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ABSTRACT 

 
Index-linked catastrophe loss instruments have become increasingly attractive for 
investors and play an important role in risk management. Their payout is tied to the 
development of an underlying industry loss index (reflecting losses from natural 
catastrophes) and may additionally depend on the ceding company’s loss. 
Depending on the instrument, pricing is currently not entirely transparent and does 
not assume a liquid market. We show how arbitrage-free and market-consistent 
prices for such instruments can be derived by overcoming the crucial point of 
tradability of the underlying processes. We develop suitable approximation and 
replication techniques and – based on these – provide explicit pricing formulas 
using cat bond prices. Finally, we use empirical examples to illustrate the 
suggested approximations. 
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1. INTRODUCTION 
 

Alternative risk transfer (ART) has become increasingly relevant in recent decades for 

insurers and investors,1 especially due to a considerably growing risk of extreme losses from 

natural catastrophes caused by value concentration and climate change, as well as the limited 

(and volatile) capacity of traditional reinsurance markets in the past (Cummins, Doherty and 

Lo, 2002). Among the most commonly used ART instruments are index-linked catastrophe 

loss instruments such as index-based cat bonds 2  or industry loss warranties (ILWs), for 

instance, whose defining feature is their dependence on an industry loss index and which may 

also depend on the company-specific loss resulting from a natural catastrophe.3 However, the 

current degree of liquidity of the various index-linked instruments considerably differs. While 

the market for cat bonds is fairly well developed with an increasingly relevant secondary 

market (Albertini, 2009), for instance, the market for ILWs is less liquid and limited 

(Elementum Advisors, 2010).  
 

In this paper, we focus on how these products can be priced in a consistent way and discuss 

under which assumptions (e.g., regarding a liquid underlying market) risk-neutral valuation 

can be used. This procedure can considerably simplify pricing and enhance transparency, 

making the market as a whole more efficient. In addition, risk-neutral valuation is of great 

relevance for the inclusion of such instruments in enterprise risk management strategies as it 

provides a mark-to-market valuation approach, allowing for (partial) hedging, versus the 

traditional mark-to-model approaches with the associated model risk (which is very hard to 

quantify). We develop a new pricing approach by means of approximations and replication 

techniques and apply it to industry loss warranties (ILWs) as a representative of index-linked 

catastrophe loss instruments under the assumption of a liquid cat bond market, while 

addressing the necessary prerequisites and limitations, and we also illustrate the approach by 

consistently pricing different cat bonds. We study binary contracts in detail, whose payout 
                                                 
1  The volume of outstanding cat bonds, for instance, reached $17.5bn in 2013 (see AON (2013)). Investors 

include, e.g., specialized funds, institutional investors, mutual funds, and hedge funds (see AON (2013)). 
2  There are various versions of cat bonds with different types of triggers, including indemnity-based and non-

indemnity based triggers with parametric, modelled loss, and industry loss triggers, for instance (see, e.g., 
Hagedorn et al. (2009)), 

3  See, e.g., Cummins and Weiss (2009) and Barrieu and Albertini (2009) for an overview of the ART market. 
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depends on the industry index only, and discuss indemnity-based contracts, where the payout 

depends on both the industry index and the individual company losses, thus representing a 

double-trigger product. The approach derived in this paper can also be transferred to the 

consistent pricing of other index-linked catastrophe loss instruments.  
 

In the literature, several papers examine the actuarial and financial pricing of index-linked 

catastrophe loss instruments such as ILWs, for instance, (e.g., Ishaq (2005), Gatzert and 

Schmeiser (2012), Braun (2011)) and discuss the underlying assumption briefly (see Braun 

(2011)). However, the tradability of the underlying processes as well as direct replication and 

consistent pricing has not been discussed in detail so far in this context. Several papers have 

dealt with risk-neutral valuation in the context of cat bonds (see, e.g., Nowak and Romaniuk 

(2013), Haslip and Kaishev (2010)) and compute explicit pricing formulas, while other 

authors focused on the consistent pricing of double-trigger contracts (e.g., Lane, 2004) or 

empirical aspects using econometric pricing approaches (e.g., Jaeger, Müller and Scherling 

(2010), Galeotti, Gürtler and Winkelvos (2012), Braun (2015)).  
 

In general, the main assumption when using risk-neutral valuation is the tradability of an 

underlying process. Since the underlying process can usually not be traded directly like a 

stock, one has to assume a liquid market for (certain) derivatives. We derive a general 

approach for dealing with this issue, describe the underlying assumptions and apply this 

approach to binary ILWs as well as cat bonds. This is done by means of direct or approximate 

replication with traded derivatives using available cat bonds, which leads to explicit and 

consistent prices.4 In particular, using ILWs as an example, we assume the existence of a 

liquid cat bond market to handle the tradability of the industry loss index and to apply 

arbitrage-free valuation. Since there is a growing secondary market for cat bonds, this 

assumption appears to be appropriate, at least in the foreseeable future (see, e.g., Albertini 

(2009) for a description of the secondary market). Moreover, we show that liquidity 

                                                 
4  The prices of available index-linked catastrophe loss instruments such as ILWs should generally be 

consistent with the prices of other derivatives traded on an already liquid market such as in the case of cat 
bonds. To ensure this consistency, the prices of ILWs should equate the prices of replicating portfolios 
consisting of tradable derivatives (cat bonds). This is also generally in line with the findings in Jaeger, Müller 
and Scherling (2010). 
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assumptions are not needed to the same extent as in classical option pricing theory because 

continuous trading is not necessary to replicate ILWs when using cat bonds, i.e., a static 

hedging approach is sufficient, which also reduces transaction costs and possible tracking 

errors. Therefore, the liquidity requirement is reduced to the availability of suitable cat bonds 

at the time of replication. We derive prices for binary / non-indemnity-based ILWs, where the 

payout only depends on the industry loss index exceeding a contractually defined trigger level 

during the contract term. If a suitable cat bond is not available for deriving ILW prices, we 

provide proper approximations under some additional assumptions. To illustrate and test the 

proposed approximations in case of index-linked instruments, we conduct simulation analyses 

and additionally derive the price of an ILW using secondary market cat bond prices and 

compare the resulting price with the available real-world ILW prices, finding a high degree of 

consistency with both robustness tests, which support our suggested approximations for 

replicating portfolios. Moreover, as a further application, we approximate prices of cat bonds 

using empirical data and compare them with real secondary market data in order to examine 

whether the market prices consistently. 
 

The presented approach for pricing index-linked catastrophe loss instruments is of high 

relevance today and especially for the future (both for practical as well as academic 

endeavors), when index-linked catastrophe loss hedging instruments will become even more 

widespread than today and when some markets for derivatives like the cat bond market are 

truly liquid. One main contribution of our work is to overcome the crucial point of the 

tradability of the loss index through suitable approximations and to provide explicit pricing 

formulas using replication techniques. While the focus of the paper is primarily theoretical, 

we use empirical examples and simulation analyses to illustrate the suggested approach by 

comparing ILW and cat bond prices with the ones derived based on the replication and 

approximation techniques. 
 

The remainder of the paper is structured as follows. Section 2 gives an overview of related 

literature with a focus on the underlying theory and assumptions. Section 3 introduces index-

linked catastrophe loss instruments and ILWs as representatives of index-linked catastrophe 
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loss hedging instruments, their basic properties and the underlying industry loss indices. In 

Section 4 we present the pricing approach and as an example apply the approach to 

consistently price ILWs and cat bonds in Section 5. Section 6 gives an outlook on the pricing 

of indemnity-based products, and Section 7 concludes. 
 
2. FURTHER RELATED LITERATURE 
 

There are several papers which deal with the pricing of index-linked catastrophe loss 

instruments such as ILWs or strongly related products. Actuarial pricing principles are 

applied to ILWs in Gatzert and Schmeiser (2012), for instance, while Gründl and Schmeiser 

(2002) compare actuarial pricing approaches with the capital asset pricing model to calculate 

prices for double-trigger reinsurance contracts, which are similar to indemnity-based ILWs. 

Furthermore, there are papers that combine financial and actuarial pricing approaches such as 

Møller (2002, 2003), who discusses the valuation and hedging of insurance products that 

depend on both the financial market and insurance claims. Regarding the arbitrage-free 

pricing of ART instruments related to index-linked catastrophe loss instruments, there is a 

wide literature, which is outlined in what follows.  
 

First, Cummins and Geman (1995) develop a model to price cat futures and call spreads 

written on the aggregated claims process using an arbitrage approach based on a jump 

diffusion model. In contrast, Bakshi and Madan (2002) price options written on the average 

level of a Markov process using a mean-reverting process and derive closed-form solutions 

for cat option prices. Haslip and Kaishev (2010) price reinsurance contracts with specific 

focus on catastrophe losses. They assume a liquid market of indemnity-based cat bonds and 

that the aggregated loss process of a company follows a compound Poisson process, and then 

calculate arbitrage-free prices for the excess of loss reinsurance contracts using Fourier 

transformations. In contrast to their setting, we only assume a liquid cat bond market with 

comparable index-based cat bonds and weaken the distributional assumptions.  
 

Integral to our pricing approach for ILWs is the valuation of cat bonds. Due to jumps induced 

by natural catastrophes, this market is generally incomplete. To deal with incompleteness, one 



6 
 

approach is offered by Merton (1976), who argues that the risk of jumps can be completely 

neutralized by diversification, as jumps are of an idiosyncratic nature. Under this “risk-

neutralized” assumption, one can employ arbitrage-free pricing.5 The consistent pricing of 

double-trigger cat bonds based on single trigger bonds is studied in Lane (2004), who points 

out that in the absence of arbitrage, the sum of the prices of two single trigger cat bonds 

should generally be equal to the sum of the prices of two fitting double-trigger cat bonds (one 

junior and one senior tranche). In Section 5, we further develop this idea when applying our 

approach to the consistent pricing of single trigger cat bonds and without assuming perfectly 

fitting cat bonds. An empirical example for a potential security-class arbitrage opportunity is 

discussed in Jaeger, Müller and Scherling (2010, p. 27f), who show that the same risk may be 

priced differently depending on the type of security using ILWs and cat bonds as an 

example.6 However, the authors also emphasize the different contract terms as one potential 

main reason for observed differences in prices. Based on their empirical data they further 

critically evaluate other types of arbitrage, stating that there may be rather small program 

replication arbitrage opportunities (mainly arising from other risks or transaction costs), and 

regarding trigger type arbitrage find no evidence in their historical data. 
 
3. MODELING INDEX-LINKED CATASTROPHE LOSS INSTRUMENTS 
 

One main property of index-linked instruments such as ILWs is that they depend on an 

industry loss index, which generally does not instantaneously reflect the exact insured 

damage. Instead, if a catastrophe occurs, the first value of the index is a preliminary 

estimation (see, e.g., Kerney (2013a)), which is adjusted if necessary or at predetermined 

points in time (see PCS (2013) and PERILS (2013)). To take this development into account, 

we follow the approach of Vaugirard (2003a, 2003b) and assume the actual (contractually 

                                                 
5  See, e.g., Lee and Yu (2002) for an application of this approach to pricing cat bonds using risk-neutral 

valuation under default risk, basis risk, and moral hazard. Alternatively, an equilibrium model can be 
employed (see, e.g. Zhu (2011), and Cox and Pedersen (2000) for a brief discussion on the relation of the two 
frameworks). 

6  The example (referring to March 2007) suggested buying the (three-year) Mystic Re cat bond on Northeast 
U.S. wind with an industry loss trigger of $30 to $40 billion and linear payout with a spread of LIBOR + 700 
bps and buying a (twelve months) binary ILW on Northeast U.S. wind with a $30 billion trigger level for 615 
bps (p. 27). 
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defined) maturity T’ of the index-linked catastrophe loss instruments to exceed the risk 

exposure period T, during which the catastrophe must occur in order to trigger a payoff. 

Newly occurring catastrophes between the end of the risk exposure period T and the maturity 

T’ are not taken into account, but adjustments of the loss estimates from the catastrophes that 

occurred during the risk exposure period (between time 0 and T) are taken into account and 

are reflected in the index. Hence, while the time interval from 0 to T represents the risk 

exposure period, the time interval from T to T’ is referred to as the development period. Thus, 

an industry loss index incorporates data from insured losses arising from an occurring 

catastrophe and each qualifying event is reflected in the index.  
 

In what follows, we consider an aggregated industry loss index IT for the risk exposure period 

until time T by aggregating estimated losses from all catastrophes (e.g., of the same and 

contractually defined type) that occurred during the risk exposure period.7 Hence, following, 

e.g., Biagini, Bregman and Meyer-Brandis (2008), the aggregated industry loss index IT for 

the risk exposure period until T, taking into account the development of the estimations until 

time t T ′≤ , is given by 
 

1

t TN
T i
t t

i
I X ,

∧

=

= ∑  

 

where t TN ∧  (with ( )t T min t ,T∧ = ) is the number of catastrophes that occurred up to time t 

within the risk exposure period until T and i
tX  denotes the time-dependent estimation of the 

insured loss arising due to the i-th catastrophe at time t. In the following, we focus on index-

linked catastrophe loss instruments, whose payoffs depend on the industry loss index at 

maturity T’ and which can be defined by 
 

( )T T
T TP h I ,′ ′=    

 

                                                 
7  This loss information is provided by specialized industry loss index providers. Note that this also depends on 

the type of index-linked catastrophe loss instruments. E.g., if dealing with occurrence ILWs (see Ishaq 
(2005)), whose payoff does not depend on the sum of insured damage but only on the loss caused by the first 
event), one needs a different approach, but our techniques are applicable as well.  
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where h is a non-negative measurable function. The payoff at time T’ of indemnity-based 

index-linked catastrophe loss instrument, which additionally depend on the company loss, is 

analogously given by 
 

( )T T T
T T TP h I ,L ,′ ′ ′=   (1) 

 

where LT denotes (analogously to IT) the estimated aggregated company loss for the risk 

exposure period until T. In Figure 1, we depict the development of an industry loss index for a 

single catastrophe. After the catastrophe occurred, the loss estimations are adjusted several 

times, and additionally occurring catastrophes during the risk exposure period would cause 

additional jumps. The solid dot on the right side corresponds to the value of the industry loss 

index at maturity and hence the payoff is given by applying the function h to this value. Note 

that while downward adjustments of the estimation are possible in principle, they are unlikely 

and adjustments are typically upward.8  
 
Figure 1: Illustrative development of an industry loss index in the case of one catastrophe and 
adjustments of loss estimations over time 

 
 

We assume that IT is given by an industry loss index provider such as, e.g., the Property Claim 

Service (PCS) index for the U.S. or the PERILS index for Europe. It represents an estimation 

of the total insured loss caused by a catastrophe. The loss data by PCS, for instance, is 

updated approximately every 60 days, if the event caused more than $250 million in insured 

property losses, until PCS believes the estimated loss reflects the insured loss for the industry 

(see PCS (2013) and Kerney (2013a)). It is important to keep in mind that these indices do not 

                                                 
8  See, e.g., McDonnell (2002) for the development of the Property Claim Service estimations of the ten U.S. 

natural catastrophes with the highest insured damage. 
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incorporate information instantaneously but with a certain delay; however, under the 

assumption of sufficient liquidity in the derivatives market, we can assume that information is 

incorporated almost instantaneously (similar to the CDS market for credit defaults) into the 

derivatives prices (e.g., cat bonds that play a crucial role here). 
 

One main problem related to the use of an index-linked catastrophe loss instrument in the 

context of hedging is basis risk, which arises if the dependence between the index and the 

company’s losses (that are to be hedged) is not sufficiently high. In particular, the company 

loss could be high, but the industry loss index could be too low to trigger a payoff. There are 

several definitions of basis risk and we refer to Cummins, Lalonde and Phillips (2004) for a 

discussion of basis risk associated with index-linked catastrophe loss instruments.  

 
4. PRICING INDEX-LINKED CATASTROPHE LOSS INSTRUMENTS 
 
4.1 Pricing by replication under the no-arbitrage assumption 
 

In general, actuarial valuation methods for insurance contracts are based on the expected loss 

plus a specific loading, which depends, e.g., on the insurers’ risk aversion and its already 

existing portfolio (see Gatzert and Schmeiser, 2012). Financial pricing approaches generally 

allow the derivation of market-consistent prices. For arbitrage-free valuation, one has to 

calculate the expected value under a certain risk-neutral measure Q given the existence of a 

liquid market and independent of the existing portfolio. If there is a unique risk-neutral 

measure (i.e., the market is complete) the arbitrage-free price is unique and the price 

corresponds to the initial value of a self-financing portfolio replicating the cash flow 

(Harrison and Kreps, 1979). 
 

In the present setting, we focus on the two stochastic processes of importance: the industry 

loss index IT and the company loss LT. These processes need to be tradable in a more general 

sense, as there is no possibility to trade IT or LT directly like a stock and it is unrealistic to 

assume that there is a possibility to buy or sell this index; however, we assume there is a 



10 
 

liquid market for certain derivatives on the industry loss index IT. 9  To avoid arbitrage 

opportunities, the prices of these derivatives should coincide with the expectation of the 

discounted cash flow under a risk-neutral measure (unique or not, depending on the market’s 

completeness), and the prices of other index-linked catastrophe loss instruments should be 

consistent with the prices of the derivatives already traded on a liquid market (given a 

sufficient degree of comparability in regard to transaction costs, for instance). To ensure this 

consistency, the prices of these other instruments should be equal to the expectations under 

the same risk-neutral measure, or, equivalently, should be equal to the prices of replicating 

portfolios consisting of tradable derivatives, for instance. In case the market is incomplete, 

i.e., there are not sufficient traded derivatives available (no exact replicating portfolio; only 

partial hedging is possible), other approaches can be used, such as sub-/super-hedging (e.g., 

Bertsimas, Kogan and Lo, 2001), by choosing a self-financing portfolio based on maximizing 

expected utility (e.g., Henderson, 2002), or by selecting a risk-neutral measure according to 

certain criteria (e.g., jump risk is not priced, see Merton (1976), Delbaen and Schachermayer 

(1996)).  
 

We thus assume that the liquid market for certain index-linked catastrophe loss instruments 

(e.g., cat bonds) is at least large enough to allow the derivation of an exact replicating 

portfolio or at least a close approximation. For instance, in case suitable cat bonds are 

available for perfectly replicating the respective instrument’s cash flows (e.g., an ILW or 

another cat bond), a unique arbitrage-free price can be derived.10 Alternatively, in case the 

required cat bonds are not available (e.g., mismatching trigger level or time to maturity), we 

derive suitable approximations for the replicating portfolio. Using direct replication also has 

                                                 
9  These derivatives also represent index-linked catastrophe loss instruments. Note, however, that the 

assumption of liquidity only holds for certain types of derivatives, as standard call and put options on an 
industry loss index are not traded on a liquid market. Call and put options were introduced 1995 by CBOT, 
but due to limited trading these options were delisted in 2000 (see, e.g., Cummins and Weiss (2009)). Hence, 
the derivatives we focus on in the following are cat bonds, which exhibit a considerable market volume with 
a relevant secondary market. In case that there is a liquid market for call and put options on the underlying 
industry loss index at all strikes, the Litzenberg formula could be applied to for static replication. 

10  The instruments we focus on are not path-dependent and there could be various measures resulting in the 
same prices for instruments with a payoff depending only on T

TI ′ . Since there is no difference for the prices 
of the instruments we consider, it is not relevant which of these measures we take. 
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the significant advantage that a risk-neutral measure does not have to be specified and that 

model risk is significantly reduced for the hedger. 
 

In case of indemnity-based index-linked catastrophe loss instruments, one crucial point and 

major problem in addition to the treatment of the industry loss index is the tradability of the 

company loss LT. As potential remedies we briefly discuss three preliminary approaches with 

varying degrees of assumptions in Section 6. 
 
4.2 Pricing binary ILWs by replication using cat bonds 
 

We apply the proposed approach to price binary ILWs, whose payoff depends on whether the 

industry loss index exceeds the trigger level Y at the end of the development period T’ (see 

McDonnell (2002)). The payoff at maturity T’ of a binary ILW with trigger level Y and risk 

exposure period until T  is given by 

 

{ }1 T
T

b,Y ,T
ILW ,T I Y

P D ,
′

′ >
= ⋅   (2) 

 

where D represents the possible payout and { }1 T
TI Y′ >

 denotes the indicator function, which is 

equal to 1 if T
TI Y′ > , i.e., if the industry loss index at maturity T

TI ′  exceeds the trigger level Y 

(due to catastrophes that occurred during the risk exposure time T), and 0 otherwise.11 
 

To illustrate our approach more specifically, we assume that there is a liquid cat bond market 

consisting of cat bonds with comparable maturities and strikes etc. that can be used to derive 

consistent ILW prices by means of replicating the ILWs’ cash flows.12 In case of a liquid cat 

bond market, the whole market is represented by the filtered probability space 

                                                 
11  Note that an alternative but less common representation of an ILW would be that the payoff is triggered if the 

index exceeds the trigger limit during the contract term (knock-in barrier option). The following analysis can 
be extended to this case as well. 

12  In general, in case the market is incomplete and ILWs cannot be fully replicated, under suitable assumptions 
it may still be possible to at least approximately (dynamically) replicate the ILWs (see, e.g., Bertsimas, 
Kogan and Lo (2001), Xu (2006), where arbitrage-free price windows are derived by means of sub- and 
super-hedges). With the derivation of sub- and super-hedges, one obtains a price interval in which any 
arbitrage-free price of the ILW has to be contained. Within the interval, the chosen price will depend on the 
risk preference of the investor and might still be subject to inefficiencies.  
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( )( )0t t
,F , F ,P

≥
Ω , where ( ) 0t t

F
≥

 is a filtration satisfying the usual assumptions and Ft 

represents all information up to time t. Following the fundamental theorem of asset pricing, 

the price of every contingent claim is given by the expectation of the discounted payoff under 

an equivalent martingale measure Q. The discounted payoff (at time 0) of an index-based cat 

bond with binary payoff (denoted “b”),13 trigger level Y, risk exposure period until T, coupon 

payment c and maturing at time T’ and without loss of generality an assumed nominal of 1 is 

generally given by 
 

{ } { }
1

1 1j
TT
Tt j

n
r tb ,Y ,T r T

cat ,T I YI Y
j

P c e e ,
′

− ⋅ ′− ⋅
′ ≤≤

=

= ⋅ +∑   (3) 

 

where r is the constant risk-free interest rate (this assumption can be weakened) and n is the 

number of coupon payments (coupon time intervals). In what follows, we first assume that 

there is a perfectly fitting cat bond, i.e., a zero coupon (c = 0) cat bond with the same trigger 

level Y, the same risk exposure period until T and maturing at the same time T’, and then 

extend our formula to imperfectly fitting cat bonds under certain additional assumptions. For 

the remainder of the paper, we calculate prices at time t = 0 to simplify the notation.  

 
Matching maturity and trigger level 
 

First, if there are binary zero coupon cat bonds with the same maturity and the same trigger 

level as the ILW, according to Equation (3) the risk-neutral price at time t = 0 of a zero 

coupon cat bond with binary payoff, trigger level Y, risk exposure period until T, maturing at 

time T’ is (see Haslip and Kaishev (2010)) 
 

{ } { }
0 1 1T T

T T

b, ,Y ,T Q rT rT Q rT
cat ,T I Y I Y

V E e e E e .
′ ′

′ ′ ′− − −
′ ≤ >

   = = −   
   

 (4) 

 

Hence, together with (2) (and D = 1), Equation (4) turns into 
  

0b, ,Y ,T rT b,Y ,T
cat ,T ILW ,TV e V ,′−

′ ′= −    

                                                 
13  Even though proportional payouts are generally more common in practice, the Mexican cat bond issued 

2009, for instance, featured a binary trigger (see Cummins, 2008). 
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where b,Y ,T
ILW ,TV ′  is the price of a binary ILW with risk exposure period until T, trigger level Y 

and maturing at time T’.14 Thus, in the presence of a zero coupon cat bond with the same 

trigger level Y and same maturity, the price is given by 
 

{ }
01 T

T

b,Y ,T Q rT rT b, ,Y ,T
ILW ,T cat ,TI Y

V E e e V ,
′

′ ′− −
′ ′>

 = = − 
 

  (5) 

 

where rTe ′−  is the price of the related zero coupon bond without catastrophe (or any other 

default) risk under the assumption of a constant interest rate. In case of a non-constant interest 

rate this could be replaced with the price of a zero coupon bond maturing at time T’ without 

default risk. Note that since direct replication is used, independence between the risk-free rate 

and the industry loss index is not necessary in this case. Equation (5) thus also yields a 

replicating portfolio for a binary ILW. In particular, the cash flow of a binary ILW with risk 

exposure period until T, trigger level Y maturing at time T’ can be perfectly replicated by 

buying a zero coupon bond without default risk and selling a binary zero coupon cat bond 

with risk exposure period until T, trigger level Y and maturing at time T’.  
 

While these considerations are straightforward, they serve as a starting point, as one has to 

take into account that the chance of finding a perfectly fitting cat bond in the market might be 

low, such that an approximation in spite of a maturity mismatch might be easier. Therefore, in 

what follows we provide approximations if there are only cat bonds with different maturity, 

different trigger level, non-binary payoff or non-zero coupons available. As described before, 

using direct replication thereby has the significant advantage that a risk-neutral measure does 

not have to be specified and that model risk is significantly reduced, which represents one 

major benefit. 
 
Mismatching trigger level or maturity: General approach 
 

We next assume that there is a liquid market for binary zero coupon cat bonds with different 

trigger level, different maturities and different risk exposure periods, thus implying an 

                                                 
14   A related observation is made by Vaugirard (2003a), who observes that the buyer of a catastrophe bond holds 

a short position on a binary option on the index. 
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incomplete market setting. In this case, sub- and super-hedging can be applied, where the 

arbitrage-free price of an ILW with maturity T’ lies between the prices of ILWs with shorter 

and longer time to maturity, both given by Equation (5), which results in an upper and lower 

bound for the ILW price. The obtained range can be rather large, which is why we choose the 

zero coupon cat bond with trigger level Y  the maturity T ′  and risk exposure period until T  

that is closest to the parameters of the ILW we intend to price (everything else equal, i.e., 

trigger level and index). The aim is thus to approximate the binary ILW price b,Y ,T
ILW ,TV ′  with the 

price of this cat bond, which can be observed in the market. First, the price of a binary ILW 

with risk exposure period until T, trigger level Y and maturing at time T’ is given through 

Equation (5) by 
 

{ } { } { } { }1 1 1 1T TT T
T TT T

b,Y ,T rT ' Q rT ' Q
ILW ,T ' I Y I YI Y I Y

V e E e E ,
′ ′′ ′

− −

> >> >

   = = + −        
 

 

 

 (6) 

 

which can then be used to price the ILW with different maturity and different risk exposure 

period by 
 

( ) 0r T Tb,Y ,T rT b, ,Y ,T Y ,T ,T
ILW ,T cat ,T Y ,T ,TV e e V D′ ′− −′ ′−

′ ′ ′= − +


 

   

  (7) 

 

where 
 

{ } { }1 1T T
T T

Y ,T ,T rT ' Q
Y ,T ,T I Y I Y

D e E
′ ′

′ −
′ > >

 = − 
 





  



 

 

is the residual difference in (7) arising from the approximation error due to using an 

observable traded cat bond with mismatching maturity (closest to the one of the ILW). To 

calculate Y ,T ,T
Y ,T ,TD ′

′  

, additional assumptions regarding the distribution of I are needed. However, 

if the trigger levels, maturities and risk exposure periods are close, the approximation 

difference Y ,T ,T
Y ,T ,TD ′

′  

 is small and only marginally depends on the underlying distribution 

assumptions, as shown in Section 4.3 using simulation analyses. Hence, combining market 

data (i.e. available cat bond prices) with model assumptions regarding the difference term 
Y ,T ,T
Y ,T ,TD ′

′ 

 in (7) will generally reduce potential model risk involved in pricing index-linked 
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catastrophe instruments, which would be considerably higher when applying the distributional 

assumptions for pricing the ILW without using any market data. 
 
Matching trigger levels but mismatching maturity: An approximation 
 

To calculate Y ,T ,T
Y ,T ,TD ′

′  

 in practice, where the loss distribution under Q is usually unknown, we 

propose the following approximations using only available data, i.e. the price of the traded cat 

bond 0b, ,Y ,T
cat ,T 'V  



 and the trigger probabilities, i.e., ( )T
TP I Y′ >  and ( )T

TP I Y′ >


 , which are usually 

published (see, e.g., Table 1 in Section 5).  
 

First, we assume the trigger levels of the ILW and the traded cat bond are equal. Let the risk 

exposure period be equal to the maturity (T T ′= , T T ′=  ) and assume that the industry loss 

index reflects the real catastrophe losses instantaneously. Furthermore, let IT follow a 

compound Poisson process under Q, which is not too restrictive if IT follows a compound 

Poisson process under the physical measure P. Delbaen and Haezendonck (1989) showed 

under some reasonable assumptions, which should be fulfilled in most non-life insurance 

cases, that IT remains a compound Poisson process under any equivalent risk-neutral measure. 

For a further treatment, we refer to Mürmann (2008) and Aase (1992). These assumptions 

lead to 
 

1

tN
T i
t

i
I X ,

=

= ∑   (8) 

 

where Nt and Xi are independent, Nt denotes the claims arrival process (i.e., a Poisson process 

with intensity λ) and Xi the i.i.d. claims (see, e.g, Levi and Partrat (1991)). Using these 

assumptions and a resulting Y ,T ,T
Y ,T ,TD
 

 as shown in the Appendix, we can approximate the ILW 

price through  
 

( )0
T

b,Y ,T rT b, ,Y ,T T
ILW ,T cat ,TV e V−≈ − 





   (9) 

for small intensity values λ. We analyze the quality of this approximation in Section 4.3. 
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Matching maturity but mismatching trigger level: An approximation 
 

If the maturity of the cat bond and the ILW is the same, but the trigger level differ, prices can 

be obtained by analogously applying the approach in the last section (Equation (7)). We 

similarly obtain 
 

( ) ( )
( )

( ) ( )
( )

0

1

1

T
TY ,T ,T ' rT T

TY ,T ,T ' T
T

T
TrT b, ,Y ,T

cat ,T ' T
T

Q I Y
D e Q I Y

Q I Y

Q I Y
e V .

Q I Y

′′−
′

′

′′−

′

 >
 = > −
 > 
 >
 = − −
 > 











  (10) 

 

The value of  
 

( )
( )

T
T

T
T

Q I Y

Q I Y
′

′

>

> 
 

 

depends on the change from the physical measure to the risk-neutral measure. One approach 

for the change of measure is the Wang transform, which is also suitable from an empirical 

perspective, as e.g., Wang (2004) shows that this probability transform can well explain 

empirical cat bond prices, whereby the Wang transform extends the Sharpe ratio concept for 

risk adjustment to skewed distributions (see Wang, 2004). The exceedance probability under 

Q is thereby defined by 
 

( ) ( )( )( )1T T
T TQ I Y P I Y ,α−

′ ′> = Φ Φ > +   (11) 

 

where Φ denotes the standard normal cumulative distribution function and the parameter α, 

also called market price of risk, is a direct extension of the Sharpe ratio, which can be 

calculated by solving 
 

( )( ) ( )( )( )( )0 11 1b, ,Y ,T rT ' T rT ' T
cat ,T ' T TV e Q I Y e P I Y α− − −

′ ′= − > = − Φ Φ > +

   

for α using the observable price of a traded cat bond 0b, ,Y ,T
cat ,T 'V  . 
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Non-zero coupon cat bonds 
 

If there is no market for zero coupon cat bonds (as is currently the case), non-zero coupon cat 

bonds need to be used for approximating ILW prices. The decomposition follows the standard 

bond stripping approach, where each coupon itself is understood as a zero coupon bond with 

adjusted nominal, interest rate and maturity. To calculate the price of an ILW involving only 

the non-zero coupon cat bond price b,Y ,T
cat ,TV ′ , we use Equation (6). Recall Equation (3) for the 

payoff of such a cat bond and Equation (7) for adjusting a mismatching maturity to obtain the 

price of a binary ILW b,Y ,T
ILW ,TV ′  with trigger level Y, risk exposure period until T and maturity T’, 

i.e. 
 

( )
1

1 1 1
1jj j

n n n
r T trt Y ,T ,tb ,Y ,T rT b,Y ,T

ILW ,T cat ,T Y ,T ,T
j j j

V e V c e c D c e .
−

′− −−′−
′ ′ ′

= = =

  
= − + ⋅ − ⋅ ⋅ +  

  
∑ ∑ ∑  (12) 

 
Cat bonds with non-binary payoff 
 

In practice, cat bonds often have a non-binary payoff, i.e., the payment depends on the extent 

to which the industry loss index exceeds the trigger. The payoff of such a cat bond with non-

binary payoff, risk exposure period until T, trigger level Y , limit M, and maturing at time T’ 

can be defined by 
 

( )( )0

1 if

1 1 if

0 if

T
T

T TT,Y ,M ,T TT
cat ,T T

T
T

I Y
min I Y ,M I YP Y I Y M ,

M M
I Y M

′

′ + ′
′ ′

′

 ≤
− −= − = − < ≤ +


> +

 

 

where without loss of generality the maximum payoff is normalized to 1. The price of this cat 

bond is given by  
 

( )( )

( )

0 1

1

T
T,Y ,M ,T Q rT

cat ,T

Y M
rT rT T

T
Y

min I Y ,M
V E e

M

e e Q I x dx.
M

′′ +−
′

+
′ ′− −

′

  −  = −     

= − >∫

  (13) 
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In order to price binary ILWs, the prices of binary cat bonds are required, which in turn 

can be approximated by prices of cat bonds with non-binary payoff by using the midpoint 

rectangle rule, which leads to 
 

( ) 2

Y M
rT T rT T

T T
Y

Me Q I x dx M e Q I Y .
+

′ ′− −
′ ′

 > ≈ ⋅ > + 
 ∫

 (14) 
 

Combining Equations (13) and (14) results in  
 

00 2
Mb, ,Y ,T,Y ,M ,T

cat ,T cat ,TV V .
+

′ ′≈  
 

Therefore,  
 

0 02 2
M Mb,Y ,T b, ,Y ,TrT rT ,Y ,M ,T

ILW ,T cat ,T cat ,TV e V e V
+ +′ ′− −

′ ′ ′= − ≈ −   (15) 
 

for the price of a binary ILW with trigger level 1
2Y M+ , risk exposure period until T and 

maturing at time T’. The approximation generally works well for small layers (see also 

simulation study in Section 4.3).  
 
4.3 Quality of approximations and reduction of model risk: Numerical analysis 
 
Input parameters 
 

In what follows, we use simulation analyses to study the quality of the approximations and the 

reduction of model risk in more detail. Toward this end, we follow Braun (2011) and assume 

that T
TI ′  follows a compound Poisson process with either log-normal, Burr, or Pareto 

distributed losses (under Q).15 The cumulative distribution function of the Burr distribution 

with parameters a, b, c is thereby given by 
 

                                                 
15  Note that the reduction of model risk also works for more complex loss-frequency models (see, e.g., Lin, 

Chang and Powers, 2009; Chang, Lin and Yu, 2011). 
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( ) 1 1 ,
abxF x

c

−
  = − +     

 

 

with the Pareto distribution being a special case with b = 1. We use the parameters estimated 

by Braun (2011) for U.S. earthquakes losses during the period 1900-2005, i.e., µ = -1.3778 

and σ = 2.5835 for the log-normal distribution, a = 0.4027, b = 1.1018, c = 0.0426 for the 

Burr distribution, a = 0.4602, c = 0.0503 for the Pareto distribution, and the intensity of the 

Poisson process is given by λ = 0.76. Furthermore, we assume a constant interest rate of 

r = 0.01.  
 

We now consider a tradable zero coupon cat bond with trigger level Y = 30 and a maturity of 

one year. Assuming that the parameters estimated in Braun (2011) imply “real” prices, the 

price of the cat bond is { }1
1

0 30 1
1 30

1b, , , Q r
cat , I

V E e−

≤

 =  
 

, which in case of a log-normal distribution, 

for instance, is given by 0 30 1
1 0 9653b, , ,

cat ,V .= .  
 
Mismatching maturity or trigger level  
 

We study the impact of model risk by varying the input parameters as well as the 

distributional assumptions. Figure 2 shows the pricing error for an ILW with varying trigger 

level Y’ and maturity T’ when using incorrect parameters λ*, μ*, σ* (for the intensity of the 

Poisson process and the log-normally distributed losses) for directly calculating the price 

using the pricing formula { }1 T ',*
T '

b ,Y ',T ',* Q rT '
ILW ,T ' I Y '

V E e−

>

 =  
 

, as compared to calculating the price 

using Equation (7), i.e., ( )1 0 30 1
1 30 11

r Tb,Y ',T ' rT b, , , Y ',T ',T ',*
ILW ,T ' cat , , ,V e e V D ,′− −′−= − + with 

{ } { }1
1

30 11 30
1 1T ',* ,*

T '

Y ',T ',T ',* rT ' Q
, , I Y ' I

D e E−

> >

 = − 
 

 being calculated using simulation approaches as well 

(i.e., we first study the case without the developed approximations). The incorrect parameters 

are in a range of +/-10% of the “true” values.  
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Figure 2: Relative pricing error for an ILW with trigger level Y’ and maturity T’ in percent 
using the method shown in Equation (7) (denoted “replication”) and by calculating b,Y ',T '

ILW ,TV ′  
directly (denoted “direct calculation”) for varying input parameters (trigger level Y’ in bn. 
U.S. $)  

σ* = 2.3252 σ* = 2.8419 
T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
 μ* = -1.5156 μ* = -1.2400 

T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
λ* = 0.6840 λ* = 0.8360 

T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
 

Notes: Monte-Carlo simulation based on 10,000,000 sample paths using stratified sampling as variance 
reduction technique; trigger level in bn. US $; assuming the industry loss follows a compound Poisson process 
with intensity λ = 0.76 and log-normally distributed losses with parameters µ = -1.3778 and σ = 2.5835. 
Generally, λ∗ = λ, µ∗  = µ, σ∗ = σ and only the parameter stated above the respective graphs differs. Example: 
first row, first figure: λ∗ =  λ = 0.76, µ∗ = µ = -1.3778, σ∗ = 2.3252. 

 

The results show that the model risk is strongly reduced if the ILW’s characteristics (Y, T’) 

are close to the ones of the available cat bond and that for mismatching maturities (T’ = 0.9), 

higher trigger levels imply a stronger pricing error. Overall, the pricing error due to the 

difference term in (7) is considerably lower as compared to the direct pricing approach that 

entirely relies on input parameters instead of making use of available market data. In 

replication direct calculation
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particular, a misestimation in parameters of +/-10% implies a mispricing of at most 13% in 

most cases, typically considerably lower at around 5% in comparison to an error of up to 48% 

using direct calculation. Similar results can be found for the Burr and the Pareto distribution 

(see Figures A.1 and A.2 in Appendix).  
 
Approximation quality in case of mismatching maturity 
 

We next consider the developed approximation approaches that only rely on market data, and 

first focus on the quality of the approximation in Equation (9) for mismatching maturities as 

illustrated in Figure 3. We again assume there is a tradable zero coupon cat bond with trigger 

level Y = 30 and a maturity of one year and that the industry loss process is a compound 

Poisson process with log-normally distributed losses under Q with input parameters from 

Braun (2011). The relative pricing errors for ILWs with maturity T’ and different intensity 

values λ are exhibited in Figure 3, showing that the quality of the approximations crucially 

depends on the intensity of the Poisson process λ as already formally shown in the Appendix, 

as the approximation error converges to 0 for 0λ → .  
 
Figure 3: Relative pricing error for an ILW with trigger level Y and maturity T’ in percent 
using the approximation in Equation (9) (different maturity) for varying input parameters 
(maturity T’ in years)  

λ = 0.5 λ = 0.76 λ = 1 λ = 1.5 

    
Notes: Monte-Carlo simulation based on 10,000,000 sample paths using stratified sampling as variance 
reduction technique; trigger level in bn. U.S. $; assuming the industry loss follows a compound Poisson process 
with intensity λ and log-normally distributed losses with parameters µ = -1.3778 and σ = 2.5835. 
 
Approximation quality in case of mismatching trigger level  
 

To illustrate the quality of the proposed approximation for mismatching trigger levels stated 

in Equation (10), we also assume that there is a tradable zero coupon cat bond with trigger 
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level Y = 30 and a maturity of one year and that the industry loss process is a compound 

Poisson process with log-normally distributed losses (parameter: λP = 0.76 μP = -1.3778, σP = 

2.5853) under the physical measure P. Figure 4 shows the relative pricing error for an ILW 

with various trigger levels Y’ using the approximation in Equation (10), which makes use of 

the empirically observed trigger probability under the physical measure P. In particular, we 

assume in the left graph of Figure 4 that the industry loss process follows a compound 

Poisson process with intensity λ and log-normally distributed losses (parameter: μ, σ) under Q, 

and then in Equation (10) use the Wang transform for the change of measure, i.e., 

( ) ( )( )( )1T T
T TQ I Y P I Y α−> = Φ Φ > + . The right graph of Figure 4 illustrates the quality of 

the approximation for a different loss distribution, where we assume that the industry loss 

process is a compound Poisson process with Burr distributed losses with parameters λP = 0.76, 

aP = 0.4027, bP = 1.1018, cP = 0.0426 under P and parameters λ, a, b, c under Q. Figure 4 

shows the relative pricing error for an ILW with different trigger levels Y’ using the Wang 

transform in Equation (10). 

 
Figure 4: Relative pricing error for an ILW with trigger level Y’ (in bn. U.S. $) and maturity 
T’ = 1 in percent using the approximation in Equation (10) (different trigger level) for varying 
input parameters with the Wang transform as relationship P and Q (see Section 4.2) and for 
different loss distributions  

Log-normally distributed losses Burr distributed losses 

  

  
 

Notes: Monte-Carlo simulation based on 10,000,000 sample paths using stratified sampling as variance 
reduction technique; trigger level in bn. U.S. $; assuming the industry loss follows a compound Poisson process 
with intensity λP = 0.76 and either log-normally distributed losses with parameters µP = -1.3778 and σP = 
2.5835 (left graph), or Burr distributed losses with parameters aP = 0.4027, bP = 1.1018, cP = 0.0426 (right 
graph). Generally, λ = λP, µ = µP, σ = σP, a = aP, b = bP, c = cP and only the parameter stated in the legend 
differs. Example: left graph, blue line with triangles: λ =  λP = 0.76, µ = µP  = -1.3778, σ  = 2.8419. 

 = 0.8360  = 2.8419  = -1.2400
 = 0.8360 a = 0.4430     

    b = 1.2120 c = 0.0469
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Our results show that the quality of the approximation in Equation (10) strongly depends on 

how the loss distribution is affected by the change of measure (from P to Q). The quality of 

the approximation also depends on distributional assumptions as can be seen in Figure 4. 

However, in all cases considered, the pricing error remains below 4%. 
 
Quality of approximation in case of non-binary cat bonds 
 

The quality of the approximation in Equation (15) using the midpoint rectangle rule is 

studied in Figure 5. For all considered loss distributions (log-normal, Burr, and Pareto) 

and various limit values (M = 5, 10, 15), the pricing error caused by the approximation is 

below 5%. One can observe that the approximation works better for high trigger levels 

and low limit values. Furthermore, the skewness of the distribution only has a minor 

influence on the quality of the approximation. Even when increasing σ of the log-normal 

distribution from 2.5835 to 4, the approximation error is not increasing and stays below 5% 

for all tested values.  
 
Figure 5: Relative pricing error for an ILW with trigger level Y’ and maturity T’ = 1 in 
percent using the approximation in Equation (15) (non-binary cat bond) for varying input 
parameters (trigger level Y and limit value M in bn. U.S. $)  

Log-normal Log-normal (σ = 4) Burr Pareto 

    
 

Notes: Monte-Carlo simulation based on 10,000,000 sample paths using stratified sampling as variance 
reduction technique; assuming the industry loss follows a compound Poisson process with intensity λ = 0.76 and 
either log-normally distributed losses with parameters µ = -1.3778 and σ = 2.5835, or µ = -1.3778 and σ = 4, 
Burr distributed losses with parameters a = 0.4027, b = 1.1018, c = 0.0426, or Pareto distributed losses with 
parameters a = 0.4602, c = 0.0503. 

 

M = 5 M = 10 M = 15
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4.4 Discussion of the method 
 

This section presented an approach for the valuation of index-linked catastrophe loss 

instruments under the assumption of no-arbitrage, which we applied to the pricing of ILWs. In 

the presence of a liquid cat bond market, we obtain Equation (5) independent of the respective 

distributional assumption. Since there may not be a sufficient variety of cat bonds to match 

the parameters of every ILW, we further provided approximations for different trigger levels 

and maturities.  

 

As shown in Section 4.3 our approach can considerably decrease model risk. However, one 

major limitation is that the quality of the approximations and the reduction of model risk 

depend on the underlying distributions. Therefore, while our simulation analysis suggests that 

the approximations are very stable, the exact distributions are usually unknown, implying that 

the exact reduction of model risk is also unknown. However, for the considered distributions, 

the approximations work well for a wide range of trigger levels and maturities, and the 

reduction of model risk is considerable. When using non-binary cat bonds to calculate prices 

of binary ILWs, we further make use of the midpoint rectangle rule. The quality of this 

approximation also depends on the underlying distribution, but additionally on the limit value 

of the non-binary cat bond, whereby the approximation error is below 5% for all considered 

loss distributions and limit values.  
 

Our approach extends the work of Haslip and Kaishev (2010), who also assume a liquid cat 

bond market but – in contrast to our analysis – focus on indemnity-based cat bonds, and then 

evaluate excess of loss reinsurance contracts under additional assumptions concerning the 

risk-neutral measure Q. The assumption of a liquid cat bond market can be considered 

reasonably realistic given the high volume of cat bonds (see Figure 6) and a growing 

secondary market with a considerable volume of cat bond transactions (see Moody (2013)). 

Furthermore, sponsors are becoming more and more familiar with this kind of risk transfer 

and service providers involved in structuring and marketing exhibit an increasing experience. 

In addition, frictional costs of cat bond transactions are decreasing (less than 20 basis points, 

see Kerney (2013b)). Time to market and frictional costs are further improved by the use of 
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different securitization structures involving a Special Purpose Insurer (SPI) instead of a 

Special Purpose Vehicle (SPV), which can be set up in less than three to four weeks overall 

(see Garrod (2014)), thus also improving the degree of liquidity in the cat bond market. In 

addition, Braun (2015) points out that sponsors recently started to increasingly use shelf-

offerings (e.g. Swiss Re Successor Series), where additional classes of notes can be issued 

repeatedly out of the same SPV, which eases access to capacity and considerably reduces 

transaction costs. These developments also contribute to reducing differences in transaction 

costs and transaction times between cat bonds and ILWs, as the latter are generally more 

easily available and less costly.16 However, liquidity is not needed to the same extent as in 

classical option pricing as continuous replication is not necessary to replicate ILWs when 

using cat bonds, i.e., a static hedging approach is sufficient. Moreover, the Bermuda Stock 

Exchange, among others (see Artemis (2013)), has started to list cat bonds, which is a first 

step to trading them on the exchange, indicating that the secondary market is growing, the 

transaction time on the primary market and the frictional costs are decreasing and even if the 

market is not yet enough liquid, it appears reasonable to assume that it will become liquid in 

the foreseeable future in view of the current developments.  
 
Figure 6: Cat bonds and insurance linked securities: Capital outstanding by year in bn. US $  

 
Source of data: Artemis (2016). 

 

                                                 
16  Note that in case the approach presented here is applied to consistently price cat bonds, transaction costs 

would be even more comparable. 
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The approach using available cat bonds in order to (at least approximately) replicate cash 

flows can also be used for pricing other index-linked catastrophe loss instruments covering a 

wide variety of instruments. Hence, once the replicating portfolio is known, prices can easily 

be calculated as they can directly be observed in the market. In addition, this approach can be 

used to test the degree of liquidity in the market. Consistent prices would encourage the 

assumption of a liquid market, while inconsistent prices would contradict this assumption and 

lead to an arbitrage opportunity or indicate the existence of an external risk that might not 

have been incorporated into market prices.  

 
5. EMPIRICAL EXAMPLES FOR PRICING INDEX-LINKED CATASTROPHE LOSS INSTRUMENTS 

BY REPLICATION USING CAT BONDS 
 
5.1 Consistent pricing of binary ILWs using cat bonds 
 

To illustrate and test the previously developed approximations, we use secondary market cat 

bond prices provided by Lane (2002) and compare the theoretically derived ILW prices 

obtained by means of our approximations (see Section 4.2) with the actual ILW prices dated 

from 04/01/2002 as provided by McDonnell (2002).17 To approximate the price of a binary 

ILW related to earthquake risk in California with a maturity of one year, the secondary market 

price of the cat bond “Western Capital”18 is used, which features the same underlying risk, but 

mismatching maturity (10 months instead of one year) and a non-binary payoff (layer 

between $22.5bn and $31.5bn). The secondary market price is given as the spread (spreads 

published by Goldman Sachs at 03/31/2002: bid: 642 bp, ask: 554 bp (Lane, 2002)) over 

LIBOR (2.03% at19 03/31/2002). We use the developed approximations to derive a bid-ask 

                                                 
17  Note that we need information regarding the attachment point and the layer of the cat bond, which in case of 

secondary (and primary) market data is typically not provided. Also, ILW prices are very difficult to obtain 
due to OTC transactions, which is why we use an empirical example from 2002 where these information 
were available. 

18  Date of issue: 02/2001; maturity: 01/2003; coupon: 510; attachment point: $22.5bn; exhaustion point: 
$31.5bn; probability of first loss: 0.0082; probability of exhaustion: 0.0034; expected loss: 0.0055; index: 
PCS; risk: California earthquake (see Lane and Beckwith (2001), and Michel-Kerjan et al. (2011) for the 
attachment and exhaustion point). As we have no information regarding the risk exposure period, we assume 
that it equals the maturity. 

19  See http://de.global-rates.com. 
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interval for ILW prices and in the following exhibit the calculation for the ask price and 

define 03/31/2002 as t = 0. Since our approximations use zero coupon cat bond prices, we 

transform the secondary market spread using the LIBOR rate to a non-binary zero coupon 

price through 
 

( )
0, 22.5, 31.5 22.5 9,10/12

,10/12 10
12

1 0.9410,
1 0.0554 0.0203

Y M
catV = = − = = =

+ +
 

 

where 10 months (from 03/31/2002 to 01/31/2003) are left until the cat bond matures. 

According to Equation (14), we can use the midpoint rectangle rule to approximate the price 

of a zero coupon cat bond with binary payoff and trigger level ( )1
2 22.5 31.5 27+ =  (middle of 

the layer of the non-binary cat bond) by 
 

22 5 31 50 27 10 12 0 22 5 31 5 22 5 10 122
10 12 10 12 0 9410

. .b , ,Y ,T / ,Y . ,M . . ,T /
cat ,T ' / cat ,T ' /V V . ,

+
= = = = = − =
= =≈ =  

 

which, as illustrated in Section 4.3, should generally work well for smaller layers and higher 

trigger level.20 The maturity of the ILWs, whose prices are stated in McDonnell (2002), is one 

year. For the adjustment of the mismatching maturity (from 10 months to one year) we use 

Equation (9) resulting in  
 

( ) ( )
10

0 27 10 12 10 1212
10 1210 12 10

12
ln 1127 12 12 1 0 27 10 12

12 12 10 12 5 05
r b , , , /

cat , /e Vrb, , / r b , , , /
ILW , / cat , /V e e V e . %.

 
− − −− ⋅  = − =  

 

The ask price is thus given by 5.05% and the same calculation for the bid price yields 

5.80%.21 The actual prices stated by McDonnell (2002) are 5.25% for an ILW with a trigger 

level of $25bn and 4.25% for trigger level of $30bn, which already shows a high degree of 

consistency with our approximation (despite the use of only partial information for the ILW 

price, for instance). 
 

                                                 
20  Taking Figure 5 (U.S. earthquake data instead of California earthquake) as a rough indication for the pricing 

error, the latter would amount below 2.5%. 
21  We additionally calculated the outcome including coupon payments with resulting ask and bid prices of 

5.07% and 5.83%. 
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5.2 Consistent pricing of cat bond  
 

Another application of our proposed approximation formulas is the consistent pricing of cat 

bonds. The available characteristics and prices of four selected cat bonds written on U.S. 

hurricane risk using the PCS industry loss index are summarized in Table 1. 
 
Table 1: Characteristics of Successor X Ltd 2012-1; Ibis Re II Ltd. 2012-1 A; Ibis Re II Ltd. 
2012-1 B; Mythen Re Ltd. 2012-1  
Name Date of 

Issue 
Maturity Spread (at 

issuance) 
Expected 
loss 

Conditional 
expected 
loss 

Prob. 
of 1st 
loss 

Prob. 
of last 
loss 

Successor X Ltd. 2012-1 01/2012 01/2015 1100 2.59% 83% 3.12% 2.24% 
Ibis Re II Ltd. 2012-1 A 01/2012 02/2015 835 1.38% 59,2% 2.33% 0.89% 
Ibis Re II Ltd. 2012-1 B 01/2012 02/2015 1350 3.38% 67,9% 4.98% 2.36% 
Mythen Ltd. 2012-1 05/2012 05/2015 850 1.09% 73,6% 1.48% 0.82% 

Notes: See Lane (2013) for Mythen Ltd. 2012-1 and Lane (2012) for Ibis Re II Ltd. and Successor X Ltd. 
 

As in the last section, prices are given as the (annual) spread over LIBOR and the quarterly 

secondary market spreads are displayed in Figure 7. U.S. hurricanes can only occur during the 

hurricane season from June to November, such that these cat bonds cover the same seasons 

and we can assume that they have the same maturity and risk exposure period. Due to sub- 

and super-hedging considerations, prices at every point in time are ordered according to the 

related expected loss, i.e., a cat bond with higher expected loss generally has a higher spread. 

  
Figure 7: Secondary market spreads for Successor X Ltd 2012-1, Ibis Re II Ltd. 2012-1 A, 
Ibis Re II Ltd. 2012-1 B and Mythen Re Ltd. 2012-1 from 06/30/12 to 03/31/14 

 
Source of data: Lane (2013) and Lane (2014). 
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Analogously to the ILW pricing formulas in Equation (7), the price of cat bonds (in terms of 

the spread premium) is given by 

( )b,Y ,T b,Y ,T b,Y ,T b,Y ,T
cat ,T cat ,T cat ,T cat ,TV V V V′ ′ ′ ′= + −  ,  (16) 

 

where we observe the price of a binary cat bond with trigger level Y  ( b,Y ,T
cat ,TV ′
 ) in the market 

and, analogously to Section 4.3, use an empirically calibrated model to calculate the 

difference term 
 

Y ,T ,T ' b ,Y ,T b,Y ,T
cat ,T cat ,TY ,T ,T 'D V V′ ′= − 



. 

 

We follow Galeotti, Gürtler and Winkelvos (2012) and apply the model of Wang (2004) (see 

also Section 4.2) to calculate Y ,T ,T '
Y ,T ,T 'D


, i.e. 
 

( )( ) ( )( ) ( )( ) ( )( )( )( )1 1 1 11
2

Y ,T ,T ' b ,Y ,T b,Y ,T
cat ,T cat ,TY ,T ,T '

Y Y Y Y

D V V

PFL PLL PFL PLL ,α α α α

′ ′

− − − −

= −

= Φ Φ + + Φ Φ + − Φ Φ + + Φ Φ +





 

 

where PFL is the probability of the first loss, PLL the probability of the last loss and the 

market price of risk α is obtained by solving the nonlinear regression  
 

( )( ) ( )( )( )1 11
2

i i ib ,Y ,T Y Y
cat ,T iV PFL PLLα α ε− −

′ = Φ Φ + + Φ Φ + +
    

 

With α and the parameters stated in Table 1, Y ,T ,T '
Y ,T ,T 'D


 and b,Y ,T
cat ,TV ′  can be calculated using 

Equation (16) and be compared with the empirical prices. As an example, the real and 

approximated prices of Ibis Re II Ltd. are shown in Figure 8 (where α is determined by using 

the empirical input parameters of the other three cat bonds in Table 1), where we can again 

observe a high degree of consistency. As mentioned before, by combining empirically 

observed prices and using theoretical models only for the difference term (as displayed by 

Equation (16)), model risk can be considerably reduced. 
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Figure 8: Real and approximated prices (using the Wang transform for the difference term) of 
Ibis Re II Ltd. 2012-1 A from 06/30/12 to 03/31/14 using Mythen Ltd. 2012-1 

 
 
6. OUTLOOK: PRICING INDEMNITY-BASED (DOUBLE-TRIGGER) CONTRACTS 
 

For pricing indemnity-based contracts by means of replication, the tradability of the company 

loss LT must be examined. Toward this end, we provide first thoughts on how the company 

loss could be treated and suggest three approaches, which can be explored in future research. 

The payoff of an indemnity-based ILW with attachment point A, maximum payoff M, trigger 

level Y, risk exposure period until T and maturing at time T’ is given by 
 

( )( ) { } ( ) ( )( )( ) { }1 1T T
T T

A,M ,Y ,T T T T
ILW ,T T T TI Y I Y

P min M , L A L A L A M ,
′ ′

′ ′ ′ ′> >+ + +
= − = − − − +  (17) 

 

where ( ) ( )0max ,
+

⋅ = ⋅ . From Equations (2) and (17), one can see the option-like structure of 

ILWs. A binary ILW is a binary call on the industry loss index IT, and an indemnity-based 

ILW corresponds to a call spread option on the company loss LT with an additional trigger for 

the industry loss. 
 

First, in case IT and LT are independent, the price of an indemnity-based ILW (Equation (17)) 

can be described by 
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( ) ( )( )( ) { }

( ) { } ( )

1

1

T
T

T T T T

T
T

A,M ,Y ,T Q rT T T
ILW ,T T T I Y

L ,A L ,A M Q rT L ,A L ,A M b,Y ,T
T T T T ILW ,T 'I Y

V E e L A L A M

C C E e C C V ,

′

′

′−
′ ′ ′ >+ +

′+ − +
′ ′ ′ ′>

 = − − − + 
 

 = − = − 
 

 

 

where 
TL ,A

TC ′  is the price of a call option on the company loss LT with strike price A maturing 

at time T’. For the calculation of b,Y ,T
ILW ,T 'V  using tradable cat bonds, we refer to the previous 

sections, and 
TL ,A

TC ′  can be calculated using actuarial pricing principles, for instance (see also 

Møller (2003)). Still, even though independence between the index and the company loss 

would imply a substantial degree of basis risk and would thus be problematic regarding the 

risk management purpose of an indemnity-based index-linked catastrophe loss instrument, 

empirical results by Cummins, Lalonde and Phillips (2004) for the U.S. market show that 

especially small insurers exhibit very low correlations between their own losses and industry 

loss indices. In addition, this calculation could provide a lower bound for an efficient price.  
 

Second, one could approximate the company loss LT with the loss of the stock price, which in 

turn is assumed to be traded, thus allowing arbitrage-free valuation. Doing this results in a 

structured risk management product, which can be treated as in Cox, Fairchild and Pedersen 

(2004) and by using arbitrage-free valuation. However, due to catastrophe losses, the market 

is generally incomplete and choosing the right risk-neutral measure Q is a non-trivial task. 
 

Third, one could assume a functional relationship between the industry loss index and the 

company loss motivated by the typically high degree of dependence between these 

processes.22 This approach reduces indemnity-based index-linked catastrophe loss instruments 

to non-indemnity-based instruments and allows applying the replication techniques developed 

previously. A high degree of dependence is realistic, since basis risk arises if the company 

loss and the industry loss are not fully dependent (see, e.g., Harrington and Niehaus (1999), 

Gatzert and Kellner (2011)). For instance, Cummins, Lalonde and Phillips (2004) show that 

36% of Florida hurricane insurers could effectively use instruments based on a statewide 

                                                 
22  Alternatively, one can assume stochastic dependence to reflect the case where the company is not affected by 

a catastrophe.  
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index without being exposed to a high degree of basis risk, while smaller insurer are generally 

exposed to high basis risk (see also Harrington and Niehaus (1999)).  
 
7. SUMMARY AND CONCLUSIONS 
 

This paper presents a new approach and techniques of how prices for index-linked catastrophe 

loss instrument can be derived using arbitrage-free pricing by proposing replication 

techniques and approximations that aim to overcome the requirement of direct tradability of 

the underlying loss indices. In particular, contrary to traditional option pricing theory, one 

cannot necessarily assume that the underlying industry loss index is tradable itself; however, 

there may be a liquid market for certain derivatives, including cat bonds. This is of great 

relevance today in the academic literature, but it will be even more relevant in the future for 

the insurance industry and financial investors, when index-linked catastrophe loss instruments 

become even more widespread than today and when there are truly liquid markets for 

derivatives (e.g., cat bonds) on the industry loss index. 
 

We apply the proposed approach and considerations to the arbitrage-free pricing of ILWs, 

where we assume a liquid cat bond market to ensure the tradability of the underlying industry 

loss index. We hence consider a liquid index-linked cat bond market (equivalent to a liquid 

option market) for various trigger levels and maturities, and first derive prices for binary 

ILWs. We thereby show that we do not need any assumption concerning the distribution of 

the underlying industry loss index, which represents a major advantage as compared to other 

pricing approaches. If a suitable cat bond is not available for approximating ILW prices, we 

provide approximations under some reasonable assumptions. Thus, one main contribution of 

the paper is to propose an approach to overcome the crucial point of tradability of the 

underlying loss processes in case of index-linked catastrophe loss instruments through 

suitable approximations and by deriving explicit replicating portfolios or close 

approximations using traded derivatives providing explicit pricing formulas. We test these 

approximations by studying empirical examples and by conducting comprehensive simulation 

analyses, which suggest that the approximations are very stable and that model risk can be 
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considerably reduced as compared to standard pricing that makes use of distributional 

assumptions.  
 

When calculating prices for indemnity-based double-trigger catastrophe loss instruments, 

which in addition to the index depend on the company loss, one major problem is the 

behavior of the company loss, which should be tradable in some sense when using risk-

neutral valuation. We provide first brief considerations regarding three potential approaches 

for solving this issue and address problems associated with them, leaving further theoretical 

and empirical analyses for future research. In general, such considerations regarding 

indemnity triggers will be increasingly relevant in the future, especially against the 

background of an increasing share of indemnity-based cat bond transactions.  
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Appendix 
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tI   is a compound Poisson process defined through 
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where Nt and Xi are independent, Nt denotes the claims arrival process (i.e., a Poisson process 

with intensity λ) and Xi the i.i.d. claims. The probability for exceeding the trigger level is 

given through  
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for 0λ → , where the approximation in the second line is inspired by the principle of a single 

big jump (see, e.g., Foss, Konstantopoulos and Zachary (2007)). We use Equation (19), and  
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to calculate Y ,T ,T
Y ,T ,TD
 

: 
 

{ } { }
( ) ( ) ( )

( ) ( ) ( )
( )( ) ( )

1 1

1 1

1

2

2

0 2

1 1

1 1

1

T T
T T

Y ,T ,T rT Q
Y ,T ,T I Y I Y

TQ X Y TQ X YrT

TQ X Y TQ X YrT

Q X Y T TrT rT b, ,Y ,T
cat ,T

D e E

e e e O

e e e O

e e V e O .

λ λ

λ λ

λ

λ

λ

λ

−

> >

− > − >−

− > − >−

− > −−

 = − 
 

 = − − + + 
 
 = − + 
 

 = − + 
 





 







 



 

 

Hence, 
 

( )

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

1

1

0

0 0 2

0 2

1

r T Tb,Y ,T rT b, ,Y ,T Y ,T ,T
ILW ,T cat ,T Y ,T ,T

Q X Y T Tr T T r T TrT b, ,Y ,T b, ,Y ,T
cat ,T cat ,T

Q X Y T Tr T TrT b, ,Y ,T
cat ,T

V e e V D

e e V e V e O

e e V e O .

λ

λ

λ

λ

− −−

− > −− − − −−

− > −− −−

= − +

 = − + − + 
 

 = − + 
 





  



 

 

 









  (21) 

 
As ( )1Q X Y>  and λ are usually unknown, we use Equation (20) to rewrite Equation (21) as 
follows 
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Figure A.1: Relative pricing error for an ILW with trigger level Y’ and maturity T’ in percent 
using the method shown in Equation (7) (denoted “replication”) and by calculating b,Y ',T '

ILW ,TV ′  
directly (denoted “direct calculation”) for varying input parameters (trigger level Y’ in bn. 
U.S. $)  

a* = 0.3624  a* = 0.4430 
T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
b* = 0.9916 b* = 1.2120 

T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
c* = 0.0383  c* = 0.0469 

T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
λ* = 0.6840 λ* = 0.8360 

T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
 

Notes: Monte-Carlo simulation based on 10,000,000 sample paths using stratified sampling as variance 
reduction technique; trigger level in bn. U.S. $; assuming the industry loss follows a compound Poisson process 
with intensity λ = 0.76 and Burr distributed losses with parameters a = 0.4027, b = 1.1018 and c = 0.0426. 
Generally, λ∗ =  λ, a* = a, b* = b, c* = c and only the parameter stated above the figures differs. Example: first 
row, first figure: λ∗  = λ = 0.76, a* = 0.3624, b* = b = 1.1018, c* = c = 0.0426. 
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Figure A.2: Relative pricing error for an ILW with trigger level Y’ and maturity T’ in percent 
using the method shown in Equation (7) (denoted “replication”) and by calculating b,Y ',T '

ILW ,TV ′  
directly (denoted “direct calculation”) for varying input parameters (trigger level Y’ in bn. 
U.S. $)  

a* = 0.4142 a* = 0.5062 
T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
c* =0.0453 c* =0.0553 

T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
λ* = 0.6840 λ* = 0.8360 

T’ = 1 T’ = 0.9 T’ = 1 T’ = 0.9 

    
 

Notes: Monte-Carlo simulation based on 10,000,000 sample paths using stratified sampling as variance 
reduction technique; trigger level in bn. U.S. $; assuming the industry loss follows a compound Poisson process 
with intensity λ = 0.76 and Pareto distributed losses with parameters a = 0.4602, c = 0.0503. Generally, λ∗ =  λ, 
a* = a, c* = c and only the parameter stated above the figures differs. Example: first row, first figure: 
λ∗ = λ = 0.76, a* = 0.4142, c* = c = 0.0503. 
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