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OPTIMAL RISK CLASSIFICATION WITH AN APPLICATION TO  

SUBSTANDARD ANNUITIES 

 
Nadine Gatzert, Gudrun Hoermann, Hato Schmeiser* 

 

Abstract 

Substandard annuities pay higher pensions to individuals with impaired health and 
thus require special underwriting of applicants. Although such risk classification 
can substantially increase a company's profitability, these products are uncommon 
except for the well established U.K. market. In this paper, we comprehensively 
analyze this issue and make several contributions to the literature. First, we de-
scribe enhanced, impaired life, and care annuities, and then discuss the underwrit-
ing process and underwriting risk related thereto. Second, we propose a theoretical 
model to determine the optimal profit-maximizing risk classification system for 
substandard annuities. Based on the model framework and for given price-demand 
dependencies, we formally show the effect of classification costs and costs of un-
derwriting risk on profitability for insurers. Risk classes are distinguished by the 
average mortality of contained insureds, whereby mortality heterogeneity is in-
cluded by means of a frailty model. Third, we discuss key aspects regarding a 
practical implementation of our model as well as possible market entry barriers for 
substandard annuity providers. 

 
JEL classification: C61, G22, L11 

Keywords: Risk classification, Underwriting risk, Mortality heterogeneity, Substandard annuities 

 
1. Introduction 
 
Substandard annuities pay higher pensions to individuals with impaired health.1 These 
contracts are increasingly prominent in the U.K. insurance market where, according to 
Watson Wyatt (2008), more than 20% of annuities sold are based on enhanced rates. 
Since its development in the 1990s, the market for substandard annuities in the United 
Kingdom has experienced impressive growth.2 Today, this market is well established; 
there were eight providers in 2007 and at least three more entered the market in 2008. 
And there is still enormous growth potential with up to 40% of annuitants estimated to 
                                                           

*  Nadine Gatzert is at the University of Erlangen-Nürnberg, Chair for Insurance Economics, Lange 
Gasse 20, 90403 Nürnberg, Germany, nadine.gatzert@wiso.uni-erlangen.de. Gudrun Hoermann is 
in Munich. Hato Schmeiser is at the University of St. Gallen, Chair for Risk Management and 
Insurance, hato.schmeiser@unisg.ch. 

1 See LIMRA and Ernst & Young (2006, p. 10). The term "substandard annuity" includes enhanced, 
impaired life, and care annuities (for a detailed description, see Section 2). In the U.K. market, all 
types of substandard annuities are sometimes referred to as "enhanced annuities."  

2 This may to some extent be due to mandatory partial annuitization of retirement income in the 
United Kingdom. See LIMRA and Ernst & Young (2006, p. 6).   
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be eligible for increased pension payments. Outside the United Kingdom, however, 
substandard annuities are surprisingly rare. In the United States, for instance, only 11 
providers out of 100 insurers issuing single-premium immediate annuities offer subs-
tandard annuity products, according to LIMRA and Ernst & Young (2006). Only 
around 4% of annuities sold in the U.S. market are based on enhanced rates.3  It is not 
obvious why the substandard annuity market is so small, especially given that such a 
risk classification generally increases a company's profitability.4 Furthermore, substan-
dard annuities would make private pensions available for a broader range of the popu-
lation and would thus improve retirement incomes for insureds with a reduced life ex-
pectancy. Thus, there must be important reasons behind the reluctance of many insur-
ers to enter the substandard annuity market.  
 
The aim of this paper is to develop a model to determine the optimal risk classification 
system5 for substandard annuities that will maximize an insurance company's profits. 
We further include the costs of insufficient risk assessment (underwriting risk) that 
occurs when insureds are assigned to inappropriate risk classes. This extension is cru-
cial, as underwriting risk is considered to be the most significant risk factor in the is-
suance of substandard annuities and thus should be taken into account when making 
informed decisions. In addition, we provide qualitative background information about 
underwriting and classification methods and describe underwriting risks for different 
types of substandard annuity products. We also discuss key aspects regarding a prac-
tical implementation of our model as well as possible market entry barriers. Since the 
risk classification model is formulated in a rather general way, it can as well be applied 
to other classification problems. 
 
Selling substandard annuities is a challenging task and several factors in the process 
will influence a provider's profitability. First, a reasonable classification system must 
be established based on insureds' life expectancy. Second, adequate underwriting 
guidelines are necessary to ensure that each applicant is assigned to the proper risk 
class. Distinctive features of risk classes include medical conditions or lifestyle factors 
such as smoking, weight, geographical location, education, or occupation. Resulting 
classification costs need to be taken into consideration when pricing the contract. Fi-
nally, demand for the product is determined by the annuity amount paid to insureds in 
each risk class.  
 

                                                           

3  See LIMRA and Ernst & Young (2006, p. 18). 
4 See Doherty (1981).  
5 According to Actuarial Standard of Practice No. 12, a risk classification system is a "system used 

to assign risks to groups based upon the expected cost or benefit of the coverage or services 
provided" (Actuarial Standards Board, 2005).  
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The literature on substandard annuities primarily deals with practical issues of subs-
tandard annuity markets. Ainslie (2000), Weinert (2006), and LIMRA and Ernst & 
Young (2006) provide detailed studies of substandard annuities in the United Kingdom 
and the United States. Information on the development, size, and potential of substan-
dard annuity markets, different product types, underwriting methods and challenges, 
mortality and risk classification issues, the impact on the standard annuity market, tax 
considerations, distribution channels, and reinsurance can be found in Ainslie (2001), 
Brown and Scahill (2007), Cooperstein et al. (2004), Froehling (2007), Hamdan and 
Rinke (1998), Richards and Jones (2004), and Rinke (2002). Junus et al. (2004), Ni-
cholas and Cox (2003), and Turner (2001) focus on the underwriting of substandard 
annuities. The impact of individual underwriting on an insurance company's profit is 
examined in Hoermann and Russ (2008), based on actuarial pricing. In Ranasinghe 
(2007), underwriting and longevity risk for impaired lives are assessed by means of a 
provision for adverse deviation.  
 
Regarding risk classification within the insurance sector, Williams (1957) provides an 
overview of insurance rate discrimination, including its definition, various forms, eco-
nomic effects, and government regulation. Doherty (1981) examines the profitability 
of rate classification for an innovating insurer and the associated market dynamics. 
This paper is an extension of previous work (Doherty, 1980), in which the author in-
vestigates rate discrimination in the fire insurance market. Christiansen (1983) draws a 
parallel to substandard annuities when analyzing the "fairness" of rate discrimination. 
Zaks et al. (2008) show the existence of an equilibrium point, when, in a portfolio con-
sisting of several risk classes with respective price-demand functions, the premium 
amount and the number of policyholders in each risk class are iteratively updated. A 
great deal of the literature is dedicated to risk classification controversies concerning 
social issues. Some authors argue that competition by risk classification is inefficient, 
particularly if it becomes purely selective, i.e., if it makes insurance expensive or unaf-
fordable for persons representing high risks for insurers. In contrast, others regard risk 
classification as essential in avoiding adverse selection. De Jong and Ferris (2006) 
provide the background for this discussion. Other authors addressing this topic include 
Abraham (1985), De Wit (1986), Feldman and Dowd (2000), Rothschild and Stiglitz 
(1997), Thiery and Van Schoubroeck (2006), Thomas (2007), and Van de Ven et al. 
(2000). In addition, De Jong and Ferris (2006) contains a demand model to investigate 
the effects of changes in risk classification systems. The authors determine the impact 
of unisex pricing in the U.K. annuity market on the expected purchase of annuity 
amounts depending on a person's individual mortality level, which is described by a 
frailty factor.  
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Various authors assess risk classification in insurance from a social utility point of 
view (see, e.g., Bond and Crocker, 1991; Crocker and Snow, 1986, 2000; Hoy, 1989, 
2006; Sheshinski, 2007; Strohmenger and Wambach, 2000; Van der Noll, 2006; Ville-
neuve, 2000). Promislow (1987) measures the inequity that arises from considering 
only certain factors––and ignoring others––when setting insurance rates. There are 
several papers that deal with practical issues of risk classification. Kwon and Jones 
(2006) develop a mortality model that reflects the impact of various risk factors. Der-
rig and Ostazewski (1995), Horgby (1998), and Lohse (2004) focus on risk classifica-
tion based on fuzzy techniques. The work of Werth (1995) provides a broad overview 
of preferred lives products. Leigh (1990) reviews the underwriting of life and sickness 
benefits, and Walters (1981) develops standards for risk classification. Today, the im-
pact of genetics on risk classification has taken on added importance (see, e.g., Brock-
ett et al., 1999; Brockett and Tankersleigh, 1997; Hoy and Lambert, 2000; Hoy and 
Ruse, 2005; Macdonald, 1997; Macdonald, 1999; O'Neill, 1997). There is also a sub-
stantial body of literature on rate classification in non-life insurance, especially in the 
automobile sector. For instance, Schwarze and Wein (2005) consider the third-party 
motor insurance industry and empirically test whether risk classification creates in-
formation rents for innovative insurers. Cummins et al. (1983, pp. 27–62) and Driver 
et al. (2008) focus on the economic benefits of risk classification. The authors argue 
that in many cases, risk classification contributes to economic efficiency, limits ad-
verse selection, reduces moral hazard, and encourages innovation and competition 
within the insurance market.  
 
In this paper, we contribute to the literature by providing a comprehensive analysis of 
challenges and chances for life insurers offering substandard annuity products. To this 
end, we combine the two strands of literature, that on substandard annuities and that on 
risk classification. From an insurer's viewpoint, we solve the problem of optimal risk 
classification for substandard annuities taking into consideration classification costs 
and underwriting risk, which has not been done to date. In addition, we provide a 
detailed discussion on the background of substandard annuities and limitations re-
garding risk classification within annuity products.  
 
Section 2 provides practical background information about different types of substan-
dard annuities, and also describes underwriting and classification issues. In Section 3, 
we develop a model to determine the optimal number and size of risk classes, as well 
as the optimal price-demand combination for each risk class that will maximize an in-
surer's profit. Risk classes are distinguished by the average mortality of individuals in 
a certain class relative to the average population mortality. We account for mortality 
heterogeneity and use a frailty model to derive individual probabilities of death. The 
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profit is maximized based on given price-demand dependencies in population sub-
groups and classification costs. When taking into account costs of underwriting risk, a 
modified risk classification system might be optimal, depending on the underwriting 
quality. In Section 4, we provide a detailed description of market entry barriers and 
risks for substandard annuity providers and aspects concerning the practical applica-
tion of our model. The paper concludes with a summary in Section 5. 
 
2. Substandard Annuities and Underwriting 
 
In general, there are three types of substandard annuities, as opposed to the standard 

annuity: enhanced annuities, impaired (life) annuities, and care annuities.6 Usually, all 
three are immediate annuities for a single lump-sum payment, where the annual annu-
ity amount depends on the insured's health status. In the following, we start with a de-
finition of each annuity type and then go on to provide information about key aspects 
of annuity underwriting. Market size and underwriting risks are discussed in the last 
part of the section.  
 
Enhanced annuities pay increased pensions to persons with a slightly reduced life ex-
pectancy.7 Most applicants are between 60 and 70 years of age.8 Calculation of en-
hanced annuities is based on environmental factors, such as postal code or geographic 
location, and lifestyle factors, such as smoking habits, marital status, or occupation, as 
well as disease factors, including diabetics, high blood pressure, high cholesterol, or 
being overweight.9 When impairments are considered, this type of annuity is some-
times referred to as an impaired (life) annuity.10 Impaired life annuities are typically 
related to health impairments such as heart attack, cancer, stroke, multiple sclerosis, 
lung disease, or kidney failure for annuitants in an age range of 60 to 85.11 Care annui-

ties are aimed at seriously impaired individuals between age 75 and 90 or persons who 
already have started to incur long-term-care costs.12 Risk assessment for care annuities 
is based on geriatric symptoms such as frailty or restricted mobility, which are meas-
ured in terms of activities of daily living (ADL) and instrumental activities of daily 
living (IADL); cognitive skills may also be taken into account.13  

                                                           

6 See, e.g., Ainslie (2001, p. 16), Brown and Scahill (2007, pp. 5–6), and Cooperstein et al. (2004, 
pp. 14–15). 

7 See Richards and Jones (2004, p. 20) and Weinert (2006, p. 6). 
8 See Ainslie (2001, p. 16) and Cooperstein et al. (2004, p. 14). 
9 See, e.g., Ainslie (2001, p. 17) and Brown and Scahill (2007, p. 5). 
10 See Brown and Scahill (2007, pp. 5–6). Definitions of enhanced and impaired life annuities 

sometimes overlap. See, e.g., Nicholas and Cox (2003, p. 5). 
11 See, e.g., Ainslie (2001, pp. 16–17). 
12 See Ainslie (2001, pp. 15–16) and Cooperstein et al. (2004, p. 15). 
13 See Brown and Scahill (2007, p. 6) and Junus et al. (2004, p. 7). 
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For standard annuities, the annuity amount is calculated based on the average mortality 
of one class comprising all insureds. Payments depend on an annuitant's age and 
gender. Based on so-called single-class underwriting, the insurer decides whether to 
accept or reject an applicant.14 Substandard annuities require adjustment of the 
underlying pricing assumptions based on an individual's impairment level, necessitat-
ing the provision of medical information. It is the applicant's responsibility to provide 
sufficient evidence that he or she is eligible for increased annuity payments. Upon re-
ceipt of this evidence, the reduction in life expectancy is quantified by the insurer's 
underwriting.15 Life expectancy can be measured either in terms of average life expec-
tancy (ALE) or in terms of the maximum realistic life expectancy (MRLE), corres-
ponding to the 50%- or 90%-quantile of the remaining lifetime, respectively.16 The 
modified annuity amount is determined either by an age rate-up or by a rating factor.17 
The former involves an adjustment of the insured's actual age for calculation purposes. 
For instance, a 60-year-old impaired male may be rated to have the life expectancy of 
a 65-year-old and would thus receive the annuity amount based on being age 65. The 
rating factor is applied to the standard mortality table.18 For example, an extra mortal-
ity of 100% would mean multiplying average mortality probabilities by a factor of “2.” 
 
Different types of underwriting techniques are employed depending on the applicant’s 
health status and the type of annuity requested. In the underwriting process for en-
hanced annuities, applicants are assigned to different risk classes depending on their 
health status or individual mortality. This multiclass underwriting19 is the most com-
mon method used in pricing substandard annuity products. Impairments or lifestyle 
factors are assessed by a health questionnaire.20 Certain rules are applied (the rules-

based approach) to determine the rating factor, the reduction in ALE, or the age rate-
up.21 This underwriting approach––in contrast to full individual underwriting22––is 
appropriate only for mild impairments and lifestyle factors that correspond to extra 
mortalities between 25% and 50% and thus result in only slight annuity enhancements 
of around 10% to 15%.23  
 

                                                           

14 See Rinke (2002, p. 5). 
15 See LIMRA and Ernst & Young (2006, p. 32). 
16 See LIMRA and Ernst & Young (2006, pp. 32–33) and Nicholas and Cox (2003, pp. 5–6). 
17 See Junus et al. (2004, p. 4), LIMRA and Ernst & Young (2006, pp. 32–34). 
18 See Cooperstein et al. (2004, p. 16), LIMRA and Ernst & Young (2006, pp. 33–34), and Richards 

and Jones (2004, p. 22). 
19 See Rinke (2002, pp. 5–6). 
20 See Brown and Scahill (2007, p. 5). 
21 See Ainslie (2001, pp. 16–17), Cooperstein et al. (2004, p. 14), and Nicholas and Cox (2003, p. 5). 
22 See Cooperstein et al. (2004, p. 14), Richards and Jones (2004, p. 20), and Rinke (2002, p. 6). 
23 See Ainslie (2001, p. 16), Cooperstein et al. (2004, p. 14), and Weinert (2006, p. 8). 
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Impaired life annuities require a more extensive assessment of an applicant's health 
status due to the larger potential increase in the annuity amount, e.g., up to 50% for 
extra mortalities up to 150% depending on the issue age.24 In addition to the health 
questionnaire, a doctor's report may be considered, implying a mixture between rules-
based and individual underwriting.25 Based on this information, the applicant is as-
signed a risk class (multiclass underwriting). Sometimes, full individual underwriting 
is required for impaired life annuities.26 However, there is a tradeoff between the addi-
tional costs of such and the increased accuracy thus derived.27 According to Nicholas 
and Cox (2003), the impaired life expectancy is measured in terms of both ALE and 
MRLE.28  
 
Care annuities are individually underwritten based on a doctor’s report,29 meaning that 
individual life expectancy is calculated for each applicant and no risk classes are es-
tablished.30 To obtain a more precise specification, the MRLE is used.31 Extra mortali-
ties between 250% and 300% yield annuity enhancements of up to 125%.32 
 
The market for enhanced annuity products is large, whereas the market for impaired 
life annuities is of moderate size. Care annuities have a small niche market.33 Some 
providers focus solely on restricted market segments, whereas others cover the full 
range of standard and substandard annuity products.34 Sometimes, companies merely 
add one substandard (enhanced or impaired life) product to their standard annuity port-
folio.35 
 
It is often claimed that accurate underwriting is the crucial factor in offering substan-
dard annuities. In particular, there is substantial risk that the underwriting will not cor-
rectly assess an applicant's mortality level.36 LIMRA and Ernst & Young (2006) list 
several causes of underwriting risk, such as the pressure of competition, the lack of 
adequate underwriting procedures and experience, and insufficient mortality data. The 
latter factor is also discussed in Lu et al. (2008), who emphasize the risk of making 

                                                           

24 See Ainslie (2001, p. 16) and Weinert (2006, p. 8). 
25 See Ainslie (2001, pp. 16–17) and Brown and Scahill (2007, pp. 5–6). 
26 See Richards and Jones (2004, p. 20). 
27 See Rinke (2002, pp. 5–6). 
28 See Nicholas and Cox (2003, p. 6). 
29 See Brown and Scahill (2007, p. 6) and Richards and Jones (2004, p. 20). 
30 See Rinke (2002, pp. 5–6). 
31 See Nicholas and Cox (2003, p. 6). 
32 See Ainslie (2001, p. 16). 
33 See Ainslie (2001, p. 16) and Cooperstein et al. (2004, p. 15). 
34 See Froehling (2007, p. 5). 
35 See Weinert (2006, p. 12). 
36 See, e.g., LIMRA and Ernst & Young (2006, p. 31), and Richards and Jones (2004, p. 20). 



 9

ratings based on small-sample medical studies. The lack of mortality data––especially 
for higher age groups––may be partly responsible for the slow development of the 
substandard annuity market. This problem could be solved by outsourcing underwrit-
ing to reinsurers, who have more data.37 There is also the danger for the point of view 
of an annuity provider that the life expectancies of impaired persons can improve dra-
matically due to developments in the medical field. Therefore, it is vital that under-
writers carefully monitor the mortality experience in their book of business as well as 
developments in medical research.38 The former is also important with respect to ad-
verse selection, especially when insurers offer both standard and substandard annui-
ties.39 Another risk factor has to do with using lifestyle characteristics as a basis for 
underwriting; this practice can increase the risk of adverse selection if an insured im-
proves his or her life expectancy by changing behavior, for example, by quitting 
smoking or losing weight.40 
 
In this paper, we focus on the large enhanced and impaired life annuity market, where 
insureds are categorized in risk classes with differing mortality by means of rating 
factors. We determine the optimal risk structure for an insurer offering substandard 
annuities and explicitly model and integrate costs related to underwriting risk, which is 
of great concern to insurers.  
 
3. The Model Framework 

 

a) Basic model 

 

We consider a general population consisting of N ∈ℕ  potential risks, i.e., potential 

policyholders of a given gender and at a specific age { }0, ,x ω∈ … . ω  is the limiting 

age of a population mortality table describing the average mortality in the general 

population. The entry xq′  thus specifies the average one-year probability of death for a 

person age x out of the general population, where the prime (') mark indicates popula-

tion mortality.41 

 

Mortality heterogeneity in the general population is considered by means of a frailty 

                                                           

37 See Cooperstein et al. (2004, p. 13). 
38 See Cooperstein et al. (2004, p. 16), Junus et al. (2004, p. 5), Nicholas and Cox (2003, p. 8), 

Richards and Jones (2003, p. 20), Sittaro (2003, p. 9), and Weinert (2006, p. 17). 
39 See Cooperstein et al. (2004, p. 16). 
40 See LIMRA and Ernst & Young (2004, pp. 42–43). 
41 To be directly applicable to insurance data, we use a discrete model. By substituting annual 

mortality probabilities by the continuous force of mortality, a continuous model could also be 
employed. General results remain unchanged, however.  
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model.42 To obtain individual probabilities of death, we apply a stochastic frailty factor 

to the average mortality probability. The one-year individual probability of death 

( )xq d  for an x-year-old is thus given as the product of the individual frailty factor 

0d +∈ℝ  and the probability of death xq′  from the population mortality table:   

 

( ) { } { }
,                                1

1, min 0, , : 1 for 0, ,

0,                                       otherwise

x x

x x

d q d q

q d x x d q xω ω
 ′ ′⋅ ⋅ <
 ′= =  ∈ ⋅ ≥  ∈  



ɶ
ɶ … … .                (1) 

 

If the resulting product is greater than or equal to 1 for any ages xɶ , the individual 

probability of death is set equal to 1 for the youngest of those ages; for all other ages 

,xɶ  it is set to 0. For 1d < , we let ( ) : 1q dω = . 

 

The frailty factor specifies an individual's state of health. A person with a frailty factor 

less than 1 has an above-average life expectancy, a frailty factor greater than 1 indi-

cates that the individual is impaired with a reduced life expectancy, and a frailty factor 

equal to 1 means the person has average mortality. 

 

The individual frailty factor d  is a realization of a random variable D .43 The distribu-

tion FD  of D  represents the distribution of different states of health and thus of differ-

ent life expectancies in the general population. For its characteristics, we follow the 

assumptions in Hoermann and Russ (2008): we let FD  be a continuous, right-skewed 

distribution on 0
+ℝ  with an expected value of 1, such that the mortality table describes 

an individual with average health. As probabilities of death approaching zero are not 

realistic, the probability density function f D  is flat at zero with ( )f 0 0D = .  

 

We assume that the insurer is able to distinguish a maximum of H  different 

subpopulations that aggregate to the total general population (see Figure 1). Subpopu-

lations differ by health status of contained risks and are ordered by their mortality, 

where 1h =  is the subpopulation with the lowest mortality and h H=  is the sub-

population with the highest mortality. Risks belong to a given subpopulation if their 

individual mortality lies in a corresponding frailty factor range. Subpopulation h 

comprises all persons with a frailty factor lying in the interval ),L U
h hd d , where L

hd  de-

fines its lower and U
hd  defines its upper limit for 1, ,h H= …  and 

1, 1,..., 1U L
h hd d h H+= = − . All intervals combined––corresponding to the H  subpopula-

                                                           

42 See Hoermann and Russ (2008). 
43 See, e.g., Jones (1998, pp. 80–83), Pitacco (2004, p. 15), and Vaupel et al. (1979, p. 440). 
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tions––aggregate to the positive real axis, i.e., ) [ )
1

, 0,
H L U

h hh
d d

=
 = ∞∪ . Thus, the whole 

range of positive real-valued frailty factors is covered.  

 
Figure 1: Segmentation of the general population into H  subpopulations depending 
on mortality level (described by the frailty distribution) 

 

 

The number of risks in subpopulation h is denoted by hN . Risks in all subpopulations 

sum up to the total number of risks N  of the general population, i.e., 
1

H

hh
N N

=
=∑ . 

hN  depends on the frailty distribution. It can be derived as the percentage of risks out 

of the general population with a frailty factor between L
hd  and U

hd . Thus, it is calcu-

lated as the product of the total number of risks N  and the probability of the frailty 

factor lying in the interval ),L U
h hd d . The latter can be expressed in terms of the frailty 

distribution FD , leading to 

 

( ) ( ) ( )( )F FL U U L
h h h D h D hN N d D d N d d= ⋅ ≤ < = ⋅ −P .  

 

Each subpopulation h is further characterized by two functions. First, its cost function 

( )hg n  describes costs of the insurance of survival risk for individuals in subpopulation 

h. Second, its price-demand function ( )hf n  specifies how many risks n would acquire 

(one unit of) annuity insurance for a given price ( )h hP f n= . Both functions are de-

fined for the number of insureds 1, , hn N= …  in each subpopulation 1, ,h H= … .  

 

Since the insurer cannot distinguish beyond given subpopulations, they are treated as 

homogeneous with respect to the mortality. The cost function is independent of the 

number of sales, i.e., ( ) , 1, ,A
h h hg n P n N= = … , where A

hP  describes the actuarial pre-

mium for covering the cost of (one unit of) annuity insurance for the average potential 

1 H
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insured in subpopulation h. The actuarial premium is based on the average mortality in 

a subpopulation, which can be derived from the frailty distribution. The average frailty 

factor hd  for subpopulation h is given as the truncated expected value of frailty factors 

in the corresponding interval ),L U
h hd d : 

 

){ }( ) ( )1 , f

U
h

L
h

d
L U

h h h D

d

d D D d d z z dz= ⋅ ∈ = ⋅ ∫E , 

 

where 1{.} represents the indicator function. Therefore, the average k -year survival 

probability for a person age x in subpopulation h is given by  

 

( )( )
1

0

1
t

h
t x x l h

l

p q d
−

+
=

= −∏ ,  

 

with ( )x hq d  as in Equation (1). The actuarial premium A
hP  for one unit of annuity 

insurance equals the present value of future annuity payments and thus results in 

 

0

x
A h t

h t x
t

P p v
ω−

=

=∑ , 

 

where v  denotes the discount factor. Since the average frailty factor is increasing for 

ascending risk classes, i.e., 1 2 Hd d d< < <⋯ , the cost of insurance and hence the 

actuarial premium is decreasing, i.e., 1 2
A A A

HP P P> > >⋯ . 

 

The price-demand function ( )hf n  is monotonously decreasing in the number of risks 

n, i.e., the lower the price, the more people there are willing to buy insurance. Its first 

derivative ( )hf n′  with respect to the demand n (the price elasticity of demand) is 

hence negative for all n. In addition, we assume that the reservation price R
hP , i.e., the 

price for which the demand is zero ( )( 0 )R
h hP f= , increases with decreasing mortality 

probabilities in a subpopulation. Consequently, a subpopulation with high life expec-

tancy contains individuals, who would be expected to pay more for one unit annuity 

insurance compared to individuals in a subpopulation with low life expectancy. As the 

actuarial fair value of one unit annuity insurance is higher for healthy persons, it 

makes sense that their willingness to pay will also be higher. In addition, Turra and 

Mitchell (2004) found that annuities are less attractive to poorer risks with uncertain 

out-of-pocket medical expenses. In terms of reservation prices, this means that 
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1 2
R R R

HP P P> > >⋯ . At a price of zero, in contrast, everyone in the general population 

would purchase insurance, i.e., ( ) 0, 1, ,h hf N h H= = … .  

 

An illustration of the determinants for one subpopulation h is provided in Figure 2; for 

illustration purposes, a linear price-demand function is displayed.44 

 

Figure 2: Constant cost function hg  and linear price-demand function hf  (in terms of 

the price P  and as a function of the demand n) in subpopulation h 

 
Notes: R

hP  = reservation price, A
hP  = actuarial premium for (one unit of) annuity insurance, 

hN  = number of risks in subpopulation h .  

 
b) Optimal risk classification  

 

We now consider profit-maximizing insurers who intend to introduce rate-discrimi-

nating annuity products. A risk class is comprised of insureds subject to a specific 

range of risks in regard to their remaining life expectancy. Thus, annuity prices will 

vary by risk class. For instance, an insured with reduced life expectancy will obtain a 

higher annuity for a given price or, vice versa, pay a lower price for one unit of annu-

ity insurance, as described in the previous section. 

A combination of population subgroups to risk classes is called a classification system. 

Offering a standard annuity product corresponds to addressing the total general popu-

lation. This is consistent with a classification system that aggregates all existing pop-

ulation subgroups to one single risk class. In our setting, subgroups are sorted by de-

creasing average life expectancies and, hence, only adjacent subgroups can be merged 

with each other into a risk class.  

 
                                                           

44  See, e.g., Baumol (1977, pp. 401–402). 
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Let M  be the set of all possible classification systems. A classification system m M∈  

consists of mI  risk classes. However, conducting risk classification is associated with 

classification costs. This includes the costs for distinguishing between risk classes as 

described in the previous section, e.g., costs for establishing underwriting guidelines 

for each additional risk class (beyond the total general population). We assume these 

costs to be proportional to the number of distinctions and thus set them to ( )1mk I − , 

where 0k +∈ℝ .45 When offering only one standard class, i.e., 1mI = ,  no classification 

costs are incurred.  

 

In each classification system m with mI  risk classes, a risk class , 1, , mi i I= …  is com-

posed of iS  subpopulations, where 
1

mI

ii
S H

=
=∑ . To simplify notation, in the follow-

ing, we omit the index m  when focusing on a specific risk class i (within a classifica-

tion system m ). Hence, all H  subpopulations of the general population are assigned to 

mI  risk classes. Subpopulations contained in one risk class are ordered by increasing 

average mortality; this is indicated by the index s . The total number of individuals in 

risk class i  is given as the sum of the number of persons sN  in each contained subpo-

pulation s : 

 

1

iS

i s
s

N N
=

=∑ . 

 

As for each subpopulation, a risk class i  is characterized by its price-demand function 

( )if n  and its cost function ( )ig n  for 1, , in N= … . If risk class i  contains exactly one 

subpopulation h (and thus 1iS = ), then i hf f=  and i hg g= . Otherwise, if  and ig  are 

aggregated functions of the price-demand and cost functions of the iS  subpopulations. 

The aggregation process is complex and must be conducted stepwise by means of in-

verse functions. 1
hf
−  denotes the inverse function of hf , which is defined on the inter-

val 0, R
hP   . The price-demand function if  of risk class i  is aggregated based on the 

price-demand functions sf ( )1,...,= is S  of the iS  underlying subpopulations. The 

aggregated function if  will exhibit breaks when it becomes equal to the reservation 

price R
sP  of one of the contained subpopulations s , since each reservation price 

represents the point at which the next subpopulation will start buying the policy. In 

each risk class i , we have iS  reservation prices. Hence, there are iS  intervals on the x-

                                                           

45 For a more general specification, one might define classification costs by any monotonously 
increasing function in the number of risk classes mI . Thus, disproportionately high classification 
costs can be represented, for instance.  
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axis, on each of which the aggregate price-demand function is defined differently. The 

intervals Iν  are given by  
 

( ) ( )

( )

1
1 1

1
1 1

1

1

,  for 1,..., 1

 for .          ,               

+
− −

+
= =

−

=

  = − 
 = 
  =   

∑ ∑

∑

R R
s s i

s s

R
is i

s

f P f P S

I

Sf P N

ν ν

ν ν

ν ν

ν

ν

ν
         (2) 

 
On each interval Iν , the aggregated price-demand function is defined by 
 

( ) ( )( ) ( )1 1

1
i i i i i s i

s

f n f f P f f P
ν

− −

=

 = =  
 
∑ , if n Iν∈ , 1, , iSν = … . 

 

Thus, for any given price ( ):i iP f n= , the number of insured risks n in a risk class is 

the sum of the number of insured risks in each contained subpopulation s  for which 

( )1
s if P−  is defined. Graphically, the aggregate price-demand function of a risk class is 

received by horizontal addition of the price-demand functions of belonging subpopu-

lations. It starts at the highest reservation price 1
R

sP =  and whenever the function passes 

another reservation price, there is a bend as the demand of another subpopulation is 

added. Figure 3 sketches the aggregation process for risk class i  consisting of two sub-

populations, 2iS = . 
 
Figure 3: Aggregate cost and price-demand function (in terms of the price P  and as a 

function of the demand n) in risk class i  consisting of two subpopulations 1,2s =  
Cost and price-demand function 
in subpopulation 1s =  

Cost and price-demand function 
in subpopulation 2s =  

Aggregate functions if  and ig  
in risk class i  

   
Notes: , 1, 2R

sP s =  = reservation price, , 1, 2A
sP s =  = actuarial premium for (one unit of) annuity insur-

ance, , 1,2sN s =  = number of risks in subpopulation s .  

 

In our setting, the cost function in a subpopulation is constant in the number of insu-

reds. This means that no inverse function of the cost function exists. Therefore, the 
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aggregate cost function ig  of risk class i  must be derived based on the associated 

price-demand function if . It is defined piecewise in sections analogously to if  (see 

Equation (2)). For a given demand n in risk class i , the price is given by ( ) :i if n P= . 

For this price, the corresponding number of persons in each contained subpopulation s  

is determined by the inverse function ( )( ) ( )1 1 :s i s i sf f n f P n− −= = , if existent. The num-

ber of persons in each subpopulation is then weighted with the corresponding costs 

( ) : A
s i sg P P=  in that subpopulation. Finally, average costs are determined for the total 

of ( )( ) ( )1 1

1 1 1s i s i ss s s
n f f n f P n

ν ν ν− −
= = =

= = =∑ ∑ ∑  insureds. The resulting formula for 

the aggregate cost function on the interval Iν  is thus descriptive and given by 
 

( ) ( )( ) ( )( ) ( ) ( )1 1

1 1 1

1 1 1 A
i s i s i s i s i s s

s s s

g n f f n g f n f P g P n P
n n n

ν ν ν
− −

= = =

= ⋅ = ⋅ = ⋅∑ ∑ ∑
 
  

 

if n Iν∈ , 1, , iSν = … . Since the cost function is lower for higher subpopulation indices 

s , i.e., ( ) ( )1 1
A A

s s s sg n P P g n+ += > = , and since only adjacent subpopulations may be 

merged into risk classes, the aggregate cost function is generally decreasing (as exem-

plarily illustrated in Figure 3). The profit 
iΠ  in risk class i  is calculated as the differ-

ence of earnings and costs, i.e.  

 

( ) ( ) ( ) ( ) ( ) , 1,...,i i i i i in E n C n n f n n g n n NΠ = − = ⋅ − ⋅ = ,  

 

where ( ) ( )i iE n n f n= ⋅  describes the earnings and ( ) ( )i iC n n g n= ⋅  describes the costs 

for n insured risks. Hence, a risk class is profitable as long as the market price 

( )i iP f n=  is higher than the actuarial premium ( )A
i iP g n= , setting aside any addi-

tional (classification) costs.  

 

The total profit from classification system m  is given as the sum of the profit in each 

risk class , 1, , mi i I= …  less classification costs ( )1mk I − . It is denoted by  

 

( ) ( ) ( )1
1

,..., 1
I

I i i m
i

m

m
n n n k I

=

Π = Π − −∑
 

 with 
in  being the number of insured risks in risk class i . The insurer aims to determine 

the optimal classification system and optimal price-demand combinations in the cor-

responding risk classes such that the profit is maximized: 

 

( ){ } ( )1
,...,1

max max ,..., I
m M n n

m
Im

n n
∈

Π .             (3) 
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The optimal number and composition of risk classes depend on classification costs. If 

classification costs are zero, profit is maximized for the maximum number of distin-

guishable risk classes, i.e., if each risk class i  corresponds to a subpopulation h for all 

1, ,h H= … .46 In the presence of classification costs, this pattern changes, depending 

on the costs.  

 

The maximization process must be undertaken in recurrent steps. For each classifica-

tion system m M∈ , optimal price-demand combinations must be derived for each risk 

class 1, , mi I= … , which is done by setting the first derivative of the profit 

( )1,..., Im
n nΠ  with respect to the number of risks in  equal to zero:47  

 

( ) ( ) ( ) ( ) ( ) ( )( ) !1,...,
0

I i i
i i i i i i i i i

i i

m
n n n

f n g n n f n g n
n n

∂Π ∂Π ′′= = − + − =
∂ ∂

.  

 

Since if  and ig  are defined in iS  sections, for each interval , 1, , iI Sν ν = …  as specified 

in Equation (2), the number of insureds in risk class i  is implicitly given by  

 

( ) ( )
( ) ( )

i i i i

i

i i i i

f n g n
n

f n g n

ν ν
ν

ν ν

−
= −

′′ −  
, for in Iν

ν∈ , 1, , iSν = … .48  

 

To determine the optimal price-demand combination for risk class i , we need to com-

pare the profit based on the number of risks inν  for each section 1, , iSν = … . It is max-

imized for49  

 

( )*

, 1, ,

arg maxi i i
n I Sii

n nν ν

νν ν∈ =

= Π
…

. 

 

Figure 4 is an illustration of the optimal price-demand combination in the case of a 

risk class i  that equals a subpopulation h. Since the number of underlying subpopula-

                                                           

46 See, e.g., Doherty (1980, 1981). 
47  See, e.g., Baumol (1977, pp. 416–417), assuming that the functions are differentiable. 
48 A solution inν  is valid only if it lies in the corresponding interval Iν . 
49 In this context, we assume that price discrimination is not possible within a subpopulation. Hence, 

for policyholders in one subpopulation––i.e., policyholders do face an identical risk situation––, the 
same price *

iP  will be asked for (for this point cf. the Chapter "Fairness in Risk Classification" in 
Cummins et al., 1983, pp. 83–92). In an extreme case, where first-degree price discrimination is 
possible, an insurer would like to charge a different price (customer's reservation price) to each 
policyholder in one subpopulation (see, e.g., Pindyck and Rubinfeld, 2008, p. 393–403 and 
Baumol, 1977, pp. 405–406). 
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tions is 1iS =  in this case, the functions exhibit no breaks, which means that no 

distinctions need be made between different intervals. 

 

Figure 4: Optimal profit-maximizing price-demand combination in risk class i  

 

Notes: R
iP  = reservation price, A

iP  = actuarial premium for one unit of annuity insurance, *
in  = op-

timal number of insureds, *iP  = optimal market price, ( )*
i inΠ  = maximum profit, iN  = number of risks 

in risk class i .   
 

In the second step, the total profit from each classification system m M∈  is deter-

mined by taking into account classification costs ( )1mk I − . The classification system 

that yields the highest profits for the insurer is optimal, i.e., 

 

( )*
1argmax ,...,

mI
m M

m n n
∈

= Π , 

 
implying a maximum total profit of 
 

( ) ( ) ( )
*

*

* * *
1 *

1

,..., 1
m

m

I

I i i m
i

n n n k Iν ν ν

=
Π = Π − −∑ . 

 

From this formula, in some cases, one can derive the maximum classification costs 

that can be incurred such that the optimal risk classification system will still be profit-

able.   
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However, it needs to be verified that the classification *m  is still optimal under the 

modified classification costs k, since a different classification with less or more risk 

classes may be optimal then. If the optimization problem yields the same result, an in-

surer may compare this amount with the estimated costs of increased underwriting ef-

fort.  

 

c) Optimal risk classification and costs of underwriting risk 

 

One of the main reasons why insurers are reluctant to engage in risk classification has 

to do with the costs of underwriting risk as laid out in Section 2. The effect of costs of 

underwriting risk in connection with risk classification on an insurer’s profit situation 

has never been modeled. In the following, we propose a model that allows a general 

assessment of costs of underwriting risk. 

 

We start from the insurer's optimal risk classification system *m  as presented in 

Subsection 3 b), including the optimal number of risk classes *m
I  as well as optimal 

price-demand combinations ( ) *
* *, for 1, ,i i m

n P i I= …  that satisfy Equation (3). Here, 

and in the following, we omit the superscript ν  to facilitate notation. We model under-

writing risk by assuming that a policyholder who actually belongs to risk class i  is 

wrongly assigned to a higher risk class j i>  with error probability 0ijp ≥  

( 1)
≥

=∑ ijj i
p . For j i= , the underwriting classification is correct. We define costs of 

underwriting risk in terms of underwriting errors, which lead to a reduction of profit. 

In practice, of course, mistakes in classification can be either to the advantage or dis-

advantage of the insurer. Our approach can be interpreted as the excess negative effect. 

Furthermore, one can generally assume that the error probability decreases with in-

creasing distance between i  and j  as it becomes more likely that individuals will be 

wrongly classified in adjacent risk classes.  

 

Since the policyholder is actually in risk class i  with the associated price-demand 

function ( )if n , the optimal price-demand combination targeted by the insurer to max-

imize profit is given by *
in  and *

iP , representing the optimal number of policyholders 
*
in  buying insurance for the price *iP . However, errors in underwriting imply that 

wrongly classified policyholders out of risk class i  are charged the lower price *jP , 

which is optimal only for insureds in risk class j . The latter are representatives of a 

higher risk class with higher average mortality probability and thus lower costs of in-

surance. As a first effect, this error leads to a reduction of profits iΠ  in risk class i , 
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since for the percentage ,ijp j i≠  of individuals out of risk class i  , the lower price 
* *
j iP P<  is charged: 

 

( ) ( ) ( ) ( ) ( )* * * * * * * * *: A A
i i i i i i i i i i i i ij i j i

j i

n n f n n g n n P P p n P P
≥

Π = Π = − = − ≥ −∑ .  

 

As a second effect, the requested premium *
jP  creates a new demand *

ij i ijn n n= + ∆  

with probability ijp , which in turn leads to additional changes in the insurer's profit. 

ijn  denotes the number of policies sold in risk class i  for  the price *
jP , which is op-

timal in risk class j : 

   

( )1 *
ij i jn f P−= . 

 

ijn∆  thus describes the difference between the actual number ijn  and the optimal num-

ber *
in  of insureds in risk class i . The above notation is simplified in that it does not 

explicitly consider that if  and its inverse function may be defined in sections. The 

profit in risk class i  with insureds wrongly classified to risk class j  changes to  

 

( ) ( ) ( )i ij ij i ij ij i ijn n f n n g nΠ = −   

 
with probability ijp . The expected profit in risk class i  is then given as the average 

profit when wrongly classifying insureds to risk classes 1,..., mj i I= + , weighted with 
the respective underwriting error probabilities for each risk class: 

 

( )i ij i ij
j i

p n
≥

Π = Π∑ɶ .              (4) 

 

Figure 5 illustrates the effect of underwriting errors by means of two risk classes. 

 

Since original price-demand combinations in risk class i  are optimal for a profit-max-

imizing insurer, the modified profit iΠɶ  after accounting for underwriting errors will be 

lower than the original profit, i.e.,i iΠ < Πɶ . The difference between the two amounts is 

the cost of underwriting risk in risk class i :  

 

i i iε = Π − Πɶ . 

 

The cost will be influenced by various factors, such as the extent of underwriting error 

probabilities, the distance between two risk classes in terms of the difference between 

optimal risk class prices, and the cost function in each risk class. 
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Figure 5: Change of profit in risk class i  when insureds are wrongly classified to risk 

class j i>  with probability 1ijp =  

  
Notes: ,R R

i jP P  = reservation price, ,A A
i jP P  = actuarial premium for (one unit of) annuity insurance, 

* *,i jn n  = optimal number of insureds, * *,i jP P  = optimal market price, ,i jN N  = number of risks in risk 
class i  or j , respectively; ( )*

i inΠ  = maximum profit in risk class i , ( )i ijnΠ  = profit in risk class i  
for demand ijn . 

 

We illustrate the effect of these different factors on the cost of underwriting risk for a 

case including only one erroneous classification from i  to j . With *
ij i ijn n n= + ∆ , one 

can reformulate the expression for costs of underwriting risk as follows: 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

* * *

* * * *

* * * * * *

* * *

1i i i i i ij i ij ij i i ij i i i ij

ij i i i i i i ij i ij ij i ij

ij i i i i i i i ij i ij i ij i ij

ij i i i i ij i i i ij ij i ij i ij

ij

n p n p n p n n

p n f n n g n n f n n g n

p n f n n g n n n f n n n g n

p n f n f n g n g n n g n f n

p

ε = Π − Π = Π − Π + − Π = Π − Π

= − − +

= − − + ∆ + + ∆

     = − − − + ∆ −    

=

ɶ

( ) ( )( ) ( )( )* * * * * .i i j i i i ij ij i ij jn P P g n g n n g n P    − − − + ∆ −    

 

 

As discussed above, the first term is positive, * * 0i jP P − ≥  , since the price in a higher 

risk class j  is lower compared to the price in risk class i . Therefore, the greater the 

distance between two risk classes, i.e., the bigger the difference between *iP  and *
jP , 

the higher the costs of underwriting risk. At the same time, however, the error proba-

bility ijp  will decrease with increasing distance between j  and i , which dampens the 

effect of the difference between *iP  and *
jP  on the overall cost iε . The second term 

represents the difference between the costs for the optimal number of policyholders *in  

and the actual number ijn . Since the cost function in risk class i  is aggregated, it may 
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be decreasing. In general, the cost for *
ij in n>  individuals may thus be lower than the 

cost for *
in  individuals, i.e., ( ) ( )* 0i i i ijg n g n − ≥  . Hence, the difference will reduce 

costs of underwriting risk. The last term represents the difference between the actual 

costs for the insurer and the actual price paid, ( ) *
i ij jg n P −  . If the price paid does not 

cover actual costs in risk class i , costs of underwriting risk will be even larger. If the 

price paid does exceeds the costs of covering the insurer’s expenses, the term will be 

negative, thus implying a reduction in costs of underwriting risk.  

 

The profit iΠɶ  can even become negative if costs in risk class i  are higher than the 

price *
jP  paid by the insured ( ( )*

j i ijP g n< ) and if, for example, the underwriter classi-

fies insureds in risk class i  to risk class j  with probability 1ijp = . In this special case, 

the insurer will suffer a loss from erroneous underwriting, which can be seen as fol-

lows:  

 

( ) ( )( )*

0

0i i ij ij j i ijn n P g n

<

Π = Π = − <ɶ
���	��


.  

 

In general, costs of underwriting risk should be taken into consideration when making 

risk classifications. In particular, error probabilities will differ depending on the classi-

fication system. For instance, the more risk classes that are established, the smaller 

will be the differences between them, and the greater the probability of wrongly clas-

sifying insurance applicants. Furthermore, it can be assumed that the probability of a 

wrong classification diminishes with decreasing number of risk classes mI  contained 

in a classification system m .  

 

In the presence of underwriting risk, the insurer again faces the problem of finding the 

optimal classification system. An optimal classification system **m  that takes under-

writing risk under consideration may differ from the optimal classification system *m  
that does not. The extent of the difference will depend on the error probability distri-

bution and on classification costs. Calculations can be conducted based on empirically 

observed underwriting error probabilities or by making reasonable assumptions. The 

optimal classification system **m  solves the following equation based on the formula 

for modified expected profits in Equation (4): 

 

( )**
1arg max ,...,

mI
m M

m n n
∈

= Πɶ  

 
implying an optimal total profit of 
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( ) ( ) ( )
**

**1 **
1

,..., 1
m

m

I

I i i m
i

n n n k I
=

Π = Π − −∑ɶ ɶ . 

 

Depending on the error probability distribution, the optimal classification system will 

be comprised of more or fewer risk classes, which will, of course, have an impact on 

classification costs. It is vital for an insurer to take all these factors into consideration 

so as to avoid losses from underwriting risk. By using our proposed approach and 

given estimation of error probabilities or sound assumptions on empirical erroneous 

underwriting, these risks can be quantified and appropriately taken into account. 

 

An summary of the risk classification process along with terms and definitions intro-

duced in this section is provided in Figure 6. 
 
Figure 6: The process of risk classification for substandard annuities  

A risk classification process for substandard annuities 

Identify general population 
General population consists of N potential policyholders (“risks”) willing to buy annuity insurance 
with a given gender and at a specific age 
 

Calibrate the frailty model 
Use a frailty distribution to model mortality heterogeneity in the general population (see Figure 2). 
The frailty factor specifies an individual's state of health. A person with a frailty factor less than 1 
has an above-average life expectancy; a frailty factor greater than 1 indicates that the individual is 
impaired with a reduced expected remaining lifetime; a frailty factor equal to 1 corresponds to a 
person with average mortality. 
 

Divide general population into subpopulation 
Subpopulations differ by health status of contained risks and are ordered by their mortality (higher 
subpopulations have higher average mortality). Assume that an insurer is able to distinguish only a 
limited number of different subpopulations (that aggregate to total general population). Risks belong 
to a given subpopulation if their individual mortality lies in the specified frailty factor range. 

 
 

Determine price-demand function 
Price-demand functions are defined for the number of insureds in each subpopulation; specify how 
many risks would acquire (one unit of) annuity insurance for a given price; is monotonously 
decreasing in the number of risks, i.e., the lower the price, the more persons are willing to buy insur-
ance; can be estimated using, e.g., conjoint analysis. 

 
 

Determine the cost function 
The cost function describes the actuarial premium for covering the cost of (one unit of) annuity in-
surance for the average potential insured in a subpopulation; independent of the quantity of sales 
(insurer cannot distinguish beyond subpopulations. 
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Establish risk classes 
A risk class comprises one or more subpopulations; addresses a specific range of risks in regard to 
their remaining life expectancy. If a risk class consists of more than one subpopulation, the aggre-
gated price-demand function for the risk class has to be determined based on the price-demand func-
tions in the underlying subpopulations. Only adjacent subpopulations can be merged to risk classes 
since subpopulations are specified by decreasing average life expectancies (in our setting). 
 

 
Define a classification system 

A combination of population subgroups to risk classes is called a classification system (a standard 
annuity product addresses total general population and thus corresponds to a classification system 
where all subpopulations are merged into one single risk class).  
 

 
 

Calculate classification costs 
A classification system consists of several risk classes. Classification costs include costs for distin-
guishing between risk classes (e.g., costs for establishing underwriting guidelines for each additional 
risk class beyond the total general population). 
 

 
Account for underwriting risk costs 

Model underwriting risk by assuming that a policyholder is wrongly assigned to a higher risk class 
with a given error probability (can be estimated or based on sound assumptions).  
 

 
Solve the optimization problem 

Proceed in two steps: First, find the optimal price-demand combination in each possible risk class 
that maximizes the profit (earnings less costs) in this class. Second, find the optimal classification 
system (i.e., a combination of subpopulations to risk classes) that maximizes the total profit for the 
insurer (total profit from a classification system is given as the sum of the profit in each risk class 
less classification costs). Account for underwriting risk in the process. 
 

 

4. Model Application and Market Entry 

 

This section discusses additional key issues regarding substandard annuities. For  in-

surers trying to decide whether engaging in risk classification would be a practical and 

profitable pursuit, or only offering a standard tariff, our model is very useful. For 

practical implementation, estimating price-demand and cost functions for each risk 

segment is vital. Other important aspects to be considered in making such a decision 

include market entry barriers and the general risks and advantages of providing subs-

tandard annuities.  
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To ensure adequate model application and sound results, the following issues need to 

be addressed. First, innovating insurers need knowledge about the structure, size, and 

potential of their target market,50 which includes information about the number and 

mortality profiles of potential annuitants. Second, estimates must be made of how 

product price will affect demand in each market segment. Therefore, the maximum 

number of risks, their reservation price and price elasticity of demand need to be de-

rived empirically by means of, e.g., surveys leading to the respective price-demand 

function. Third, insurers needs to choose the (likely) most profitable market segment 

in which to conduct business, a choice made easier by employing our model with cali-

bration as specified above.  

 

In addition, estimation of classification costs and an assessment of the underwriting 

quality is crucial, since risk classification and the associated underwriting are consi-

dered the most hazardous risk for insurers offering substandard annuity products, as 

discussed in Section 2. Proper underwriting demands sufficient expertise and, prefera-

bly, a sound IT-backed underwriting and classification system,51 which, in turn, has to 

be accounted for in terms of classification costs. When it comes to underwriting qual-

ity, one difficulty is in estimating current mortality probabilities due to a lack of credi-

ble mortality data. In addition, the risk of future mortality improvements made possi-

ble by developments in the medical field cannot be ignored.52 Moreover, insurers need 

to make sure that risk factors are not controllable by annuitants, and they must try to 

prevent insurance fraud, which, at least compared to life insurance, may be fairly 

challenging. For example, in the life insurance sector, fraud will be detected, once and 

for all, when the payment becomes due––either the insured is dead or not. Enhanced 

annuity payments, in contrast, must be made as long as the insured lives, giving much 

more opportunity for fraud.53 Privacy and regulatory issues with respect to information 

about risk classification characteristics also need to be kept in mind.54  

 

The above issues need to be taken into account by insurers considering the introduc-

tion of risk classification. However, as outlined above, calibration of the model is 

complex and prone to a relatively high degree of uncertainty such that implementation 

                                                           

50 See Ainslie (2001, p. 17). 
51 See Weinert (2006, p. 15). 
52 See, e.g., Cardinale et al. (2002, p. 16), Cooperstein et al. (2004, p. 13), LIMRA and Ernst & 

Young (2006, p. 28), and Richards and Jones (2004, p. 20).  
53 See Junus et al. (2004, p. 20). 
54 See Brockett et al. (1999, p. 11). 
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may present an obstacle to innovation. Moreover, there are other barriers and risks 

having to do with the target market and product design, as described below.  

 

Substandard annuity markets are very competitive.55 Applicants "shop around" for the 

best rates by submitting underwriting requests to several insurance companies simulta-

neously.56 Insurers face a tradeoff between staying competitive and maintaining actua-

rially sound criteria for qualifying applicants as substandard risks. A provider's profit-

ability can be negatively affected if the placement ratio, i.e., the ratio of sales to un-

derwriting requests, becomes too low.57 In addition, there is competition in the form of 

other financial products,58 and not much market awareness of substandard annuities. 

Therefore, if an insurer decides to enter the substandard annuity market, it will be in 

need of a distribution system strong enough to generate sufficient market awareness.59  

 

Product design will need to be attractive to sales force and clients, efficient, and inno-

vative.60 Except for the application itself, which requires the provision of additional 

health information, sales processes are similar to those of standard products.61 In line 

with standard annuities, a substandard annuity provider is required to maintain mini-

mum capital requirements and account for longevity and interest rate risk.62 In addi-

tion, the impact on existing portfolios needs to be investigated.63  

 

Daunting as these barriers and risks sound, there are also substantial advantages to 

selling substandard annuities. For one thing, according to Cooperstein et al. (2004) and 

Watson Wyatt (2008), the market potential is huge. Turra and Mitchell (2004) also 

find support for considerable demand for these products. Thus, entering the substan-

dard annuity market is likely to be an attractive alternative for new market players with 

a solid business plan, giving them the opportunity to reaching a broader population 

and/or meeting a niche market need.64 For an established market player with an exist-

                                                           

55 See LIMRA and Ernst & Young (2004, p. 7). 
56 This practice is mainly observed in the United Kingdom. See, e.g., Cooperstein et al. (2004, p. 13) 

and Ainslie (2001, p. 19). 
57 See LIMRA and Ernst & Young (2006, p. 20). 
58 See LIMRA and Ernst & Young (2006, p. 22). 
59 See, e.g., LIMRA and Ernst & Young (2006, p. 22) and Weinert (2006, p. 15). 
60 See Froehling (2007, p. 5), Werth (1995, p. 6), and Weinert (2006, p. 15). 
61 See Cooperstein et al. (2004, p. 13) and LIMRA and Ernst & Young (2006, pp. 8, 37–38). 
62 See, e.g., Froehling (2007, p. 5), LIMRA and Ernst & Young (2006, p. 7), and Weinert (2006, p. 

15). 
63 See Werth (1995, p. 6). 
64 See LIMRA and Ernst & Young (2006, p. 6). 
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ing standard annuity portfolio, the situation is not as clear-cut,65 although––except for 

the underwriting––offering substandard annuities may require only modest modifica-

tions of organization, product design, and distribution system.66 Yet, there is the dan-

ger of destabilizing one's market position by becoming more competitive in the subs-

tandard market but, at the same time, less profitable in the standard annuity business, 

which could result in some reputational damage, too. However, if a standard insurer 

expects the substandard annuity market to grow, it is advisable to become active in it 

early on and thus avoid being forced, for defensive reasons, into quickly developing a 

substandard product later. Early market engagement will allow an insurer to enjoy the 

benefits of competitive advantage and avoid problems of adverse selection.67  
 

In this context, adverse selection means that standard annuity providers will be left 

with a greater proportion of healthier lives in their portfolios if those with a reduced 

life expectancy tend to buy substandard annuities.68 This situation leads to a reduction 

in profit for standard annuity portfolios, which has been quantified by Ainslie (2000) 

and Hoermann and Russ (2008).  

 
5. Summary 
 
In this paper, we comprehensively examined key aspects of substandard annuities and 
developed a model for an optimal risk classification system that includes consideration 
of underwriting risk. We began with a description of different types of substandard 
annuity products, their respective underwriting, potential market size, and associated 
underwriting risk, the latter of which is considered crucial for success in the substan-
dard annuity sector. Supported by extant research, we focused on multiclass under-
writing implemented by risk classification via rating factors. We proposed a model for 
a risk classification system in a mortality heterogeneous general population, which is 
described by a frailty distribution. The optimal number and size of risk classes as well 
as the profit-maximizing price-demand combination in each risk class were then de-
rived as the solution of an optimization problem. As an extension, we solved for the 
optimal risk classification system when taking into account costs of underwriting risk. 
We modeled these costs by assuming error probabilities for wrongly classifying insu-
reds into a higher risk class, thus underestimating the true costs of insurance. We then 
discussed the practical application of our model, along with market entry barriers and 

                                                           

65 The following points are analogously discussed in Werth (1995) for the case of introducing 
preferred life products in the life insurance market. 

66 See LIMRA and Ernst & Young (2006, p. 21). 
67 See, e.g., O'Neill (1997, p. 1088) and Swiss Re (2007, p. 13). 
68 See, e.g., Watson Wyatt (2008). 
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risks and advantages inherent in being a substandard annuity provider. Due to the ge-
nerality of the model, applications to classification problems other than substandard 
annuities are possible as well. 
 
In conclusion, extended risk classification in annuity markets not only increases the 
profitability of insurance companies, it benefits society at large as the introduction of 
substandard annuities makes it possible for many formerly uninsurable persons to se-
cure for themselves a private pension. 
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