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OPTIMAL RISK CLASSIFICATION WITH AN APPLICATIONTO

SUBSTANDARD ANNUITIES

Nadine Gatzert, Gudrun Hoermann, Hato Schmeiser

Abstract

Substandard annuities pay higher pensions to ithg@ls with impaired health and
thus require special underwriting of applicantsthAugh such risk classification
can substantially increase a company's profitgbiliiese products are uncommon
except for the well established U.K. market. Instpiaper, we comprehensively
analyze this issue and make several contributiornthe literature. First, we de-
scribe enhanced, impaired life, and care annuiied,then discuss the underwrit-
ing process and underwriting risk related ther8&cond, we propose a theoretical
model to determine the optimal profit-maximizingkriclassification system for
substandard annuities. Based on the model frameamkor given price-demand
dependencies, we formally show the effect of clisdion costs and costs of un-
derwriting risk on profitability for insurers. Rislasses are distinguished by the
average mortality of contained insureds, wherebytatity heterogeneity is in-
cluded by means of a frailty model. Third, we dsgikey aspects regarding a
practical implementation of our model as well asgiole market entry barriers for
substandard annuity providers.

JEL classification;: C61, G22, L11

Keywords: Risk classification, Underwriting risk, Mortalityeterogeneity, Substandard annuities
1. Introduction

Substandard annuities pay higher pensions to ithd@s with impaired healthThese
contracts are increasingly prominent in the U.ksumrance market where, according to
Watson Wyatt (2008), more than 20% of annuitiesl sk based on enhanced rates.
Since its development in the 1990s, the markesddtistandard annuities in the United
Kingdom has experienced impressive grofvifoday, this market is well established;
there were eight providers in 2007 and at leagtetimore entered the market in 2008.
And there is still enormous growth potential wifh @ 40% of annuitants estimated to

Nadine Gatzert is at the University of Erlangeimiberg, Chair for Insurance Economics, Lange
Gasse 20, 90403 Nurnberg, Germany, nadine.gatzest@ni-erlangen.de. Gudrun Hoermann is
in Munich. Hato Schmeiser is at the University ¢f Gallen, Chair for Risk Management and
Insurance, hato.schmeiser@unisg.ch.
! See LIMRA and Ernst & Young (2006, p. 10). Thertesubstandard annuity" includes enhanced,
impaired life, and care annuities (for a detailedatiption, see Section 2). In the U.K. market, all
types of substandard annuities are sometimes eeférras "enhanced annuities."
This may to some extent be due to mandatory paatiauitization of retirement income in the
United Kingdom. See LIMRA and Ernst & Young (2006 6).



be eligible for increased pension payments. OuttieeUnited Kingdom, however,
substandard annuities are surprisingly rare. Inlhged States, for instance, only 11
providers out of 100 insurers issuing single-pramimmmediate annuities offer subs-
tandard annuity products, according to LIMRA anddtr& Young (2006). Only
around 4% of annuities sold in the U.S. markettased on enhanced rafest is not
obvious why the substandard annuity market is sallsespecially given that such a
risk classification generally increases a compaprgéitability.* Furthermore, substan-
dard annuities would make private pensions aval&in a broader range of the popu-
lation and would thus improve retirement incomesiigureds with a reduced life ex-
pectancy. Thus, there must be important reasongsddée reluctance of many insur-
ers to enter the substandard annuity market.

The aim of this paper is to develop a model to mieitge the optimal risk classification
system for substandard annuities that will maximize asui@nce company's profits.
We further include the costs of insufficient riskgsassment (underwriting risk) that
occurs when insureds are assigned to inappropigktelasses. This extension is cru-
cial, as underwriting risk is considered to be i@st significant risk factor in the is-
suance of substandard annuities and thus shoutdkiea into account when making
informed decisions. In addition, we provide quaNMa background information about
underwriting and classification methods and degctibderwriting risks for different
types of substandard annuity products. We alsaidss&ey aspects regarding a prac-
tical implementation of our model as well as poesibarket entry barriers. Since the
risk classification model is formulated in a ratgeneral way, it can as well be applied
to other classification problems.

Selling substandard annuities is a challenging task several factors in the process
will influence a provider's profitability. First, easonable classification system must
be established based on insureds' life expectaBegond, adequate underwriting

guidelines are necessary to ensure that each applis assigned to the proper risk
class. Distinctive features of risk classes inclaasical conditions or lifestyle factors

such as smoking, weight, geographical locationcation, or occupation. Resulting

classification costs need to be taken into conatd®r when pricing the contract. Fi-

nally, demand for the product is determined byaheuity amount paid to insureds in

each risk class.

® See LIMRA and Ernst & Young (2006, p. 18).

* See Doherty (1981).

According toActuarial Standard of Practice No. 12, a risk classification system is a "system used
to assign risks to groups based upon the expeasdar benefit of the coverage or services
provided" (Actuarial Standards Board, 2005).



The literature on substandard annuities primaréglsgl with practical issues of subs-
tandard annuity markets. Ainslie (2000), Weine@(0@), and LIMRA and Ernst &
Young (2006) provide detailed studies of substashdanuities in the United Kingdom
and the United States. Information on the develognsze, and potential of substan-
dard annuity markets, different product types, uwdiéng methods and challenges,
mortality and risk classification issues, the intpac the standard annuity market, tax
considerations, distribution channels, and reinstgacan be found in Ainslie (2001),
Brown and Scahill (2007), Cooperstein et al. (20@4pehling (2007), Hamdan and
Rinke (1998), Richards and Jones (2004), and R{BR62). Junus et al. (2004), Ni-
cholas and Cox (2003), and Turner (2001) focushenunderwriting of substandard
annuities. The impact of individual underwriting an insurance company's profit is
examined in Hoermann and Russ (2008), based omradtyricing. In Ranasinghe
(2007), underwriting and longevity risk for impairéves are assessed by means of a
provision for adverse deviation.

Regarding risk classification within the insuramseetor, Williams (1957) provides an
overview of insurance rate discrimination, incluglits definition, various forms, eco-
nomic effects, and government regulation. Dohet§8() examines the profitability
of rate classification for an innovating insurerdatihe associated market dynamics.
This paper is an extension of previous work (Dohet©80), in which the author in-
vestigates rate discrimination in the fire insuntarket. Christiansen (1983) draws a
parallel to substandard annuities when analyzieg'thirness" of rate discrimination.
Zaks et al. (2008) show the existence of an eqiulib point, when, in a portfolio con-
sisting of several risk classes with respectivegagdemand functions, the premium
amount and the number of policyholders in each cisks are iteratively updated. A
great deal of the literature is dedicated to riElssification controversies concerning
social issues. Some authors argue that compebgansk classification is inefficient,
particularly if it becomes purely selective, ii€if makes insurance expensive or unaf-
fordable for persons representing high risks fgurers. In contrast, others regard risk
classification as essential in avoiding adversectein. De Jong and Ferris (2006)
provide the background for this discussion. Othghars addressing this topic include
Abraham (1985), De Wit (1986), Feldman and Dowd)(®0 Rothschild and Stiglitz
(1997), Thiery and Van Schoubroeck (2006), Thon2897), and Van de Ven et al.
(2000). In addition, De Jong and Ferris (2006) ams a demand model to investigate
the effects of changes in risk classification systeThe authors determine the impact
of unisex pricing in the U.K. annuity market on thepected purchase of annuity
amounts depending on a person's individual moytédiel, which is described by a
frailty factor.



Various authors assess risk classification in iasce from a social utility point of
view (see, e.g., Bond and Crocker, 1991; Crocker&mow, 1986, 2000; Hoy, 1989,
2006; Sheshinski, 2007; Stronmenger and WambadlQ; 20an der Noll, 2006; Ville-
neuve, 2000). Promislow (1987) measures the ingdhdt arises from considering
only certain factors—and ignoring others—whertirggtinsurance rates. There are
several papers that deal with practical issueds#f ¢lassification. Kwon and Jones
(2006) develop a mortality model that reflects itin@act of various risk factors. Der-
rig and Ostazewski (1995), Horgby (1998), and Lot2&94) focus on risk classifica-
tion based on fuzzy techniques. The work of Wet®06) provides a broad overview
of preferred lives products. Leigh (1990) revieWws tinderwriting of life and sickness
benefits, and Walters (1981) develops standardsdkrclassification. Today, the im-
pact of genetics on risk classification has takeradded importance (see, e.g., Brock-
ett et al., 1999; Brockett and Tankersleigh, 1998y and Lambert, 2000; Hoy and
Ruse, 2005; Macdonald, 1997; Macdonald, 1999; @;N&97). There is also a sub-
stantial body of literature on rate classificatiomon-life insurance, especially in the
automobile sector. For instance, Schwarze and {&$05) consider the third-party
motor insurance industry and empirically test wkethsk classification creates in-
formation rents for innovative insurers. Cumminsaket(1983, pp. 27-62) and Driver
et al. (2008) focus on the economic benefits d diassification. The authors argue
that in many cases, risk classification contributesconomic efficiency, limits ad-
verse selection, reduces moral hazard, and encemriagovation and competition
within the insurance market.

In this paper, we contribute to the literature lbgvyiding a comprehensive analysis of
challenges and chances for life insurers offeruigstandard annuity products. To this
end, we combine the two strands of literature, dimesubstandard annuities and that on
risk classification. From an insurer's viewpoing solve the problem of optimal risk
classification for substandard annuities taking inbnsideration classification costs
and underwriting risk, which has not been done datedin addition, we provide a
detailed discussion on the background of substandanuities and limitations re-
garding risk classification within annuity products

Section 2 provides practical background informatidwout different types of substan-
dard annuities, and also describes underwritingadassification issues. In Section 3,
we develop a model to determine the optimal nunalper size of risk classes, as well
as the optimal price-demand combination for eask class that will maximize an in-
surer's profit. Risk classes are distinguishedheyaverage mortality of individuals in
a certain class relative to the average populatortality. We account for mortality
heterogeneity and use a frailty model to derivaviddal probabilities of death. The



profit is maximized based on given price-demandedépncies in population sub-
groups and classification costs. When taking imtwoant costs of underwriting risk, a
modified risk classification system might be optirdepending on the underwriting
quality. In Section 4, we provide a detailed dgean of market entry barriers and
risks for substandard annuity providers and aspamtserning the practical applica-
tion of our model. The paper concludes with a sumgrnmaSection 5.

2. Substandard Annuities and Underwriting

In general, there are three typessdlbstandard annuities, as opposed to theandard
annuity: enhanced annuities, impaired (life) annuities] eare annuitie$ Usually, all
three are immediate annuities for a single lump-payment, where the annual annu-
ity amount depends on the insured's health sthiube following, we start with a de-
finition of each annuity type and then go on toye information about key aspects
of annuity underwriting. Market size and undervagtirisks are discussed in the last
part of the section.

Enhanced annuities pay increased pensions to persons with a slightlyced life ex-
pectancy. Most applicants are between 60 and 70 years of &@gculation of en-
hanced annuities is based on environmental factord) as postal code or geographic
location, and lifestyle factors, such as smokinbitsa marital status, or occupation, as
well as disease factors, including diabetics, Hggod pressure, high cholesterol, or
being overweight. When impairments are considered, this type of iyrisi some-
times referred to as an impaired (life) anndftympaired life annuities are typically
related to health impairments such as heart at@hkcer, stroke, multiple sclerosis,
lung disease, or kidney failure for annuitantsrirege range of 60 to 85Care annui-
ties are aimed at seriously impaired individuals betwage 75 and 90 or persons who
already have started to incur long-term-care cGdRisk assessment for care annuities
is based on geriatric symptoms such as frailtyestricted mobility, which are meas-
ured in terms of activities of daily living (ADL)n@ instrumental activities of daily
living (IADL); cognitive skills may also be takentb account?

® See, e.g., Ainslie (2001, p. 16), Brown and S¢4R007, pp. 5-6), and Cooperstein et al. (2004,
pp. 14-15).

" See Richards and Jones (2004, p. 20) and WeRGS6( p. 6).

8 See Ainslie (2001, p. 16) and Cooperstein e28i04, p. 14).

° See, e.g., Ainslie (2001, p. 17) and Brown anch#id2007, p. 5).

See Brown and Scabhill (2007, pp. 5-6). Definitimfsenhanced and impaired life annuities

sometimes overlap. See, e.g., Nicholas and CoxX3(20(®).

11 See, e.g., Ainslie (2001, pp. 16-17).

12 See Ainslie (2001, pp. 15-16) and Coopersteith ¢2@04, p. 15).

13 See Brown and Scahill (2007, p. 6) and Junus é2004, p. 7).



For standard annuities, the annuity amount is tatied based on the average mortality
of one class comprising all insureds. Payments rieg@ an annuitant's age and
gender. Based on so-calleahgle-class underwriting, the insurer decides whether to
accept or reject an applicdiit.Substandard annuities require adjustment of the
underlying pricing assumptions based on an indafidumpairment level, necessitat-
ing the provision of medical information. It is theplicant's responsibility to provide
sufficient evidence that he or she is eligible ifmreased annuity payments. Upon re-
ceipt of this evidence, the reduction in life execy is quantified by the insurer's
underwriting'® Life expectancy can be measured either in ternavefage life expec-
tancy (ALE) or in terms of the maximum realistiteliexpectancy (MRLE), corres-
ponding to the 50%- or 90%-quantile of the remajniifetime, respectively® The
modified annuity amount is determined either byage rate-up or by a rating factdr.
The former involves an adjustment of the insuradtsial age for calculation purposes.
For instance, a 60-year-old impaired male may bedrto have the life expectancy of
a 65-year-old and would thus receive the annuitpwarh based on being age 65. The
rating factor is applied to the standard mortatitlyle!® For example, an extra mortal-
ity of 100% would mean multiplying average mortalirobabilities by a factor of “2.”

Different types of underwriting techniques are eoypd depending on the applicant’s
health status and the type of annuity requestedhénunderwriting process for en-
hanced annuities, applicants are assigned to diftaisk classes depending on their
health status or individual mortality. Thisulticlass underwriting'® is the most com-
mon method used in pricing substandard annuity yotsd Impairments or lifestyle
factors are assessed by a health questionflaCertain rules are applied (theles-
based approach) to determine the rating factor, the reductiolALtE, or the age rate-
up?' This underwriting approach—in contrast ftdl individual underwriting*>—is
appropriate only for mild impairments and lifestybectors that correspond to extra
mortalities between 25% and 50% and thus resutlg slight annuity enhancements
of around 10% to 15%

4 See Rinke (2002, p. 5).

> See LIMRA and Ernst & Young (2006, p. 32).

'® See LIMRA and Ernst & Young (2006, pp. 32—33) &ficholas and Cox (2003, pp. 5-6).

7 See Junus et al. (2004, p. 4), LIMRA and Ernst@uig (2006, pp. 32—-34).

8 See Cooperstein et al. (2004, p. 16), LIMRA andsE& Young (2006, pp. 33-34), and Richards
and Jones (2004, p. 22).

19 See Rinke (2002, pp. 5-6).

%0 See Brown and Scabhill (2007, p. 5).

2L See Ainslie (2001, pp. 16—17), Cooperstein g28i04, p. 14), and Nicholas and Cox (2003, p. 5).

22 See Cooperstein et al. (2004, p. 14), Richardslands (2004, p. 20), and Rinke (2002, p. 6).

2 See Ainslie (2001, p. 16), Cooperstein et al. £@0 14), and Weinert (2006, p. 8).



Impaired life annuities require a more extensiveeasment of an applicant's health
status due to the larger potential increase inatiuity amount, e.g., up to 50% for
extra mortalities up to 150% depending on the issyef? In addition to the health
questionnaire, a doctor's report may be considémgalying a mixture between rules-
based and individual underwritifg.Based on this information, the applicant is as-
signed a risk class (multiclass underwriting). Stmes, full individual underwriting

is required for impaired life annuitié&However, there is a tradeoff between the addi-
tional costs of such and the increased accuracy dedved’’ According to Nicholas
and Cox (2003), the impaired life expectancy is snead in terms of both ALE and
MRLE.?®

Care annuities are individually underwritten basada doctor’s repoff. meaning that
individual life expectancy is calculated for eagdplicant and no risk classes are es-
tablished® To obtain a more precise specification, the MR&Esed* Extra mortali-
ties between 250% and 300% yield annuity enhancenaéup to 125%7

The market for enhanced annuity products is langeereas the market for impaired
life annuities is of moderate size. Care annuitiase a small niche mark&tSome
providers focus solely on restricted market segsjewhereas others cover the full
range of standard and substandard annuity produSsmetimes, companies merely
add one substandard (enhanced or impaired lif@ystdo their standard annuity port-
folio.*

It is often claimed that accurate underwritinghs trucial factor in offering substan-
dard annuities. In particular, there is substamiskl that the underwriting will not cor-
rectly assess an applicant's mortality l€VdlIMRA and Ernst & Young (2006) list
several causes of underwriting risk, such as tesgure of competition, the lack of
adequate underwriting procedures and experienckinsafficient mortality data. The
latter factor is also discussed in Lu et al. (20@@)o0 emphasize the risk of making

4 See Ainslie (2001, p. 16) and Weinert (2006, p. 8)

% See Ainslie (2001, pp. 16—17) and Brown and Sk&007, pp. 5-6).

% See Richards and Jones (2004, p. 20).

" See Rinke (2002, pp. 5-6).

8 See Nicholas and Cox (2003, p. 6).

?9 See Brown and Scabhill (2007, p. 6) and Richardslames (2004, p. 20).
% See Rinke (2002, pp. 5-6).

1 See Nicholas and Cox (2003, p. 6).

¥ See Ainslie (2001, p. 16).

¥ See Ainslie (2001, p. 16) and Cooperstein e28i04, p. 15).

% See Froehling (2007, p. 5).

% See Weinert (2006, p. 12).

% See, e.g., LIMRA and Ernst & Young (2006, p. 3id Richards and Jones (2004, p. 20).



ratings based on small-sample medical studies.|ddieof mortality data—especially
for higher age groups—may be partly responsibiettie slow development of the
substandard annuity market. This problem couldddeed by outsourcing underwrit-
ing to reinsurers, who have more d&tZhere is also the danger for the point of view
of an annuity provider that the life expectanciegmpaired persons can improve dra-
matically due to developments in the medical fidlterefore, it is vital that under-
writers carefully monitor the mortality experienicetheir book of business as well as
developments in medical researéfiThe former is also important with respect to ad-
verse selection, especially when insurers offeh lsdandard and substandard annui-
ties>® Another risk factor has to do with using lifestylraracteristics as a basis for
underwriting; this practice can increase the riladverse selection if an insured im-
proves his or her life expectancy by changing b&hmayor example, by quitting
smoking or losing weigh?t’

In this paper, we focus on the large enhanced rapdired life annuity market, where
insureds are categorized in risk classes with wiiffe mortality by means of rating

factors. We determine the optimal risk structure da insurer offering substandard
annuities and explicitly model and integrate coslated to underwriting risk, which is

of great concern to insurers.

3. TheModel Framework
a) Basic model

We consider general population consisting ofN 1N potential risks, i.e., potential
policyholders of a given gender and at a speciie mD{O,... ,a)} . w is the limiting
age of a population mortality table describing theerage mortality in the general
population. The entry, thus specifies the average one-year probabilityeatth for a
person agex out of the general population, where the primen@yk indicates popula-
tion mortality**

Mortality heterogeneity in the general populatisnconsidered by means of a frailty

3" See Cooperstein et al. (2004, p. 13).

% See Cooperstein et al. (2004, p. 16), Junus €804, p. 5), Nicholas and Cox (2003, p. 8),
Richards and Jones (2003, p. 20), Sittaro (2003), mnd Weinert (2006, p. 17).

% See Cooperstein et al. (2004, p. 16).

40 See LIMRA and Ernst & Young (2004, pp. 42—-43).

“ To be directly applicable to insurance data, we asdiscrete model. By substituting annual
mortality probabilities by the continuous force mibrtality, a continuous model could also be
employed. General results remain unchanged, however



10
model?? To obtain individual probabilities of death, wepapa stochastic frailty factor
to the average mortality probability. The one-y&adividual probability of death
q,(d) for an x-year-old is thus given as the product of the ittlial frailty factor
d OR; and the probability of deatty, from the population mortality table:

d Léy,, dig,< 1
q,(d) =41, x=min[ x0{0,.. o} dle =1  forxd{ O... ¢} . (1)
0, otherwise

If the resulting product is greater than or equalltfor any agesx, the individual
probability of death is set equal to 1 for the ygest of those ages; for all other ages
% it is set to 0. Fod <1, we letq,,(d):=1.

The frailty factor specifies an individual's stafehealth. A person with a frailty factor
less than 1 has an above-average life expectanicgjlty factor greater than 1 indi-

cates that the individual is impaired with a redlibe expectancy, and a frailty factor
equal to 1 means the person has average mortality.

The individual frailty factord is a realization of a random variatie.** The distribu-
tion K, of D represents the distribution of different statesedlth and thus of differ-
ent life expectancies in the general population. iocharacteristics, we follow the
assumptions in Hoermann and Russ (2008): wd-Jebe a continuous, right-skewed
distribution onR,, with an expected value of 1, such that the maytadible describes
an individual with average health. As probabilitafsdeath approaching zero are not
realistic, the probability density functidiy is flat at zero withf, (0) =0.

We assume that the insurer is able to distinguismaximum of H different
subpopulations that aggregate to the total general populatioa Bgure 1). Subpopu-
lations differ by health status of contained risksl are ordered by their mortality,
where h =1 is the subpopulation with the lowest mortality ahetH is the sub-
population with the highest mortality. Risks belaioga given subpopulation if their
individual mortality lies in a corresponding frgilfactor range. Subpopulatioh
comprises all persons with a frailty factor lyingthe interval[dhL,dﬁ,J ) whered' de-
fines its lower and d’ defines its wupper limit for h=1,..,H and
d) =d;,,h=1,...H - 1 All intervals combined—corresponding to tHe subpopula-

42 See Hoermann and Russ (2008).
3 See, e.g., Jones (1998, pp. 80-83), Pitacco (2004), and Vaupel et al. (1979, p. 440).
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tions—aggregate to the positive real axis, |.¢;, [ dy,dy ) =[0,e0). Thus, the whole
range of positive real-valued frailty factors isreced.

Figure 1. Segmentation of the general population ifto subpopulations depending
on mortality level (described by the frailty disttion)

Subpopulatio  —Frailty Distributior
c
o
8
)
Q.
o
a
=
[3)
c
Q
]
©
()
o
<
=
Q
=
[3)
o
1 Subpopulationh H
Low Mortality High Mortality
(Frailty Factor) (Frailty Factor)

The number of risks in subpopulatibnis denoted byN, . Risks in all subpopulations
sum up to the total number of riské of the general population, i.eZ::lNh =N.

N, depends on the frailty distribution. It can beided as the percentage of risks out
of the general population with a frailty factor weend; andd; . Thus, it is calcu-
lated as the product of the total number of ridksand the probability of the frailty
factor lying in the interva[dhL,dﬁ,J ) The latter can be expressed in terms of thetyrail
distribution , , leading to

N, =N[P(df <D <dy)=NF,(d’)-F/(d')).

Each subpopulatioh is further characterized by two functions. Firs,cost function

g, (n) describes costs of the insurance of survivalfieskndividuals in subpopulation
h. Second, its price-demand functidp(n) specifies how many riskswould acquire

(one unit of) annuity insurance for a given priee= fh(n). Both functions are de-
fined for the number of insureds=1....,N, in each subpopulation=1,... ,H .

Since the insurer cannot distinguish beyond giwdspepulations, they are treated as
homogeneous with respect to the mortality. The éasttion is independent of the

number of sales, i.egh(n) =P n=1...,N,, where P* describes the actuarial pre-
mium for covering the cost of (one unit of) annungurance for the average potential
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insured in subpopulatioh. The actuarial premium is based on the averagé¢aiigrin

a subpopulation, which can be derived from thdtjraistribution. The average frailty
factor d, for subpopulatiorh is given as the truncated expected value of jrélttors
in the corresponding intervgt:IL,dLJ ):

d, :E(D a{DO[d! d )}) :df 200, (2)dz,

dn

where 1{.} represents the indicator function. THere, the averagé -year survival
probability for a person agein subpopulatiorh is given by

t-1

=[] (Laa (d)

with qx(d_h) as in Equation (1). The actuarial premiupd for one unit of annuity
insurance equals the present value of future appayments and thus results in

w—X

RA=>" PV,

t=0

where v denotes the discount factor. Since the averagiyffactor is increasing for
ascending risk classes, i.e, <d,<---<d,, the cost of insurance and hence the
actuarial premium is decreasing, i.e/, > P} >... > P},

The price-demand functiorﬁh(n) Is monotonously decreasing in the number of risks
n, i.e., the lower the price, the more people tregsewilling to buy insurance. Its first
derivative f, (n) with respect to the deman (the price elasticity of demand) is
hence negative for alt. In addition, we assume that the reservation pefei.e., the
price for which the demand is ze(lS?,R = fh(O)), increases with decreasing mortality
probabilities in a subpopulation. Consequentlyulpspulation with high life expec-
tancy contains individuals, who would be expectegay more for one unit annuity
insurance compared to individuals in a subpopulatvih low life expectancy. As the
actuarial fair value of one unit annuity insuransehigher for healthy persons, it
makes sense that their willingness to pay will dsohigher. In addition, Turra and
Mitchell (2004) found that annuities are less atixe to poorer risks with uncertain
out-of-pocket medical expenses. In terms of redenvaprices, this means that
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P?>P}>...>PF. At a price of zero, in contrast, everyone in gemeral population
would purchase insurance, i.é,(N,)=0,h=1... H.

An illustration of the determinants for one subpagian h is provided in Figure 2; for
illustration purposes, a linear price-demand fuocts displayed?

Figure 2: Constant cost functiog, and linear price-demand functiofy (in terms of
the priceP and as a function of the demanylin subpopulatiorh

P — Cost Functiongj, (n)

PR PriceDemand Functior f, (n)
h

PA

0

N n
0 h

Notes: P" = reservation price,p* = actuarial premium for (one unit of) annuity insuoce,
N, = number of risks in subpopulatidn

b) Optimal risk classification

We now consider profit-maximizing insurers who mdeto introduce rate-discrimi-
nating annuity products. Aisk class is comprised of insureds subject to a specific
range of risks in regard to their remaining lifgpegtancy. Thus, annuity prices will
vary by risk class. For instance, an insured waithuced life expectancy will obtain a
higher annuity for a given price or, vice versay paower price for one unit of annu-
ity insurance, as described in the previous section

A combination of population subgroups to risk céssis called alassification system.
Offering a standard annuity product correspondsdidressing the total general popu-
lation. This is consistent with a classificatiors®®m that aggregates all existing pop-
ulation subgroups to one single risk class. In sriting, subgroups are sorted by de-
creasing average life expectancies and, hence,amlj@¢ent subgroups can be merged
with each other into a risk class.

“ See, e.g., Baumol (1977, pp. 401-402).
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Let M be the set of all possible classification systefnslassification systenmM
consists ofl  risk classes. However, conducting risk classiftcais associated with
classification costs. This includes the costs fistimguishing between risk classes as
described in the previous section, e.g., coste$bablishing underwriting guidelines
for each additional risk class (beyond the totalegal population). We assume these
costs to be proportional to the number of distortdi and thus set them k(lm—l),
where k DR} .** When offering only one standard class, ile.=1, no classification
costs are incurred.

In each classification systemwith | _ risk classes, a risk class =1....,1 , is com-
posed ofS subpopulations, wher{i':ls =H . To simplify notation, in the follow-
ing, we omit the indexn when focusing on a specific risk clas@vithin a classifica-
tion systemm). Hence, allH subpopulations of the general population are assigo

| . risk classes. Subpopulations contained in onedlis&s are ordered by increasing
average mortality; this is indicated by the indexXThe total number of individuals in
risk classi is given as the sum of the number of persbigsn each contained subpo-

pulation s:

S

N =>"N,.

s=1

As for each subpopulation, a risk class characterized by its price-demand function
f.(n) and its cost functiony, (n) for n=1,...,N,. If risk classi contains exactly one
subpopulatiorh (and thusS =1), then f. = f, and g, = g,. Otherwise,f, and g, are
aggregated functions of the price-demand and cwstiibns of theS subpopulations.
The aggregation process is complex and must beucted stepwise by means of in-
verse functions.f,™* denotes the inverse function éf, which is defined on the inter-
val [O,PhR]. The price-demand functiof, of risk classi is aggregated based on the
price-demand functionsf, (s=1,...,§) of the S underlying subpopulations. The
aggregated functiorf, will exhibit breaks when it becomes equal to teservation
price P® of one of the contained subpopulatioss since each reservation price
represents the point at which the next subpopulawdl start buying the policy. In
each risk class, we have§ reservation prices. Hence, there &entervals on the x-

> For a more general specification, one might defitessification costs by any monotonously
increasing function in the number of risk classgs Thus, disproportionately high classification
costs can be represented, for instance.
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axis, on each of which the aggregate price-demanctibn is defined differently. The
intervals|, are given by

|:i 1:3_1(Ff/R),VZ+l fs‘l(alil)j for v = 1,...5 -1
|V = sl=/1 s=1 (2)
|:Z fs_l(PvR)’Ni:| forv=S§.

On each interval ,, the aggregated price-demand function is defined b
()= 1,(62(R))= 1, (z fs‘l(Pi)j, it nOl,, v=1,....5.
s=1

Thus, for any given pric&® := f, (n), the number of insured risks in a risk class is
the sum of the number of insured risks in eachainatl subpopulatiors for which
f-*(P) is defined. Graphically, the aggregate price-dedrfanction of a risk class is
received by horizontal addition of the price-demdumaictions of belonging subpopu-
lations. It starts at the highest reservation pige and whenever the function passes
another reservation price, there is a bend as ¢neadd of another subpopulation is
added. Figure 3 sketches the aggregation processkalassi consisting of two sub-

populations,§ =2.

Figure 3: Aggregate cost and price-demand function (in geofithe priceP and as a
function of the demand) in risk classi consisting of two subpopulatiorss=1, 2

Cost and price-demand functignCost and price-demand functionAggregate functiond, and g,

in subpopulatiors =1 in subpopulations = 2 in risk classi
—Cost Functiongl(n) p —Cost Functio), (n) p —Cost Functior; (n)

P;LRl PriceDemand Functiorfl(n) PriceDemand Functioif, (n) HRl PriceDemand Functioif; (n)
P2R PzR

R R
P

0 n 0 n 0 —n

0 N, 0 N, o N, +N,

Notes: P7,s=1,2 = reservation priceP”*,s=1,2 = actuarial premium for (one unit of) annuity insu
ance,N,,s=1,2 = number of risks in subpopulatian

In our setting, the cost function in a subpopulati® constant in the number of insu-
reds. This means that no inverse function of th&t &anction exists. Therefore, the
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aggregate cost functiog, of risk classi must be derived based on the associated
price-demand functionf. . It is defined piecewise in sections analogouslyft (see

Equation (2)). For a given demamdin risk classi, the price is given byf, (n) =P.
For this price, the corresponding number of persomach contained subpopulatisn
is determined by the inverse functidg®( f; (n)) = f,*(P) = n,, if existent. The num-

ber of persons in each subpopulation is then wedyhtith the corresponding costs

gs( ) " in that subpopulation. Finally, average costsdmrmined for the total
of n—zzzl .2 (n)=>_ f.*(R)=>___n, insureds. The resulting formula for

the aggregate cost function on the interljals thus descriptive and given by

()= 3 (1 (). (1) = X A (R) L (R) = o B

s-l s-l

if nOl,, v=1,...,S. Since the cost function is lower for higher sytgation indices

S, i.e, gs( ) PA>Psﬁ\1 gs+1(n), and since only adjacent subpopulations may be
merged into risk classes, the aggregate cost fumddigenerally decreasing (as exem-
plarily illustrated in Figure 3). The profit. in risk classi is calculated as the differ-
ence of earnings and costs, i.e.

N, (n)=E(n)-C (n)=n¥ (n)-ny (n),n=1,..N,

where E (n) =nLf, (n) describes the earnings a@dn) =nLy, (n) describes the costs
for n insured risks. Hence, a risk class is profitabdel@ng as the market price
P=f (n) is higher than the actuarial premquhA =g, (n) setting aside any addi-
tional (classification) costs.

The total profit from classification system is given as the sum of the profit in each
risk classi,i =1,...,1, less classification cost(l,,~1). It is denoted by

with n_being the number of insured risks in risk clas$he insurer aims to determine
the optimal classification system and optimal pdesgnand combinations in the cor-
responding risk classes such that the profit isimied:

max max I‘I(n1 ,...nlm). (3)

mDM{
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The optimal number and composition of risk clas$gsend on classification costs. If
classification costs are zero, profit is maximiZed the maximum number of distin-
guishable risk classes, i.e., if each risk clag®rresponds to a subpopulatibrior all
h=1,...,H .* In the presence of classification costs, thisgratthanges, depending
on the costs.

The maximization process must be undertaken inrrecusteps. For each classifica-
tion systemm[M , optimal price-demand combinations must be derfee@ach risk
class i=1...,1 , which is done by setting the first derivative die profit

M (nl,...,nlm) with respect to the number of risks equal to zerd’

arn (n;r.l..,nlm) _ anairgni) = f(n)-a.(n)*n (1(n)-g' (n)) 0.

Since f, and g, are defined inS sections, for each intervd),v =1....,§ as specified
in Equation (2), the number of insureds in risksslais implicitly given by

<
|
_—h
—_
—
S—
|
«©
—

. . r\") 48
n =- , ,forn’ O1,,v=1....S.
t(n)-g'(n)

To determine the optimal price-demand combinatanritk classi, we need to com-
pare the profit based on the number of rigksfor each sectiow =1,...,5. It is max-
imized for*®

| 4o 14
n” = argmax M, (n').
WOl v=l,..§

Figure 4 is an illustration of the optimal pricenteend combination in the case of a
risk classi that equals a subpopulatidm Since the number of underlying subpopula-

% See, e.g., Doherty (1980, 1981).

4" See, e.g., Baumol (1977, pp. 416—417), assurhiighe functions are differentiable.

*® A solutionn’ is valid only if it lies in the corresponding inwl |, .

9" In this context, we assume that price discrimorais not possible within a subpopulation. Hence,
for policyholders in one subpopulation—i.e., pgticlders do face an identical risk situation—, the
same priceP” will be asked for (for this point cf. the Chaptéfairness in Risk Classification” in
Cummins et al., 1983, pp. 83-92). In an extreme,cabere first-degree price discrimination is
possible, an insurer would like to charge a différgrice (customer's reservation price) to each
policyholder in one subpopulation (see, e.g., Rikdgnd Rubinfeld, 2008, p. 393-403 and
Baumol, 1977, pp. 405-406).
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tions is § =1 in this case, the functions exhibit no breaks, clvhmeans that no
distinctions need be made between different interva

Figure 4: Optimal profit-maximizing price-demand combinatiim risk class

P —Cost Functiorg (n)
Price:Demand Functiorf, (n)

0 :* —n
0 n N;

Notes: P® = reservation priceP* = actuarial premium for one unit of annuity inswe, n = op-

*

timal number of insureds?” = optimal market pricé], (r] ) = maximum profit,N, = number of risks
in risk classi .

In the second step, the total profit from each sifesition systemmM is deter-
mined by taking into account classification cok(ém—l). The classification system
that yields the highest profits for the insureoimal, i.e.,

m =arg ma>d‘|(nl ,...r,l,m),
M

implying a maximum total profit of

(o, )= )40

From this formula, in some cases, one can deriegenthximum classification costs
that can be incurred such that the optimal riskssfacation system will still be profit-
able.

[ .

Zni (niv )

n(n,..n" )=0e k:i=1IT
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However, it needs to be verified that the clasatfam m s still optimal under the
modified classification costk, since a different classification with less or maisk
classes may be optimal then. If the optimizatioobpem yields the same result, an in-
surer may compare this amount with the estimatastsoaf increased underwriting ef-
fort.

c) Optimal risk classification and costs of underwriting risk

One of the main reasons why insurers are reluttaehgage in risk classification has
to do with the costs of underwriting risk as laitt c Section 2. The effect of costs of
underwriting risk in connection with risk class#ion on an insurer’s profit situation
has never been modeled. In the following, we prepmsnodel that allows a general
assessment of costs of underwriting risk.

We start from the insurer's optimal risk classtiica systemm as presented in
Subsection 3 b), including the optimal number skreclassed . as well as optimal
price-demand combinationéqi*,ﬁ*)fori =1 . that satisfy Equation (3). Here,
and in the following, we omit the superscripto facilitate notation. We model under-
writing risk by assuming that a policyholder whauatly belongs to risk class is
wrongly assigned to a higher risk class>1 with error probability p; =0
(iji p, =1). For j =i, the underwriting classification is correct. Wefide costs of
underwriting risk in terms of underwriting errorshich lead to a reduction of profit.
In practice, of course, mistakes in classificatbam be either to the advantage or dis-
advantage of the insurer. Our approach can bepretiexd as the excess negative effect.
Furthermore, one can generally assume that the probability decreases with in-
creasing distance betweénand | as it becomes more likely that individuals will be
wrongly classified in adjacent risk classes.

Since the policyholder is actually in risk classwith the associated price-demand
function f; (n) the optimal price-demand combination targetedhieyinsurer to max-
imize profit is given byr]* and Pi*, representing the optimal number of policyholders
r]* buying insurance for the pricé?*. However, errors in underwriting imply that
wrongly classified policyholders out of risk classare charged the lower pride
which is optimal only for insureds in risk clags The latter are representatives of a
higher risk class with higher average mortalitylqability and thus lower costs of in-
surance. As a first effect, this error leads teduction of profitsl1, in risk classi,
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since for the percentagp,, j #i of individuals out of risk class , the lower price
P <F is charged:

M, ::rli(ni*):ni* fi(n*i)_rigi(ﬁi):ﬁi (F? —F?A)ZZp”-hi (pl _RA)'

j=i
As a second effect, the requested premiBfncreates a new demart =n +An,
with probability p;, which in turn leads to additional changes in itheurer's profit.
n, denotes the number of policies sold in risk clagsr the pricer*, which is op-
timal in risk class;j:
n; = fi‘l(Pj*).
An; thus describes the difference between the actirabern, and the optimal num-
ber n of insureds in risk class. The above notation is simplified in that it doext

explicitly consider thatf, and its inverse function may be defined in sestiofhe
profit in risk classi with insureds wrongly classified to risk clagchanges to

M (ny)=nyfi(ny) -mya ()

with probability p,. The expected profit in risk clagsis then given as the average

profit when wrongly classifying insureds to rislassesj =i +1,...,| ,,, weighted with
the respective underwriting error probabilities éaich risk class:

ﬁizzpijni(nij)- 4)

j=i
Figure 5 illustrates the effect of underwritinga¥s by means of two risk classes.

Since original price-demand combinations in riskssli are optimal for a profit-max-
imizing insurer, the modified profifl, after accounting for underwriting errors will be
lower than the original profit, i.1, <I,. The difference between the two amounts is
the cost of underwriting risk in risk clags

g =0~ ﬁi .

The cost will be influenced by various factors,lsas the extent of underwriting error

probabilities, the distance between two risk classderms of the difference between
optimal risk class prices, and the cost functioeach risk class.
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Figure 5: Change of profit in risk clasis when insureds are wrongly classified to risk
class j >i with probability p, =1

p —Cost Functiorg; (n) P —Cost Functiong; (n)
pA Price-Demand Functiorf, (n) Price-Demand Functiorf ()
i
Pifeeseseseenaneesd s PjR
m () .
(= IO SR g RS
. n.{n)
i A
R
0 - : —nl 0 E n
0 n n; N, 0 n, N,

Notes: R®,P" = reservation pricep”*, P = actuarial premium for (one unit of) annuity iresoce,
n;,n; = optimal number of insured®’, P, = optimal market priceN;,N; = number of risks in risk
classi or j, respectively;ll, (n) = maximum profit in risk class, 1, (n; ) = profit in risk class
for demandn, .

We illustrate the effect of these different factorsthe cost of underwriting risk for a
case including only one erroneous classificatiomnfi to j. With n, = n +An,, one
can reformulate the expression for costs of undéngrrisk as follows:

1o (r) -y fi(ny) + o (”ij))

As discussed above, the first term is posit{ve, - P| |= 0, since the price in a higher
risk class | is lower compared to the price in risk classTherefore, the greater the
distance between two risk classes, i.e., the biggedifference betweeﬁi’* and P;
the higher the costs of underwriting risk. At tleane time, however, the error proba-
bility p; will decrease with increasing distance betwgeand i, which dampens the
effect of the difference betweelﬁ* and Pj* on the overall cosg. The second term
represents the difference between the costs fooftimal number of policyholdens
and the actual numbat; . Since the cost function in risk classs aggregated, it may
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be decreasing. In general, the cost fip> rf individuals may thus be lower than the
cost forn individuals, i.e.,[gi (nl) -0 (nij )] > 0. Hence, the difference will reduce
costs of underwriting risk. The last term represahe difference between the actual
costs for the insurer and the actual price pE\g;i(n”.)— PJ] If the price paid does not
cover actual costs in risk class costs of underwriting risk will be even largdrtie
price paid does exceeds the costs of coveringrthigrer's expenses, the term will be
negative, thus implying a reduction in costs ofemditing risk.

The profit [, can even become negative if costs in risk ciasse higher than the
price Pj* paid by the insuredF{ <g, (n”.)) and if, for example, the underwriter classi-
fies insureds in risk classto risk classj with probability p, =1. In this special case,
the insurer will suffer a loss from erroneous umaémg, which can be seen as fol-
lows:

f=(ny) =n, (PJ* —gi(nij))<0.

—
In general, costs of underwriting risk should beetainto consideration when making
risk classifications. In particular, error probdtimlks will differ depending on the classi-
fication system. For instance, the more risk clagbat are established, the smaller
will be the differences between them, and the gretlie probability of wrongly clas-
sifying insurance applicants. Furthermore, it canassumed that the probability of a
wrong classification diminishes with decreasing bemof risk classes,, contained
in a classification system.

In the presence of underwriting risk, the insuigaia faces the problem of finding the
optimal classification system. An optimal classtion systemm*k that takes under-
writing risk under consideration may differ frometlptimal classification systemm*

that does not. The extent of the difference wilbeled on the error probability distri-
bution and on classification costs. Calculations lsa conducted based on empirically
observed underwriting error probabilities or by mgkreasonable assumptions. The
optimal classification systerm~ solves the following equation based on the formula
for modified expected profits in Equation (4):

m~ =argmax] (nl ,...n,m)
mM

implying an optimal total profit of
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Depending on the error probability distributione tbptimal classification system will
be comprised of more or fewer risk classes, whidh @f course, have an impact on
classification costs. It is vital for an insurertéke all these factors into consideration
so as to avoid losses from underwriting risk. Byngsour proposed approach and
given estimation of error probabilities or sounduasptions on empirical erroneous
underwriting, these risks can be quantified and@mmately taken into account.

An summary of the risk classification process alenth terms and definitions intro-
duced in this section is provided in Figure 6.

Figure 6. The process of risk classification for substaddarnuities

A risk classification processfor substandard annuities

I dentify general population
General population consists of N potential poliddeos (“risks”) willing to buy annuity insurange
with a given gender and at a specific age D

Calibratethefrailty model
Use a frailty distribution to model mortality hatgeneity in the general population (see Figure 2).
The frailty factor specifies an individual's statiehealth. A person with a frailty factor less thhn
has an above-average life expectancy; a frailtyofagreater than 1 indicates that the individual is
impaired with a reduced expected remaining lifetimdrailty factor equal to 1 corresponds t¢ a
person with average mortality. @

Divide general population into subpopulation
Subpopulations differ by health status of contairiskis and are ordered by their mortality (higher
subpopulations have higher average mortality). Agsthat an insurer is able to distinguish only a
limited number of different subpopulations (thageagate to total general population). Risks belong
to a given subpopulation if their individual moitglies in the specified frailty factor range.

Deter mine price-demand function
Price-demand functions are defined for the numlhénsureds in each subpopulation; specify how
many riskswould acquire (one unit of) annuity insurance forgigen price; is monotonously
decreasing in the number of risks, i.e., the lothierprice, the more persons are willing to buy insu
ance; can be estimated using, e.g., conjoint aisalys

4

Determine the cost function
The cost function describes the actuarial premiamcbvering the cost of (one unit of) annuity |n-
surance for the average potential insured in a guidption; independent of the quantity of sales
(insurer cannot distinguish beyond subpopulations.
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a

Establish risk classes

A risk class comprises one or more subpopulatiaddresses a specific range of risks in regand to
their remaining life expectancy. If a risk classisists of more than one subpopulation, the aggre-
gated price-demand function for the risk classtbhase determined based on the price-demand func-

tions in the underlying subpopulations. Only adjacibpopulations can be merged to risk cla
since subpopulations are specified by decreasiatpge life expectancies (in our setting).

s

Define a classification system

5SEeS

A combination of population subgroups to risk céssss called a classification system (a standard
annuity product addresses total general populatmh thus corresponds to a classification system

where all subpopulations are merged into one sirigfteclass).

{1

Calculate classification costs

A classification system consists of several risksses. Classification costs include costs forrdisti

guishing between risk classes (e.g., costs fobksiténg underwriting guidelines for each additib
risk class beyond the total general population).

4

Account for underwriting risk costs
Model underwriting risk by assuming that a policiges is wrongly assigned to a higher risk cl
with a given error probability (can be estimatedbased on sound assumptions).

4

Solve the optimization problem
Proceed in two steps: First, find the optimal pdesnand combination in each possible risk ¢

na

ASS

ass

that maximizes the profit (earnings less coststhia class. Second, find the optimal classification

system (i.e., a combination of subpopulations $& dlasses) that maximizes the total profit for
insurer (total profit from a classification systésngiven as the sum of the profit in each risk €l
less classification costs). Account for underwgtirsk in the process.

the
as

4. M odel Application and Market Entry

This section discusses additional key issues ragalibstandard annuities. For

in-

surers trying to decide whether engaging in risissification would be a practical and
profitable pursuit, or only offering a standardiftarour model is very useful. For

practical implementation, estimating price-demand aost functions for each risk
segment is vital. Other important aspects to besidemed in making such a decision
include market entry barriers and the general reskd advantages of providing subs-

tandard annuities.
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To ensure adequate model application and soundtsethe following issues need to
be addressed. First, innovating insurers need letyd about the structure, size, and
potential of their target markat,which includes information about the number and
mortality profiles of potential annuitants. Secomdtimates must be made of how
product price will affect demand in each marketnsegt. Therefore, the maximum
number of risks, their reservation price and pgtasticity of demand need to be de-
rived empirically by means of, e.g., surveys legdia the respective price-demand
function. Third, insurers needs to choose the Ifllkenost profitable market segment
in which to conduct business, a choice made ehgiemploying our model with cali-
bration as specified above.

In addition, estimation of classification costs aa assessment of the underwriting
quality is crucial, since risk classification artetassociated underwriting are consi-
dered the most hazardous risk for insurers offesunigstandard annuity products, as
discussed in Section 2. Proper underwriting demanéfecient expertise and, prefera-
bly, a sound IT-backed underwriting and classif@asystent" which, in turn, has to
be accounted for in terms of classification cog{ben it comes to underwriting qual-
ity, one difficulty is in estimating current moritgl probabilities due to a lack of credi-
ble mortality data. In addition, the risk of futumertality improvements made possi-
ble by developments in the medical field cannotgmered>* Moreover, insurers need
to make sure that risk factors are not controllddyleannuitants, and they must try to
prevent insurance fraud, which, at least compacetifé insurance, may be fairly
challenging. For example, in the life insurance@edraud will be detected, once and
for all, when the payment becomes due—eitherrikered is dead or not. Enhanced
annuity payments, in contrast, must be made asdsriye insured lives, giving much
more opportunity for fraud® Privacy and regulatory issues with respect torinfion
about risk classification characteristics also ntedoe kept in mind?

The above issues need to be taken into accountdwydrs considering the introduc-
tion of risk classification. However, as outlinedoae, calibration of the model is
complex and prone to a relatively high degree aeutainty such that implementation

* See Ainslie (2001, p. 17).

°l See Weinert (2006, p. 15).

2 See, e.g., Cardinale et al. (2002, p. 16), Cotgiert al. (2004, p. 13), LIMRA and Ernst &
Young (2006, p. 28), and Richards and Jones (30020).

3 See Junus et al. (2004, p. 20).

> See Brockett et al. (1999, p. 11).
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may present an obstacle to innovation. Moreovestetrare other barriers and risks
having to do with the target market and productgiesas described below.

Substandard annuity markets are very competitivipplicants "shop around" for the
best rates by submitting underwriting requestsie®gl insurance companies simulta-
neously?® Insurers face a tradeoff between staying competiind maintaining actua-
rially sound criteria for qualifying applicants sgbstandard risks. A provider's profit-
ability can be negatively affected if the placemettio, i.e., the ratio of sales to un-
derwriting requests, becomes too I3wn addition, there is competition in the form of
other financial product® and not much market awareness of substandard tesui
Therefore, if an insurer decides to enter the sulgisird annuity market, it will be in
need of a distribution system strong enough to geesufficient market awareness.

Product design will need to be attractive to s&dese and clients, efficient, and inno-
vative® Except for the application itself, which requiré® provision of additional
health information, sales processes are simildhase of standard produésin line
with standard annuities, a substandard annuityigeovs required to maintain mini-
mum capital requirements and account for longeaity interest rate risk.In addi-
tion, the impact on existing portfolios needs tdrbestigated?

Daunting as these barriers and risks sound, therealso substantial advantages to
selling substandard annuities. For one thing, atiogrto Cooperstein et al. (2004) and
Watson Wyatt (2008), the market potential is huferra and Mitchell (2004) also
find support for considerable demand for these petsl Thus, entering the substan-
dard annuity market is likely to be an attractilteraative for new market players with
a solid business plan, giving them the opportutotyeaching a broader population
and/or meeting a niche market né&éfor an established market player with an exist-

> See LIMRA and Ernst & Young (2004, p. 7).

°® This practice is mainly observed in the United ddom. See, e.g., Cooperstein et al. (2004, p. 13)
and Ainslie (2001, p. 19).

" See LIMRA and Ernst & Young (2006, p. 20).

8 See LIMRA and Ernst & Young (2006, p. 22).

* See, e.g., LIMRA and Ernst & Young (2006, p. 22)l &Veinert (2006, p. 15).

0 See Froehling (2007, p. 5), Werth (1995, p. 63, \Afeinert (2006, p. 15).

®L See Cooperstein et al. (2004, p. 13) and LIMRA BNt & Young (2006, pp. 8, 37-38).

%2 See, e.g., Froehling (2007, p. 5), LIMRA and E&stoung (2006, p. 7), and Weinert (2006, p.
15).

% See Werth (1995, p. 6).

%4 See LIMRA and Ernst & Young (2006, p. 6).
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ing standard annuity portfolio, the situation ig me clear-cut®> although—except for
the underwriting—offering substandard annuitiey megjuire only modest modifica-
tions of organization, product design, and distidnu systenf® Yet, there is the dan-
ger of destabilizing one's market position by beilcgymore competitive in the subs-
tandard market but, at the same time, less prdditedbthe standard annuity business,
which could result in some reputational damage, awever, if a standard insurer
expects the substandard annuity market to grois,atvisable to become active in it
early on and thus avoid being forced, for defensaasons, into quickly developing a
substandard product later. Early market engagem#irdllow an insurer to enjoy the
benefits of competitive advantage and avoid problefradverse selectidh.

In this context, adverse selection means that atandnnuity providers will be left

with a greater proportion of healthier lives inithgortfolios if those with a reduced

life expectancy tend to buy substandard annuifidis situation leads to a reduction
in profit for standard annuity portfolios, whichshbeen quantified by Ainslie (2000)
and Hoermann and Russ (2008).

5. Summary

In this paper, we comprehensively examined keyasp# substandard annuities and
developed a model for an optimal risk classifiaatystem that includes consideration
of underwriting risk. We began with a descriptiohdifferent types of substandard

annuity products, their respective underwritingtepdial market size, and associated
underwriting risk, the latter of which is considérerucial for success in the substan-
dard annuity sector. Supported by extant reseavehfocused on multiclass under-
writing implemented by risk classification via ragifactors. We proposed a model for
a risk classification system in a mortality hetemgous general population, which is
described by a frailty distribution. The optimalmioer and size of risk classes as well
as the profit-maximizing price-demand combinatianeach risk class were then de-
rived as the solution of an optimization problens &n extension, we solved for the
optimal risk classification system when taking iatmcount costs of underwriting risk.

We modeled these costs by assuming error probabifior wrongly classifying insu-

reds into a higher risk class, thus underestimatiegirue costs of insurance. We then
discussed the practical application of our modeln@ with market entry barriers and

® The following points are analogously discussedWierth (1995) for the case of introducing
preferred life products in the life insurance marke

% See LIMRA and Ernst & Young (2006, p. 21).

®" See, e.g., O'Neill (1997, p. 1088) and Swiss RET2p. 13).

% See, e.g., Watson Wyatt (2008).
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risks and advantages inherent in being a substdradaruity provider. Due to the ge-
nerality of the model, applications to classificatiproblems other than substandard
annuities are possible as well.

In conclusion, extended risk classification in atyunarkets not only increases the
profitability of insurance companies, it benefitxigty at large as the introduction of
substandard annuities makes it possible for manpddy uninsurable persons to se-
cure for themselves a private pension.
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