 1,2, ,j d . Set either ,

, 1 ,

GO GO lower

ji g ji gx x or ,

, 1 ,

GO GO upper

ji g ji gx x ,

with probability 0.50 of using each value.

Non-uniform

mutation

Randomly choose 1,2, ,j d . Compute max1 /
B

gen currentq g g u , with

currentg representing the current generation number, maxg the maximum genera-

tion number, 0B a tuning parameter and ~ 0,1u U . Set either

 ,

, 1 , ,1GO gen GO gen GO lower

ji g ji g ji gx q x q x or

 ,

, 1 , ,1GO gen GO gen GO upper

ji g ji g ji gx q x q x with probability 0.50 of using each value.

Polytope

crossover

Using max 2,m d vectors ,

GO

i gx from the current population and m random

numbers 0,1ls , so that
1

1
m

l

l

s

 , set , 1 ,

1

m
GO GO

i g l l g

l

x s x

 .

Simple

crossover

Pick a single integer j from d . Using two parameter vectors, 1,

GO

gx and 2,

GO

gx , set

 1, 1 1, 2,1GO GO GO

j g j g j gx t x t x and 2, 1 2, 1,1GO GO GO

j g j g j gx t x t x , where 0,1t

is a fixed number

Whole non-

uniform mutation

Do non-uniform mutation for all the elements of , 1

GO

ji gx

Heuristic

crossover

Pick ~ 0,1u U . Using two parameter vectors, 1,

GO

gx and 2,

GO

gx , compute

 1, 1 1, 2, 1,

GO GO GO GO

g g g gx u x x x . If 1, 1

GO

gx satisfies all constraints, it can be used,

otherwise pick another u value and repeat until a preset number of attempts. If

no 1, 1

GO

gx value is found, set 1, 1

GO

gx equal to the better value of 1,

GO

gx and 2,

GO

gx .

Two 1, 1

GO

gx values must be produced in this manner

Local-Minimum

crossover

Run a BFGS
5
 optimization with a vector 1,

GO

gx up to a preset number of iterations

to produce ,*

,

GO

i gx . Pick ~ 0,1u U and calculate ,*

, 1 , ,1GO GO GO

i g i g i gx u x u x .

If , 1

GO

i gx satisfies all constraints, it can be used, otherwise shrink u by setting

/ 2shrinku u and recomputed , 1

GO

i gx with shrinku . If no satisfactory value for

, 1

GO

i gx can be found until a preset number of attempts is reached, return ,

GO

i gx .

5
 BFGS refers to the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method. In the algorithm of

Mebane and Sekhon (2011), the possibility exists to include and combine this method with the ge-

netic algorithm. As our analysis intends to focus on the optimization through the genetic algorithm,

we calibrate the algorithm such that no additional information derived through the BFGS method

will be involved in the optimization process.

 12

2.4 Particle swarm optimization

Particle swarm optimization (PSO) is a parallel direct search method, whose methodology is

derived from the behavior of organisms such as bird flocking and fish schooling (see Panduro

et al., 2009). At the beginning at time t , a set of particles , 1 , 2 , ,, , , ,PSO PSO PSO PSO

i t i t i t di tx x x x

1, , PSOi s representing the swarm, is randomly placed in the search space while associated

function values are determined.
6
 Subsequently, the particles move around in the search space

with velocity , 1 , 2 , ,, , ,PSO PSO PSO PSO

i t i t i t di tv v v v , where their movement depends on the history of

their own and of the swarm members function values, i.e. over 1,2, ,t T , the particles are

gravitated in the directions of their own and the swarm‟s best function value achieved so far

(see Poli, 2007). The velocity for each component in 1t , , 1

PSO

ji tv , 1,2, ,j d , is calculated

through

 , 1 , 1 1 , , 2 2 , ,

PSO PSO r PSO PSO r PSO PSO

ji t ji t ji t ji t ji t ji tv w v c u x pbest x c u x sbest x ,

where w is the inertia weight, 1 2,c c are the acceleration constants, 1 2,r ru u are uniform distrib-

uted random numbers in 0,1 , ,

PSO

ji tx pbest is the j th component from the best solution,

which is derived through the particle so far, ,

PSO

ji tx sbest represents the j th component

from the best solution, which is derived through the swarm and ,

PSO

ji tx is the j th component

of the current particle. Corresponding to the velocity in 1t , the new position of the parti-

cle‟s component is adjusted according to

, 1 , , 1

PSO PSO PSO

ji t ji t ji tx x v .

After the movement of all particles, the first iteration step is closed. In the next step, this pro-

cedure is repeated until a stopping condition is satisfied. Thus, in contrast to differential evo-

lution and genetic optimization, particle swarm optimization “memorizes” previous results

through retaining all previous results for a possible solution to the optimization problem,

while within differential evolution and genetic optimization, only results within the present

generation are possible solutions for the optimization problem. On the one hand, this charac-

teristic might enhance the computational intensity but on the other hand, it might also increase

the probability of finding the global optimum. Furthermore, particle swarm optimization does

not feature a set of different operator functions as they can be found for differential evolution

6
 At the beginning, the initial particles are comparable to the initial population members in differen-

tial evolution and genetic optimization.

 13

and genetic optimization, which could adversely affect the search for the global optimum and

decrease the computational intensity.

2.5 Comparison and evaluation

Summing up, the Nelder-Mead simplex method is the only algorithm that does not apply a

parallel search technique, which reduces the computational intensity in comparison to the re-

maining algorithms applied in the analysis but enhances the probability to be trapped in a lo-

cal optimum. Particle swarm optimization is similar to the genetic algorithm and differential

evolution through applying a heuristic rule (determination of the velocity) to the particles in

the swarm to improve the algorithm‟s results, but differs in that all previous solutions are

memorized over the procedure, thus causing a high memory effort. The genetic algorithm

creates a new set of vectors for each generation, solely containing a few of the previous gen-

erations‟ best trial solutions, while in differential evolution, vectors are retained, if they lead

to better results than the new mutated trial vectors. Particle swarm optimization uses the parti-

cle personal‟s best result as well as the swarm‟s best result of the previous search to move

new particles in the most promising area with respect to the best function‟s value. Otherwise,

only the velocity is used to determine the evolvement of new trial solutions, whereas differen-

tial evolution and genetic optimization apply several operation functions.

To evaluate the optimization algorithm‟s quality within our analysis, two criteria are consid-

ered. In a first step, we examine which optimization algorithm leads to the best results, i.e.

leads to the highest (lowest) value of the function to be maximized (minimized). The algo-

rithm‟s ability to achieve the highest (lowest) objective function value is denoted as the opti-

mization algorithm‟s fitness (see, e.g. Paterlini and Krink, 2006). Concerning the optimization

methods applied in our analysis, an enhancement in the population and swarm size for differ-

ential evolution, genetic and particle swarm optimization, respectively, as well as in different

starting values for the Nelder-Mead method increases the likelihood to find the highest (low-

est) objective function value, while at the same time the computational intensity is raised.

This tradeoff has to be kept in mind when analyzing the optimization methods efficiency.

Therefore, in a second step, the computational intensity is examined by comparing the run-

ning time of each optimization run.

Besides the analysis of the algorithms‟ performance through the criteria fitness and computa-

tional intensity, an analysis is conducted which focuses on the impact of different random

numbers for each of the algorithms‟ starting values. More precisely, the optimization algo-

 14

rithms start with a random draw of an initial population (differential evolution and genetic

optimization), swarm (particle swarm optimization) or starting point (Nelder-Mead simplex),

which influences the optimization‟s procedure by the initial seeds that are used for this ran-

dom draw, i.e. different values for the initial population, swarm or starting point might lead to

different optimization results. To analyze the impact of a different initial generation, swarm or

starting point in more depth, we analyze the optimization algorithm‟s robustness through the

average relative deviation in modulus, which is determined according to

.

1

, 1, ,

opt origin diff seed
n

i

origin
idev opt

opt

f x f x

f x
f x i n

n

, (1)

where, optn is the number of optimization runs with a different initial population, swarm or

starting point,
origin

f x is the highest objective function value of a predefined standard case

(„origin‟) and
.diff seed

i
f x is the result of the i th optimization run with different initial

seeds in random number generation („diff.seed‟).
7

3. INSURANCE OPTIMIZATION PROBLEMS

To examine whether the optimization algorithms illustrated in Section 2 are suitable for opti-

mizing insurance problems and to determine which algorithm is most efficient, we consider

relevant optimization problems from the field of non-life insurance and alternative risk trans-

fer, where each optimization problem intends to find optimal risk management strategies. The

first is taken from Cummins and Song (2008) and exhibits a closed-form solution. This opti-

mization problem is analyzed to obtain an impression how close the algorithms can get to the

analytical optimum. The further optimization problems are formulated on the basis of Gatzert

and Kellner (2011a) and Gatzert and Kellner (2011b), respectively, and do not exhibit closed-

form solutions and thus require simulation techniques. The illustration of the optimization

problems in this section is conducted with the purpose to clarify the optimizations‟ idea and

notation. A detailed illustration of the model frameworks behind the optimization problems

can be found in Cummins and Song (2008), Gatzert and Kellner (2011a), and Gatzert and

Kellner (2011b).

7
 Cummins, Lalonde and Phillips (2004) apply a similar procedure to determine whether the optimi-

zation results are stable with respect to different intervals for starting values of the optimization.

 15

3.1 Optimizing investment and reinsurance decisions

Considering a holistic risk management approach regarding the asset and liability side, a

tradeoff between hedging decisions on both sides exists. If risky investment decisions on the

asset side are made, higher expenses for risk management have to be spent and/or less risky

underwriting decisions have to be done on the liability side to achieve a desired overall risk

level, whereas less risky investment decisions on the asset side allow riskier underwriting

decisions on the liability side. Cummins and Song (2008) analyze substitution effects between

an insurer‟s investment decision and its risk management decision on the liability side. There-

fore, they set up a mean-variance optimization problem that is optimized over the fraction

invested in risk-free assets and the amount of a proportional (quota share) reinsurance con-

tract.

In their model, in 0t , an insurer invests a fraction IRE of its initial capital 0

IREIC in risk-

free assets, while the remaining fraction is invested in high-risk assets. The initial capital con-

sists of shareholder‟s initial contribution 0EC , premium income 1 ,S IRE for insuring possible

losses at 1t and premium expenses for proportional reinsurance ,re IRE , which pays a frac-

tion IRE of the insurer‟s loss.
8
 Hence, the initial capital is given by

1 , ,

0 0

S IREIRE re IREIC EC .
9
 The superscript IRE denotes the first optimization problem,

which we denote as the investment and reinsurance optimization problem. In 1t , the insur-

ance company faces possible losses 1S and receives payments from the proportional reinsur-

ance contract. High-risk assets are assumed to be normally distributed and independent from

the insurer‟s loss, where H and 2

H represent the expected value and variance of the high-

risk assets‟ return. In this setting, the insurer‟s task is to maximize the expected wealth

 IRE IREW x with

2

IRE

IRE

IRE
x

,

8
 In Cummins and Song (2008), e.g. equity capital is denoted as internal wealth and high-risk assets

are named risky assets. To retain a consistent notation with the subsequent optimization problems,

expressions and notations are adapted.
9
 IRE in the superscript clarifies that the notation is not valid for the following optimization prob-

lems, the investment in risk-free assets in the first optimization problem is not the same as the in-

vestment in low-risk assets RBC in Section 3.2 and Section 3.3, e.g. RBC IRE . Contrariwise, no-

tations without superscript are consistent for the three optimization problems.

 16

which consists of the expected return on investments and underwriting operations

 IREE R x

 1 ,

0 0 11
SIRE IRE IRE IRE IRE IRE re IRE

H fE R x IC IC r E S ,

minus the variance of the insurer‟s position 2 IRER x , given by

2 2 2

2 2 2

0 11 1IRE IRE IRE IRE

HR x IC S ,

weighted with a coefficient of risk aversion IREq , where 1S denotes the loading charged by

the insurer within its premium calculation, ,re IRE the reinsurance premium loading, 1E S

and 2

1S the expected value and variance of the insurance company‟s losses. Hence, the

optimization problem is expressed as

 ,* 2max max
2IRE IRE

IRE
IRE IRE IRE IRE IRE

x x

q
f x W x E R x R x

, (2)

such that the closed-form solution for the optimal fraction invested in risk-free assets ,*IRE

can be calculated through taking the first order derivative and setting the equation equal to

zero, leading to

 1

2

1

2

1,*

2
2

2 , 2 , , ,1

0 12

1

1 ,

1 1

H f

IRE

SIRE re IRE re IRE re IRE re IRE

I I f

S
r

E S

S
q EC E S r

E S

while the optimal fraction of proportional reinsurance ,*IRE is given through

, ,

,*

2

1

1 2

1

1
1

re IRE re IRE

fIRE

IRE

r

S
q E S

E S

,

(see Cummins and Song, 2008).

 17

3.2 Maximizing an insurer’s surplus under solvency constraints

For an insurance company, an important task is to generate new earnings and at the same time

meet requirements concerning the solvency situation. Hence, we express optimization prob-

lems that try to maximize the difference between the insurer‟s assets and liabilities at time T

under certain constraints with respect to the insurer‟s solvency situation. The optimization

problems are based on the model framework presented in Gatzert and Kellner (2011a), in

which the impact of non-linear dependencies on the basis risk of industry loss warranties is

examined in the context of solvency capital requirements and the insurer‟s free surplus. With-

in the model framework, in 0t , the insurance company collects its premium income for

insuring possible losses in 1t and decides to purchase an industry loss warranty or an ag-

gregate excess of loss reinsurance contract to manage its underwriting risk.
10

 Furthermore, the

initial capital, which consists of shareholder‟s initial contribution 0E , premium income

1 ,S SUP , which is calculated on the basis of the expected value for the insurer‟s loss and an

additional constant loading, and premium expenses ,ILW SUP , is invested in high- and low-risk

assets. The superscript SUP denotes the surplus optimization problem, which is illustrated in

this subsection. In 1t , the insurer faces possible losses 1S and receives payments from the

industry loss warranty contract ,

1

ILW SUPX . The industry loss warranty‟s payoff is given by

 , , ,

1 1 1, , min max ,0 , 1ILW SUP ILW SUP ILW ILW SUP ILWX A L Y S A L I Y ,

where ,ILW SUPA is the contract‟s attachment point, ILWL the ILW‟s layer limit that constitutes

the maximum payment and 11 I Y represents the trigger function, which is equal to 1, if

the industry loss 1I in 1t exceeds a predefined trigger level Y and 0 otherwise (see Gatzert,

Schmeiser and Toplek, 2011). The premium for the industry loss warranty contract is based

on the expected value principle, such that its price is determined according to

 , , ,

1 11 ,ILW SUP ILW SUP ILW SUPE X S I .

Gatzert and Kellner (2011a) assume a constant loading ,ILW SUP for the industry loss warranty

contract. In general, indices for index-linked instruments can be structured according to the

insurer‟s needs on the basis of zip-codes (see, e.g. Major, 1999; Cummins, Lalonde and Phil-

10

 In our analysis, the insurance company exclusively purchases an industry loss warranty contract,

such that the case without risk management or with an excess of loss reinsurance contract is not

explained in detail in the following. Furthermore, see Gatzert and Schmeiser (2011) for a detailed

discussion of industry loss warranty‟s key characteristics.

 18

lips, 2004), which can be done with the purpose to decrease potential basis risk that in general

decreases for higher values of 1 1,S I . However, more individually structured indices are

less transparent, which might increase the costs associated with these contracts (see, e.g.

SwissRe, 2006). One way to integrate this behavior is to vary ,ILW SUP subject to Kendall‟s

tau 1 1,S I .
11

 Hence, we assume that the costs, which are represented through

 ,

1 1,ILW SUP S I , are calculated through a convex cost function that depends on

 1 1,S I , and can be determined through

 , 2

1 1 1 1, ,ILW SUP S I S I .

The extension of the cost function represents a tradeoff between lower potential basis risk and

higher costs due to a more individually structured index. The insurer‟s losses as well as the

assets are assumed to be lognormal distributed, while the dependence structure among assets

and liabilities is modeled through copulas (see Gatzert and Kellner, 2011a). Considering the

optimization problem, the insurer‟s aim is to maximize the insurer‟s surplus in 1t with re-

spect to the insurer‟s solvency situation. The surplus is given through

 1 , , ,

1 0 1 11 ,L HS SUP r rSUP ILW SUP SUP SUP ILW SUPSUP x EC e e X S

, 3

1 1,

SUP

SUP ILW SUPx A

S I

where ,ILW SUPA describes an ex ante chosen attachment point of the industry loss warranty

contract,
12

 0EC is the initial capital, SUP denotes the fraction invested in low-risk assets and

/L Hr r are the normally distributed continuous one-period returns for low- L and high-risk

assets H . The solvency situation is represented through the shortfall probability 1SP that

can be determined according to

 1 1 0SUPSP P SUP x .

11

 In practice, additional costs for the individually structured index might depend on the relationship

between the protection buyer and seller, i.e. if a long term relationship between both counterparties

exists, such that an individual index can be used for more than one transaction, it is likely that no

additional costs occur for the individual index. Otherwise, if the transaction is conducted only once,

individual indices might be more expensive.
12

 Further contract parameters like the layer limit or the ILW‟s trigger level can be chosen as well. In

the following analysis only the attachment point will be varied within the optimization.

 19

In general, the solvency situation can be accounted for in two different ways in regard to the

optimization procedure. First, the objective function (here: 1

SUPSUP x) can be divided by

the risk measure (here: 1SP), or, second, the solvency situation can be added to the constraints

of the optimization problem, such that a very low value of the objective function is passed to

the optimization algorithm if the constraint is broken (see Zeng, 2003). For our analysis, this

leads to two different types of optimization functions. First,

 *

1

1

max
SUP

SUP

SUP

x

SUP x
f x

SP
 , (3)

subject to the constraints 1

SUPc , that the fraction invested in low-risk assets as well as Ken-

dall‟s tau between the insurer‟s loss and the index have to be between zero and one and that

the attachment point of the industry loss warranty contract ,ILW SUPA is set to be in the range of

a predefined barrier
,,

,
ILW SUPILW SUP

A A

 1 1 1

,, ,

0 1

0 , 1

SUP

SUP

ILW SUPILW SUP ILW SUP

c S I

A A A

,

and second,

 *

1max
SUP

SUP SUP

x
f x SUP x , (4)

subject to the constraints 2

SUPc , which extend 1

SUPc in a way that the shortfall probability is not

allowed to exceed a certain predefined level 1SP ,

 1 1

,2 , ,

1 1

0 1

0 , 1

SUP

SUP
ILW SUPILW SUP ILW SUP

S I
c

A A A

SP SP

.

In the numerical analysis in Section 4, different parameter combinations for the optimization

problems according to Equation (3) and (4) are analyzed, i.e. first, we optimize over one of

the variables ,

1 1, , ,SUP ILW SUPA S I , while the remaining variables are kept constant, and,

second we optimize over two variables, while the remaining variable is kept constant. Third,

 20

the optimization is done over all three variables. Hence, seven different combinations for the

optimization are taken into account, which overall leads to 14 different optimization problems

with respect to the two optimization functions according to Equation (3) and (4). In particular,

the combinations for each optimization problem are given through

 , , , ,

1 1 1 1 1 1 1 1, , , , , , , , , , , , , , , .SUP ILW SUP SUP ILW SUP SUP ILW SUP SUP ILW SUPA S I A S I A S I A S I

3.3 Maximizing shareholder value

Concerning the next type of optimization problem, we choose a problem, which is expressed

from a shareholder‟s perspective. In Gatzert and Kellner (2011b) a risk management strategy

combining index-linked and indemnity based risk management instruments is considered with

respect to maximizing the net shareholder value under safety constraints. The index-linked

instrument is given through a binary industry loss warranty contract, paying a fraction of a

layer limit, if the index exceeds a predefined trigger, whereas gap insurance represents an

indemnity based instrument and pays a fraction of the gap between the insurer‟s loss and the

index-linked instrument‟s payment. In 0t , the insurance company invests its initial capital,

consisting of shareholder‟s initial contribution 0EC plus premium income 1 ,S SHV minus pre-

mium expenses ,i SHV , in high- and low-risk assets, ,SHVi ILW Gap , where SHVILW denotes

the binary industry loss warranty contract and Gap the gap insurance contract. SHV in su-

perscript denotes the optimization problem as the shareholder value optimization problem. In

1t , the insurer has to pay for the insured losses and receives payments from risk manage-

ment instruments. The payment of the binary loss warranty contract ,

1

ILW SHV SHVX is given

by

 ,

1 11ILW SHV SHV SHV ILWX L I Y ,

whereas the gap insurance‟s payoff ,

1

gap SHV SHVX can be calculated according to

 , ,

1 1 1max ,0gap SHV SHV SHV ILW SHV SHVX S X ,

where SHV and SHV are the fractions of the industry loss warranty and the gap insurance

contract, respectively. The net shareholder value is the today‟s value of equity capital in 1t

minus the initial contribution of shareholders and should be maximized over the optimal frac-

tions of risk management instruments. Hence, the optimization problem is expressed as

 21

1

*

0

, , ,

0 1

,

max

max

SHV

f

SHV

SHV SHV

x

rS SHVSHV i SHV Q i SHV

x
i ILW gap

f x SHV x

S DPO x e E X

, (5)

2

SHV

SHV

SHV
x

,

with 0

SHVS DPO x representing the value of payments to policyholders at 0t , DPO

the default put option, which represents the loss in case of the insurer‟s default, 1 ,S SHV the

loading policyholder‟s are willing to pay, ,i SHV the loading demanded within the premium

calculation for the risk management instruments and ,

1
fr Q i SHVe E X

 the discounted ex-

pected value of the risk managements payments under the risk-neutral pricing measure Q .
13

The optimization problem is solved subject to the constraints SHVc that the insurer‟s shortfall

probability is not allowed to exceed a predefined level 1SP , the fractions SHV and SHV are

in the range between zero and one and that the premium payment is consistent with the short-

fall probability implied by the risk management strategy, as the loading, policyholders are

willing to pay in 0t , depends on the insurer‟s shortfall probability in 1t . Thus, the short-

fall probability, which is “promised” 0

promisedSP and applied to determine the insurer‟s pre-

mium income in 0t has to be equal to the shortfall probability, realized in 1t ,
14

 1 1

1 1

!
, ,

0

0 1

0 1

1

SHV

SHV
SHV

S SHV S SHVSHV

SP SP

c

S DPO x

.

Analogously to the optimization problems given in Equation (3) and (4), the optimization is

done for the variable combinations

 , , ,SHV SHV SHV SHV .

Thus, in total 18 different optimization problems are examined and compared in the numerical

analysis in Section 4.

13

 See Gatzert and Kellner (2011b) for the derivation of Equation (5).
14

 For a detailed explanation, see Gatzert and Kellner (2011b).

 22

3.4 Graphical illustration of the optimization problems

Figure 2 illustrates some examples for the objective functions described in this section. Figure

2a) and 2b) display the functions for the expected wealth IREW (see Equation (2)) and the

insurer‟s surplus divided through the shortfall probability 1 1/SUPSUP x SP (see Equation

(3)), dependent on ,IRE IRE and , ,ILW SUP SUPA .

Figure 2: Examples for Functions according to Equation (2), (3) and (5)

a) b)

c)

Furthermore, Figure 2c) displays the case for the net shareholder value according to Equation

(5) in dependence of the industry loss warranty fraction ILW and the shortfall probability,

 23

which is used for the premium income calculation 0

promisedSP . In general, constraints are in-

tegrated in the optimization problems in two ways. First, bounds for the variables, which are

used within the optimization, are enforced by calibrating the optimization, such that the initial

trial solutions are only drawn in the permitted search space. Second, constraints, which affect

quantities that are calculated during the optimization process, e.g. the shortfall probability, are

incorporated in a way that in case of maximization (minimization), a very low (high) value of

the objective function is passed to the optimization algorithm if the constraint is not satisfied

(see, e.g. Mullen et al., 2011; Zeng, 2003). This can lead to a non-continuous surface, as it is

the case for the objective function according to Equation (5), which is displayed in Figure 2c).

The algorithms illustrated in Section 2 usually are intended for minimization, whereas in our

analysis, maximization problems are considered. Thus, each objective function is calibrated in

a way that the negative function value is passed to the optimization algorithm. Moreover, fur-

ther approaches for the optimization, e.g. robust optimization, can exist, which however,

might be associated with the restructuring and different illustrations of Equations (2) – (5) and

further assumptions concerning the optimizations‟ method. Furthermore, the analysis‟ focus

lies on comparing global optimization algorithms.

4. NUMERICAL ANALYSIS

This section studies the application of the four optimization algorithms described in Section 2

– the Nelder-Mead simplex method, differential evolution, genetic optimization and particle

swarm optimization – to the 18 optimization problems illustrated in Section 3. The analysis

examines which algorithm is the most efficient when being applied to the optimization prob-

lems with respect to the algorithms‟ fitness and computational intensity. Furthermore, sensi-

tivity analysis concerning the number of population (differential evolution and genetic opti-

mization), swarm size (particle swarm optimization) and different starting points (Nelder-

Mead simplex) as well as different initial populations, swarms or starting points for the opti-

mization are conducted (see Section 2.5, Equation (1)).

 24

4.1 Input parameters

The input data for the optimization problems, illustrated in Equations (3), (4) and (5), are giv-

en in Gatzert and Kellner (2011a) and Gatzert and Kellner (2011b).
15

 For the optimization

problem displayed in Equation (2), the same input parameters as in Gatzert and Kellner

(2011a) are taken with the exception that the loading of the reinsurance contract is assumed to

be 20%, , 0.20re IRE , instead of 0% , and the risk aversion parameter, which is not neces-

sary for the analysis in Gatzert and Kellner (2011a), equals 0.01IREq . Furthermore, for the

optimization problems according to Equation (3) and (4), the attachment point of the ILW has

to be in the range of 0 and 300, , 0,300ILW SUPA and for the optimization problems accord-

ing to Equation (4) and (5) the upper limit for the shortfall probability is set to 5% (see

Gatzert and Kellner, 2011b). Moreover, a Gauss copula is used to model the dependence

structure for the optimization problems according to Equations (3), (4) and (5), thus, assuming

linear dependencies among all relevant risk processes.

Table 2 displays the input parameters for each optimization algorithm. While the population

or swarm size, respectively, for differential evolution, genetic optimization and particle

swarm optimization is set to 150, we initialize the Nelder-Mead simplex method with 150

different starting values, which are drawn from a uniform distribution space. The number of

generations is set to 200 for differential evolution and genetic optimization, whereas 2000

iteration steps are performed within the Nelder-Mead simplex method and particle swarm

optimization. The numbers for swarm and population size, number of starting values, genera-

tions and iteration steps are chosen with the purpose to constitute comparable conditions for

the analysis.

For the Nelder-Mead method, the reflection, expansion, contraction, and shrink step factors

are adopted from Lagarias et al. (1998). A comparably small number 0.10 is chosen for the

step size within differential evolution, as according to Price, Storn and Lampinen (2006), ef-

fective values are rarely higher than 1.0, even if all positive values are permitted. The crosso-

ver constant is chosen based on Mullen et al. (2011), while the acceleration constants for par-

ticle swarm optimization are fixed following Eberhardt and Shi (2001). In case of the first

optimization problem (see Equation (2)), in which the analytical solution is available, we

write a function to calculate the objective function values, using the statistical software R, and

apply the optimization methods to the corresponding function.

15

 The input data for the corresponding reference contracts are given in Table 6 and Table 7 in the

Appendix.

 25

Table 2: Input parameters for the optimization algorithms

Nelder-Mead Simplex Method

Number of starting points 150

Reflection factor NM 1.00

Expansion factor NM 2.00

Contraction factor NM 0.50

Shrink step factor NM 0.50

Number of iteration steps 2000

Differential Evolution

Population size p 150

Number of generations g 200

Step size F 0.10

Crossover constant CR 0.50

Genetic Optimization

Population size p 150

Number of generations g 200

Particle Swarm Optimization

Swarm size psos 150

Acceleration constants 1 2,c c 2.0, 2.0

Number of iteration steps 2000

For the optimization problems according to Equation (3), (4) and (5), the numerical results are

obtained using Monte Carlo simulation (see Glasserman, 2008). For each analysis, 200,000

sample paths are used and concerning the analysis of the optimization algorithm‟s robustness,

20 different sets of an initial population, swarm or starting points, respectively, are taken into

account (see Section 2.5, Equation (1)). Each optimization run is calculated on an AMD Op-

teron Istanbul processor with 2.60 GHz.

4.2 Results

In a first step, we analyze performance profiles for the algorithms, which illustrate the devel-

opment over time for the highest objective function values found during each optimization

process, i.e. when the highest objective function value increases most during the genera-

 26

tion/iteration steps. Therefore, besides the fixed number of generations or iterations, respec-

tively, no further stopping conditions are included in the optimization procedure and each

algorithm searches for the highest objective function value until the maximum number of

generations or iterations is reached.

Figure 3: Performance profile plots for each algorithm in case of maximizing 1 1/
SUP

SUP SP

Differential Evolution

Time(%)

S
U

P
1

S
P

1

0 20 40 60 80 100

Genetic Optimization

Time(%)

S
U

P
1

S
P

1

0 20 40 60 80 100

Nelder-Mead Simplex

Time(%)

S
U

P
1

S
P

1

0 20 40 60 80 100

Particle Swarm Optimization

Time(%)

S
U

P
1

S
P

1

0 20 40 60 80 100

Note: The performance profile plots illustrate the development of the highest objective function values

found during the time that is needed overall for the maximum number of iterations or generations.

Figure 3 exemplarily illustrates the performance plots for the maximization of 1 1/
SUP

SUP SP

dependent on RBC .
16

 Even though genetic optimization seems to be faster with respect to

16

 In the following, the variable(s) used for the optimization are given in superscript of the objective

function.

 27

finding the highest objective function values in comparison to the remaining algorithms, each

of the optimization algorithms tends to find its highest objective function value before the

maximum number of generations or iterations is reached.

By virtue of this observation, which can be found for each of the remaining optimization

problems, we further include a stopping condition, such that the algorithms stop if the relative

improvement of the objective function value is below 0.01%. This should lead to a decrease

in computational intensity for each algorithm without lowering the optimizations accurate-

ness.

Table 3 displays results for the optimization algorithms applied to the optimization problems,

given in Equations (2), (3), (4) and (5) using 200,000 sample paths (except for the optimiza-

tion problem according to Equation (2) which exhibits an analytical solution).
17

 Given a cer-

tain optimization problem, the optimization algorithms are compared on the basis of the high-

est objective function and the running time.
18

 The variables in superscript denote the variables

that are used for the optimization, while the remaining variables are kept constant according

to the numerical input parameters given in Section 4.1. Furthermore, considering the optimi-

zation problems according to Equations (3), (4) and (5), we optimize each problem for all

possible variable combinations (see Section 3.2 and 3.3), e.g. for the optimization problem

according to Equation (5), the optimization is done first for SHV , keeping SHV constant,

second for SHV , keeping SHV constant and third for SHV and SHV . Each of the variable

combination‟s function leads to different progressions for the objective functions, such that in

summary 18 different optimization problems are analyzed (including the optimization prob-

lems according to the Equations (2), (3), (4) and (5)).

For the optimization problem according to Equation (2), a closed-form solution can be de-

rived, leading to an optimal fraction invested in risk-free assets of 10.16% and an optimal

proportional reinsurance contract reinsuring a fraction of 39.84% , which leads to the maxi-

mum expected wealth of 25.12 (see Section 3.1).
19

 As can be seen in the right column of the

upper row of Table 3, all optimization algorithms except particle swarm optimization attain

17

 A high number of sample paths is necessary to improve the simulation‟s robustness, e. g. for the

optimization problem 1 1/
SUPASUP SP , the standard error equals 0.327, 0.293, 0.164, 0.133 and 0.115

for 25,000, 50,000, 100,000, 150,000 and 200,000 random numbers. In addition, latin hypercube

sampling is applied within each simulation to further enhance the simulations‟ stability (see Glass-

erman, 2008).
18

 The highest objective function values and the shortest running time are are printed in boldface.
19

 No constraints are involved in the optimization, such that selling short is permitted.

 28

the closed-form solution 25.12IREW , which, in general, demonstrates that these algo-

rithms are capable of reaching the global optimum.
20

 While the Nelder-Mead simplex method,

differential evolution and genetic optimization lead to identical solutions concerning the max-

imum expected wealth, particle swarm optimization derives a slightly lower value of

25.11IREW instead of 25.12 . For each global optimization algorithm, the running time is

below three seconds in case of the first optimization problem, which does not allow a compar-

ison with respect to the computational intensity in that case.

Table 3 illustrates that genetic optimization leads to the highest objective function values for

most of the optimization problems, but at the same time exhibits the highest computational

intensity.
21

 Contrary results can be found in case of particle swarm optimization, which leads

to the lowest objective function values and the lowest computational intensity for most of the

optimization problems. Furthermore, while differential evolution seems be most efficient after

genetic optimization with respect to the algorithm‟s fitness, the Nelder-Mead simplex exhibits

the lowest computational intensity after particle swarm optimization.

With respect to the algorithms‟ fitness, genetic optimization and differential evolution seem to

be superior to the Nelder-Mead simplex, which emphasizes the advantageousness of the par-

allel search technique that is applied in case of the genetic optimization and differential evolu-

tion in comparison to the single starting point of the Nelder-Mead simplex. However, as parti-

cle swarm optimization also exhibits a parallel search technique and leads to lower objective

function values than the Nelder-Mead simplex, the type of search technique might not be the

only influence on the optimization algorithm‟s fitness. Furthermore, it seems to be the combi-

nation of the search technique and the number and types of operator functions, which influ-

ences the algorithm‟s fitness the most. In case of genetic optimization, eight different operator

functions are applied, while differential evolution, the Nelder-Mead simplex and particle

swarm optimization conduct three, four and one operator function, respectively.

20

 Further information would be necessary to make explicit specifications about the true global opti-

mum. However, this is beyond the scope of this paper and the results given here are solely meant to

illustrate how global optimization algorithms can perform in comparison to an analytical solution.
21

 Results for the optimization problem 1

SUP

SUP are not displayed, as no value of SUP can be found,

such that the constraint of 1 0.05SP is fulfilled.

29

Table 3: Results with respect to the optimization algorithms‟ fitness and computational intensity for all optimization problems (200,000 sample paths, except

for the first optimization problem with analytical solution IREW)

Obj. function 1

1

SUPA
SUP

SP
 1

1

SUP

SUP

SP

 1

1

SUP

SP

 1

1

,SUP SUPA
SUP

SP

 1

1

,SUPA
SUP

SP

 1

1

,SUP

SUP

SP

 1

1

, ,SUP SUPA
SUP

SP

 IRE
W

Analytical sol. - - - - - - - 25.120

Differential

Evolution

1784.247
(2)

1447.575

(1)

1576.736

(2)

1792.484

(2)

2545.564

(2)

1575.345

(2)

2769.954

(2)

25.120

(1)

0h, 46m, 51s
(3)

0h, 31m, 37s

(3)

0h, 38m, 55s

(3)

0h, 39m, 57s

(3)

0h, 31m, 06s

(3)

0h, 54m, 54s

(3)

0h, 41m, 00s

(3)

<3seconds

Genetic

Optimization

1784.729
(1)

1447.514

(2)
1576.751

(1)
1793.729

(1)
2564.19

(1)
1578.636

(1)
2845.200

(1)

25.120

(1)

0h, 55m, 32s
(4)

0h, 38m, 42s

(4)

1h, 00m, 13s

(4)

1h, 46m, 02s

(4)

1h, 53m, 07s

(4)

2h, 58m, 43s

(4)

2h, 30m, 02s

(4)

<3seconds

Nelder-

Mead

Simpplex

1784.198
(3)

1447.209

(3)

1576.391

(3)

1781.53

(3)

2506.422

(3)

1572.935

(3)

2648.007

(3)

25.120

(1)

0h, 14m, 37s
(2)

0h, 15m, 01s

(2)

0h, 16m, 19s

(2)

0h, 22m, 25s

(2)

0h, 23m, 59s

(2)

0h, 20m, 29s

(2)

0h, 35m, 21s

(2)

<3seconds

Particle Swarm

Optimization

1783.709
(4)

1447.209

(3)

1575.748

(4)

1781.53

(3)

2506.422

(3)

1572.935

(3)

2299.823

(4)

25.110

(2)

0h, 7m, 25s
(1)

0h, 07m, 32s

(1)
0h, 07m, 33s

(1)
0h, 07m, 28s

(1)
0h, 07m, 28s

(1)
0h, 07m, 31s

(1)
0h, 07m, 42s

(1)

<3seconds

 Obj. function
1

SUPA
SUP

1

SUP

SUP

1
SUP

1

,SUP SUPA
SUP

1

,
SUP

A
SUP

1

,SUP

SUP

1

,
,

SUP SUP
A

SUP
 0

SHV

SHV

0

SHV

SHV

0

,SHV SHV

SHV

Differential

Evolution

87.044
(2) -

78.525

(1)

87.184

(3)

87.085

(2)

78.097

(3)

87.838

(2)

36.191

(3)

36.345

(2)

36.506

(2)

0h, 46m, 52s
(4) -

0h, 24m, 29s

(3)

0h, 19m, 29s

(2)

0h, 38m, 37s

(3)

0h, 19m, 47s

(2)

1h, 3m, 55s

(3)

6h, 10m, 18s

(3)

4h, 13m, 02s

(3)

3h, 34m, 55s

(3)

Genetic

Optimization

87.048
(1) -

78.511

(2)
87.759

(1)
87.091

(1)
78.634

(1)
88.083

(1)
36.301

(1)
36.578

(1)
36.552

(1)

0h, 41m, 42s
(3) -

1h, 20m, 37s

(4)

1h, 39m, 59s

(4)

2h, 0m, 39s

(4)

1h, 13m, 07s

(4)

2h, 33m, 49s

(4)

11h, 19m, 12s

(4)

7h, 27m, 45s

(4)

15h, 18m, 53s

(4)

Nelder-

Mead

Simplex

87.006
(3) -

78.412

(3)

87.540

(2)

86.393

(3)

78.265

(2)

87.557

(3)

36.280

(2)

35.933

(3)

35.910

(3)

0h, 14m, 42s
(2) -

0h, 14m, 56s

(2)

0h, 22m, 25s

(3)

0h, 20m, 20s

(2)

0h, 22m, 29s

(3)

0h, 26m, 21s

(2)

2h, 36m, 54s

(2)

2h, 36m, 20s

(2)

3h, 29m, 02s

(2)

Particle Swarm

Optimization

87.006
(3) -

78.412

(3)

87.540

(2)

86.352

(4)

76.956

(4)

87.557

(3)

35.954

(4)

35.933

(3)

33.303

(4)

0h, 7m, 25s
(1) -

0h, 05m, 45s

(1)
0h, 07m, 29s

(1)
0h, 07m, 28s

(1)
0h, 06m, 26s

(1)
0h, 07m, 45s

(1)
0h, 55m, 01s

(1)
0h, 54m, 29s

(1)
0h, 55m, 28s

(1)

30

In regard of the optimization problems considered in our analysis, the highest objective func-

tion values are achieved with a parallel search technique and the highest number and variety

of operator functions. At the same time, this raises the computational intensity the most,

which leads to a tradeoff that has to be taken into account when choosing an optimization

algorithm for a certain optimization problem.

Each of the optimization problems depends on the initial population (differential evolution

and genetic optimization), swarm (particle swarm optimization) or starting point (Nelder-

Mead simplex), respectively, that are randomly drawn from the uniform probability space at

the beginning of each optimization process. To determine the sensitivity of the results pre-

sented in Table 3 for different initial populations, swarms or starting points, we run each algo-

rithm for a given optimization problem with 20 different sets of an initial population, swarm

or starting points.

Table 4: Average relative deviations
dev

f x (see Equation (1)) for 20 different sets of an

initial population, swarm or starting points for the optimization problems 1 1/
SUPASUP SP ,

,

1 1/
SUP SUPASUP SP according to Equation (3) and 1

SUPASUP and ,

1

SUP SUPASUP according to Equation

(4)

Objective

 function

Differential

Evolution

Genetic Opti-

mization

Nelder-Mead

Simplex

Particle Swarm

Optimization

1

1

SUPASUP

SP

0.01%

(2)

0.00%

(1)

0.02%

(3)

0.11%

(4)

,

1

1

SUP SUPASUP

SP

0.01%

(2)

0.00%

(1)

0.02%

(3)

0.04%

(4)

1

SUPASUP
0.21%

(2)

0.03%

(1)

0.28%

(3)

1.79%

(4)

,

1

SUP SUPASUP
0.22%

(2)

0.02%

(1)

0.88%

(3)

1.70%

(4)

Table 4 exemplarily exhibits the average relative deviations (see Equation (1)) for the optimi-

zation problems 1 1/
SUPASUP SP , ,

1 1/
SUP SUPASUP SP , 1

SUPASUP and ,

1

SUP SUPASUP , which are lowest for

genetic optimization and highest for particle swarm optimization. This behavior can be ob-

served for the remaining algorithms as well and is in line with the results, observed in Table

3, such that the algorithms with a parallel search technique and the highest number and varie-

ty of operator functions leads to the most stable optimization results. Furthermore, these re-

sults emphasize that different initial seeds for starting points, swarms or populations should be

examined when applying optimization algorithms.

 31

In the last step, sensitivity analyses with respect to the input parameters of the optimization

algorithms are conducted. Each of the algorithms can be calibrated through various input pa-

rameters (e.g. the reflection factor for the Nelder-Mead simplex or the crossover constant CR

for differential evolution), which differ depending on the algorithm that is applied (see Table

2). To keep the analysis comparable, we focus on different values for the population (differen-

tial evolution and genetic optimization), swarm size (particle swarm optimization) and num-

ber of different starting points (Nelder-Mead simplex). Varying further parameters, e.g. the

step size within differential evolution, is not conducted as it cannot be determined which

changes in parameter values of the remaining algorithms, e.g. the reflection factor for the

Nelder-Mead simplex, would be necessary to create comparable conditions.

The increase in the number of population and swarm size as well as in different starting points

in general increases the highest objective function values and/or reduces computational inten-

sity as the solution which cannot be improved for a relative change of 0.01% might be found

at an earlier point in time. Otherwise, the computational intensity per iteration step is en-

hanced as more possible solutions have to be simultaneously evaluated and an increase in the

number of population and swarm size as well as in different starting points does not necessari-

ly increase the highest objective function value. Table 5 exemplarily illustrates results for the

optimization problems 1 1/
SUPASUP SP , ,

1 1/
SUP SUPASUP SP , 1

SUPASUP and ,

1

SUP SUPASUP for different

values of population and swarm size as well as different starting points. For the majority of

the optimization results, an increase in the number of population and swarm size and different

starting points leads to higher objective function values and running times. Furthermore, for

each value of population, swarm size and different starting points, similar results as in Table 3

can be observed such that the highest objective function values and running times occur for

genetic optimization, while the lowest objective function values and running times can be

found for particle swarm optimization. These results indicate that a change in the number of

population and swarm size and different starting points influences each optimization algo-

rithms performance in the same manner.

Summing up, our results show that in general, a tradeoff between the optimization algorithm‟s

fitness and computational intensity occurs For the optimization problems considered in the

analysis, the highest fitness can be found in case of genetic optimization, while the lowest

computational intensity is observed for particle swarm optimization.

32

Table 5: Results for different population (diff. evolution and genetic optimization) and swarm (particle swarm optimization) sizes and starting points (Nelder-

Mead simplex) for the optimization problems
1 1/

SUPASUP SP , ,

1 1/
SUP SUPASUP SP , according to Equation (3) and

1

SUPASUP and ,

1

SUP SUPASUP according to Equation (4)

1

1

SUPA
SUP

SP

1

1

,SUP SUPA
SUP

SP

Pop./Swarm

Size/Starting

Points

Differential

Evolution

Genetic Op-

timization

Nelder-Mead

Simplex

Particle

Swarm Op-

timization

Pop./Swarm

Size/Starting

Points

Differential

Evolution

Genetic Op-

timization

Nelder-Mead

Simplex

Particle Swarm

Optimization

50
1784.327 1784.729 1769.824 1769.824

50
1791.883 1792.973 1759.681 1758.922

0h, 25m, 59s 0h, 28m, 30s 0h, 04m, 00s 0h, 02m, 42s 0h, 16m, 18s 0h, 22m, 15s 0h, 07m, 38s 0h, 02m, 29s

100
1783.803 1784.729 1782.968 1782.968

100
1791.533 1793.520 1759.681 1758.922

0h, 20m, 55s 0h, 39m, 00s 0h, 10m, 03s 0h, 05m, 01s 0h, 21m, 36s 0h, 27m, 15s 0h, 15m, 17s 0h, 05m, 04s

150
1784.247 1784.729 1784.198 1783.709

150
1792.484 1793.729 1781.530 1781.530

0h, 46m, 51s 0h, 55m, 32s 0h, 14m, 37s 0h, 07m, 25s 0h, 39m, 57s 1h, 46m, 02s 0h, 22m, 25s 0h, 07m, 28s

200
1784.670 1784.729 1784.198 1784.081

200
1791.533 1793.073 1786.310 1786.310

1h, 23m, 01s 1h, 16m, 40s 0h, 19m, 56s 0h, 10m, 05s 0h, 43m, 10s 0h, 49m, 14s 0h, 30m, 49s 0h, 10m, 06s

250
1784.270 1784.729 1784.198 1784.081

250
1791.533 1793.837 1786.310 1786.310

1h, 6m, 45s 0h, 57m, 02s 0h, 24m, 15s 0h, 12m, 43s 0h, 53m, 48s 1h, 0m, 19s 0h, 38m, 16s 0h, 12m, 36s

 1

SUPA
SUP 1

,SUP SUPA
SUP

Pop./Swarm

Size/Starting

Points

Differential

Evolution

Genetic Op-

timization

Nelder-Mead

Simplex

Particle

Swarm Op-

timization

Pop./Swarm

Size/Starting

Points

Differential

Evolution

Genetic Op-

timization

Nelder-Mead

Simplex

Particle Swarm

Optimization

50
87.040 87.048 87.006 87.006

50
87.721 87.646 86.180 85.396

0h, 14m, 29s 0h, 37m, 25s 0h, 04m, 00s 0h, 02m, 31s 0h, 36m, 35s 0h, 20m, 58s 0h, 07m, 38s 0h, 02m, 30s

100
87.047 87.048 87.006 87.006

100
87.587 87.734 86.180 85.396

0h, 48m, 28s 0h, 38m, 48s 0h, 10m, 03s 0h, 05m, 02s 0h, 52m, 11s 0h, 21m, 38s 0h, 15m, 29s 0h, 05m, 01s

150
87.044 87.048 87.006 87.006

150
87.184 87.759 87.540 87.540

0h, 46m, 52s 0h, 41m, 42s 0h, 14m, 42s 0h, 07m, 25s 0h, 19m, 29s 1h, 39m, 59s 0h, 22m, 25s 0h, 07m, 29s

200
87.038 87.048 87.006 87.006

200
87.754 87.810 87.540 87.540

0h, 51m, 44s 0h, 58m, 32s 0h, 19m, 45s 0h, 10m, 00s 2h, 05m, 07s 1h, 29m, 22s 0h, 30m, 34s 0h, 10m, 02s

250
87.045 87.048 87.027 87.027

250
87.447 87.779 87.540 87.540

1h, 18m, 03s 0h, 56m, 16s 0h, 23m, 21s 0h, 12m, 30s 0h, 53m, 12s 0h, 51m, 52s 0h, 38m, 12s 0h, 16m, 36s

33

5. CONCLUSION

This paper examined the application of global optimization algorithms to 18 non-life insur-

ance optimization problems. We applied the Nelder-Mead simplex method, differential evolu-

tion, genetic optimization and particle swarm optimization, while the optimizations‟ results

were evaluated with respect to the optimization‟s fitness, which refers to the algorithm‟s abil-

ity to derive the optimal objective function value, and computational intensity. Furthermore,

sensitivity analyses concerning the number of population (differential evolution and genetic

optimization), swarm size (particle swarm optimization) and different starting points (Nelder-

Mead simplex) as well as different initial populations, swarms or starting points, for the opti-

mization were conducted.

The optimization algorithms under consideration belonged to the family of direct search

methods, but differed in various ways. The Nelder-Mead simplex method, in contrast to the

remaining algorithms applied, did not exhibit a parallel search technique, thus, starting from

one point. Particle swarm optimization evolved its optimal solution over particle trial vectors,

which memorized previous trial solutions. Differential evolution and genetic optimization

derived their optimal solutions over generations, in which only a few (in case of the cloning

operator within genetic optimization) and a part of previous trial solutions (in case of the se-

lection operator within differential evolution) were memorized. Contrariwise, differential evo-

lution and genetic optimization applied several operation functions to find better solutions,

while solely the velocity of particles determined the solution‟s devlopment within particle

swarm optimization.

Concerning the insurance optimization problems, one objective function with a closed-form

solution and no constraints, as well as several objective functions without closed-form solu-

tions containing several constraints were chosen. The numerical results showed that, consider-

ing the investment and reinsurance optimization problem (exhibiting the closed-form solu-

tion), each of the global optimization algorithms, except particle swarm optimization, reached

the closed-form solution, thus demonstrating their capability to reach or get close to the “true”

global optimum. Furthermore, for the remaining optimization problems, genetic optimization

led to the highest objective function values, while it exhibited the highest computational in-

tensity in most of the cases. While oppositional results were found for particle swarm optimi-

zation, differential evolution was most efficient with respect to the algorithm‟s fitness after

genetic optimization, while the Nelder-Mead simplex exhibited the lowest computational in-

tensity, following particle swarm optimization. Furthermore, genetic optimization exhibited

 34

the lowest value for the average relative deviations, if the algorithms were started with differ-

ent initial populations, swarms or starting points. In a last step, the impact of the number of

population, swarm size and different starting points was analyzed. The results showed that the

number of population and swarm size as well as different starting points played an important

role for each of the algorithms‟ fitness and computational intensity, but did not affect the gen-

eral results for the optimization problems considered, such that genetic optimization led to the

highest objective function values and particle swarm optimization to the lowest computational

intensity for each value of the number of population and swarm size as well as different start-

ing points.

In summary, the analysis showed that for the problems considered, genetic optimization leads

to the highest fitness, while particle swarm optimization exhibits the lowest computational

intensity. However, our results showed that the type of search method (parallel or direct) and

the number of operator functions play a crucial role with respect to the optimization algo-

rithms‟ fitness and computational intensity. Overall, an increase in the number of population

and swarm size as well as starting points and in the number and variety of operator functions

raises the optimization algorithms‟ fitness but also its computational intensity, a tradeoff that

has to be kept in mind and evaluated individually when choosing a respective optimization

algorithm.

 35

REFERENCES

Bera, S., Mukherjee, I. (2010): Performance Analysis of Nelder-Mead and a Hybrid Simulat-

ed Annealing for Multiple Response Quality Characteristic Optimization. Proceedings of

the International Multi Conference of Engineers and Computer Scientists 2010 III, 1728–

1732.

Cummins, J.D., Song, Q. F. (2008): Hedge the Hedgers: Usage of Reinsurance and Deriva-

tives by PC Insurance Companies. Working Paper, Wharton School, University of Penn-

sylvania, Philadelphia.

Cummins, J. D., Lalonde, D., Phillips, R. D. (2004): The Basis Risk of Catastrophic-Loss

Index Securities. Journal of Financial Economics 71(1), 77–111.

Cummins, J. D., Nye, D. J. (1981): Portfolio Optimization Models for Property-Liability In-

surance Companies: An Analysis and Some Extensions. Management Science 27(4), 414–

430.

Eberhardt, R. Shi, Y. (2001): Particle Swarm Optimization: Developments, Applications and

Resources. Proceedings of IEEE International Congress on Evolutionary Computation 1,

81–86.

Eisenberg, S., Kahane, Y. (1978): An Analytical Approach to Balance Sheet Optimization

and Leverage Problems of a Property-Liability Insurance Company. Scandinavian Actuar-

ial Journal 4, 205–210.

Filho, J. R., Alippi, C., Treleaven, P. (1994): Genetic Algorithm Programming Environments.

Computer 27(6), 28–43.

Gatzert, N., Kellner, R. (2011a): The Influence of Non-Linear Dependencies on the Basis

Risk of Industry Loss Warranties. Insurance: Mathematics and Economics 49(1), 132–

144.

Gatzert, N., Kellner, R. (2011b): The Effectiveness of Gap Insurance with Respect to Basis

Risk in a Shareholder Value Maximization Setting. Working Paper, Friedrich-Alexander-

University (FAU) of Erlangen-Nürnberg.

Gatzert, N., Schmeiser, H. (2011): Industry Loss Warranties: Contract Features, Pricing, and

Central Demand Factors. Journal of Risk Finance 13(1), 13–31.

 36

Gatzert, N., Schmeiser, H., Toplek, D. (2011): An Analysis of Pricing and Basis Risk for In-

dustry Loss Warranties. Zeitschrift für die gesamte Versicherungswissenschaft 100(4),

517–537.

Glasserman, P. (2008): Monte Carlo Methods in Financial Engineering (New York: Springer

Press New York, Inc.).

Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization and Machine (Boston,

Addison-Wesley Publishing Company, Inc.).

Kahane, Y., Nye, D. J. (1975): A Portfolio Approach to the Property-Liability Insurance In-

dustry. Journal of Risk and Insurance 42(4), 579–598.

Kahane, Y. (1977): Determination of the Product Mix and the Business Policy of an Insurance

Company – A Portfolio Approach. Management Science 23(10), 1060–1069.

Katari, V., Satapathy, S. C., Murthy, J., Reddy, P. (2007). Hybridized Improved Genetic Al-

gorithm with Variable Length Chromosome for Image Clustering. International Journal

of Computer Science and Network Security 7(11), 121–131.

Krouse, C. G. (1970): Portfolio Corporate Assets and Liabilities with Special Application to

Insurance. Journal of Financial and Quantitative Analysis 5(1), 77–104.

Lagarias, J. C., Reeds, J. A., Wright, M. H., Wright, P. E. (1998): Convergence Properties of

the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization

9(1), 112–147.

Lei, Y. (2011): Minimizing the Cost of Risk with Simulation Optimization Technique. Risk

Management and Insurance Review 14(1), 121–144.

Major, J. A. (1999): Index Hedge Performance: Insurer Market Penetration and Basis Risk. In

Kenneth A. Froot, ed., The Financing of Catastrophe Risk (Chicago: University of Chica-

go Press).

Marti, K. (2005): Stochastic Optimization Methods (Heidelberg, Springer Berlin).

Mebane, W. R. Jr., Sekhon, J. S. (2011): Genetic Optimization Using Derivatives: The

rgenoud package for R. Journal of Statistical Software 42(11), 1–26.

 37

Mullen, K. M., Ardia, D., Gil, D., Windover, D., Cline, J. (2011): DEoptim: An R package for

Global Optimization by Differential Evolution. Journal of Statistical Software 40(6), 1–

26.

Nelder, J. A., Mead, R. (1965): A Simplex Method for Function Minimization. The Computer

Journal 7, 308–313.

Paterlini, S. Krink, T. (2006): Differential Evolution and Particle Swarm Optimization in Par-

titional Clustering. Computational Statistics and Data Analysis 50(5), 1220–1247.

Panduro, M. A., Brizuela, C. A., Balderas, L. I., Acosta, D. A. (2009): A Comparison of Ge-

netic Algorithms, Particle Swarm Optimization and the Differential Evolution Method for

the Design of Scannable Circular Antenna Arrays. Progress in Electromagnetics Research

B 13, 171–186.

Pham, N., Wilamowski, B. M. (2011): Improved Nelder-Mead‟s Simplex Method and Appli-

cations. Journal of Computing 3(3), 55–63.

Poli, R (2007): Analysis of the Publications on the Applications of Particle Swarm Optimiza-

tion. Journal of Artificial Evolution and Application 2008(1), 1–10.

Price, C. J., Coope, I.D., Byatt, D. (2002): A Convergent Variant of the Nelder-Mead Algo-

rithm. Journal of Optimization Theory and Applications 113(1), 5–19.

Price, K., Storn, R., Lampinen, J. (2006): Differential Evolution – A Practical Approach to

Global Optimization (Berlin – Heidelberg: Springer – Verlag).

Storn, R., Price, K. (1997): Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–

359.

SwissRe (2006): Securitization – New Opportunities for Investors and Insurers. Sigma No.

7/2006. Zürich: Swiss Reinsurance Company. Available at: http://www.swissre.com.

Vesterstrøm, J, Thomson, R. (2004): A Comparative Study of Differential Evolution, Particle

Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems.

Evolutionary Computation 2, 1980–1987.

Yow, S., Sherris, M. (2008): Enterprise Risk Management, Insurer Value Maximization, and

Market Frictions. ASTIN Bulletin 38(1), 293–339.

 38

Zeng, L. (2003): Hedging Catastrophe Risk Using Index-Based Reinsurance Instruments.

Casualty Actuarial Society Forum Spring, 245–268.

Zeng, L. (2005): Enhancing Reinsurance Efficiency using Index-Based Instruments. Journal

of Risk Finance 6(1), 6–16.

APPENDIX

Table 6: Input parameters for the reference contract given in Gatzert and Kellner (2011a)

Available equity capital at time 0
0E $40 million

Expected value and standard deviation of company loss

(lognormally distributed)

 1 1,E S S $117 million, $66 million

Expected value and standard deviation of industry index

(lognormally distributed)

 1 1,E I I $1,450 million, $3,550 mil-

lion

Expected value and standard deviation for the return of

high-risk assets (normally distributed)

,H H 8%, 20%

Expected value and standard deviation for the return of

low-risk assets (normally distributed)

,L L 5.5%, 6.5%

Risk-free interest rate fr 2%

Investment in low-risk assets 60%

Kendall‟s tau for low-risk and high-risk assets 1, 1,,L HA A 0.2

Kendall‟s tau for company and index losses 1 1,S I 0.6

Kendall‟s tau for assets and liabilities 1 1,A L 0.1

Premium loading insurance contract 1S 30%

Premium loading reinsurance contract re 0%

Premium loading ILW ILW 0%

Layer limit for ILW and reinsurance contract ILWL , reL $200 million

Industry loss trigger Y $3,000 million

Attachment of the company‟s loss for ILW
ILWA

$100 million

Attachment of the company‟s loss for reinsurance
reA

$100 million

 39

Table 7: Input parameters for the reference contract given in Gatzert and Kellner (2011b)

Available equity capital at time 0
0E $48 million

Expected value of the company loss 1E S $117 million

Expected value of the industry index 1E I $1450 million

Drift and volatility of the company loss
1S ,

1S 0.025, 0.53

Drift and volatility of the industry index
1I

 ,
1I

 0.025, 1.39

Drift and volatility of high-risk assets
1,highA ,

1,highA 0.10, 0.20

Drift and volatility of low-risk assets
1,lowA ,

1,lowA 0.57, 0.065

Risk-free interest rate fr 2%

Investment in high risk investment 25%

Policyholder‟s risk sensitivity q 5

Kendall‟s tau for low risk and high risk investment 1, 1,,high lowA A 0.20

Kendall‟s tau for company and index losses 1 1,S I 0.70

Kendall‟s tau for assets and company losses 1 1,A S 0.10

Kendall‟s tau for assets and index losses 1 1,A I 0.10

Premium loading for an insurer without default risk 1max,S 40%

Premium loading ILW ILW 5%

Premium loading gap insurance and proportional rein-

surance

gap , re 20%

Maximum shortfall probability 1SP 5%

Layer limit for ILW ILWL $200 million

Industry loss trigger Y $2,000 million

